

Technical documentation

Support & training

TPS22997 SLVSGT0 – DECEMBER 2022

TPS22997 5.5-V, 10-A, 4-mΩ On-Resistance Load Switch with Adjustable Rise Time

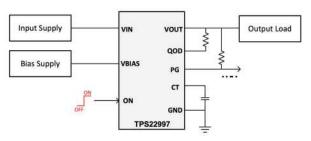
1 Features

- Input operating voltage range (V_{IN}): 0.1 V–5.5 V
- Bias voltage range:1.5 V–5.5 V
- Maximum continuous current: 10 A
- ON-Resistance (R_{ON}): 4 m Ω (typ.)
- Adjustable slew rate control
- Adjustable quick output discharge (QOD)
- Open drain Power Good (PG) signal
- Thermal shutdown
- Low power consumption:
 - ON state (I_Q): 10 μ A (typ.)
 - OFF state (I_{SD}): 0.1 μA (typ.)
- · Thermal shutdown
- Smart ON pin pulldown (R_{PD,ON})
 - − ON \ge V_{IH} (I_{ON}): 25 nA (typ.)
 - ON \leq V_{IL} (R_{PD.ON}): 500 k Ω (typ.)

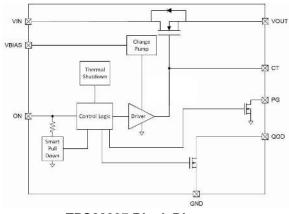
2 Applications

- Solid state drive
- PC and notebooks
- Industrial PC
- Optical module

3 Description


The TPS22997 is a single-channel load switch that provides a configurable rise time to minimize inrush current. The device contains an N-channel MOSFET that can operate over an input voltage range of 0.1 V to 5.5 V and can support a maximum continuous current of 10 A.

The switch is controlled by an enable pin (ON), which is capable of interfacing directly with low voltage GPIO signals ($V_{IH} = 0.8$ V). The TPS22997 device has an optional QOD pin for quick output discharge when switch is turned off, and the fall time (t_{FALL}) of the output can be adjusted through an external resistor. There is a Power Good (PG) signal on the device that indicates when the main MOSFET is fully turned on, which can be used to enable a downstream load. Integrated thermal shutdown ensures protection in high temperature environments.


The TPS22997 is available in a 1.5×2.0 mm, 0.5 mm pitch, 10-pin WQFN package (RYZ) and is characterized for operation over the free-air temperature range of -40° C to $+125^{\circ}$ C.

PART NUMBER	PACKAGE ⁽¹⁾	BODY SIZE (NOM)
TPS22997	WQFN (10)	1.5 × 2.0 mm

(1) For all available packages, see the orderable addendum at the end of the data sheet.

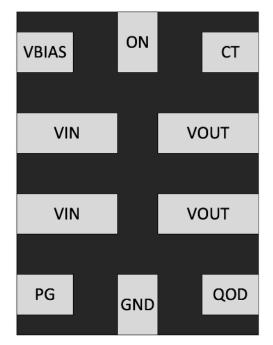
TPS22997 Typical Application

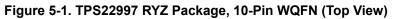
TPS22997 Block Diagram

Table of Contents

1 Features	1
2 Applications	1
3 Description	1
4 Revision History	2
5 Pin Configuration and Functions	3
6 Specifications	4
6.1 Absolute Maximum Ratings	4
6.2 ESD Ratings	4
6.3 Recommended Operating Conditions	4
6.4 Thermal Information	4
6.5 Electrical Characteristics (VBIAS = 5 V)	<mark>5</mark>
6.6 Electrical Characteristics (VBIAS = 3.3 V)	<mark>5</mark>
6.7 Electrical Characteristics (VBIAS = 1.5 V)	<mark>6</mark>
6.8 Switching Characteristics (VBIAS = 5 V)	7
6.9 Switching Characteristics (VBIAS = 3.3 V)	<mark>8</mark>
6.10 Switching Characteristics (VBIAS = 1.5 V)	<mark>8</mark>
6.11 Typical Characteristics	10
7 Parameter Measurement Information	12

8 Detailed Description	13
8.1 Overview	
8.2 Functional Block Diagram	
8.3 Feature Description.	
8.4 Device Functional Modes	14
9 Application and Implementation	16
9.1 Application Information	16
9.2 Typical Application	
9.3 Power Supply Recommendations	17
9.4 Layout.	
10 Device and Documentation Support	19
10.1 Receiving Notification of Documentation Update	s19
10.2 Support Resources	19
10.3 Trademarks	19
10.4 Electrostatic Discharge Caution	19
10.5 Glossary	19
11 Mechanical, Packaging, and Orderable	
Information	20


4 Revision History


NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

DATE	REVISION	NOTES
December 2022	*	Initial Release

5 Pin Configuration and Functions

Table 5-1. Pin Functions

PIN	PIN		DESCRIPTION
NAME	NO.	I/O ⁽¹⁾	BESCRIFTION
VBIAS	1	I	Device bias supply
VIN	2, 3	I	Switch input
PG	4	0	Open drain power good signal, asserted high when the output is full load ready
GND	5	-	Device ground
QOD	6	-	Quick output discharge pin
VOUT	7, 8	0	Switch output
СТ	9	I	Timing pin, can control the slew rate of the output through a capacitor to GND
ON	10	I	Enable pin

(1) I = Input, O = Output

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)⁽¹⁾

		MIN	MAX	UNIT
V _{IN}	Input Voltage	-0.3	6	V
V _{BIAS}	Bias Voltage	-0.3	6	V
V_{ON}, V_{PG}, V_{QOD}	Control Pin Voltage	-0.3	6	V
V _{CT}	CT Pin Voltage		15	V
I _{MAX}	Maximum Current		10	А
TJ	Junction temperature		Internally Limited	- ()
T _{stg}	Storage temperature	-65	150	°C

(1) Stresses beyond those listed under Absolute Maximum Rating may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Condition. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

6.2 ESD Ratings

			VALUE	UNIT
V	Electrostatic discharge	Human body model (HBM), per ANSI/ESDA/ JEDEC JS-001, all pins ⁽¹⁾	±2000	V
V _(ESD)	Lieurostatic discharge	Charged device model (CDM), per JEDEC specification JESD22-C101, all pins ⁽²⁾	±1000	v

(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

		MIN	NOM MAX	UNIT
V _{IN}	Input Voltage	0.1	5.5	V
V _{BIAS}	Bias Voltage	1.5	5.5	V
V _{IH}	ON Pin High Voltage Range	0.8	5.5	V
V _{IL}	ON Pin Low Voltage Range	0	0.35	V
V _{PG} , V _{QOD}	Control Pin Voltage	0	5.5	V
T _A	Ambient Temperature	-40	125	°C

6.4 Thermal Information

		TPS22997	
THERMAL METRIC		RYZ (WQFN)	UNIT
		10 PINS	
R _{eja}	Junction-to-ambient thermal resistance	83.7	°C/W
R _{0JC(top)}	Junction-to-case (top) thermal resistance	73.9	°C/W
R _{θJB}	Junction-to-board thermal resistance	18.2	°C/W
Ψ_{JT}	Junction-to-top characterization parameter	2.0	°C/W
Y _{JB}	Junction-to-board characterization parameter	18.1	°C/W

6.5 Electrical Characteristics (VBIAS = 5 V)

over operating free-air temperature range (unless otherwise noted). Typical values are specified at 25°C and VIN = 3.3V, VBIAS = 5.5V.

	PARAMETER	TEST CONDITIONS	T _A	MIN	TYP	MAX	UNIT
Power Consu	Imption						
			25°C		0.1		uA
I _{SD,VBIAS}	VBIAS Shutdown Current	ON = 0V	-40°C to 85°C			0.5	uA
			-40°C to 125°C			1	uA
			25°C		10		uA
I _{Q,VBIAS}	VBIAS Quiescent Current	ON > V _{IH}	-40°C to 85°C			15	uA
			-40°C to 125°C			15	uA
			25°C		0.1		uA
I _{SD,VIN}	VIN Shutdown Current	ON = 0V	-40°C to 85°C			1	uA
			-40°C to 125°C			7	uA
I _{ON}	ON pin leakage	ON = VBIAS	-40°C to 125°C		0.1		uA
Performance							
			25°C		4		mΩ
R _{ON}	On-Resistance	VIN = 5V	-40°C to 85°C			6	mΩ
			-40°C to 125°C			7	mΩ
	On-Resistance	VIN = 3.3V	25°C		4		mΩ
R _{ON}			-40°C to 85°C			6	mΩ
			-40°C to 125°C			7	mΩ
		VIN = 1.8V	25°C		4		mΩ
R _{ON}	On-Resistance		-40°C to 85°C			6	mΩ
			-40°C to 125°C			7	mΩ
			25°C		4		mΩ
R _{ON}	On-Resistance	VIN = 1.2V	-40°C to 85°C			6	mΩ
			-40°C to 125°C			7	mΩ
			25°C		4		mΩ
R _{ON}	On-Resistance	VIN = 0.8V	-40°C to 85°C			6	mΩ
			-40°C to 125°C			7	mΩ
V _{OL,PG}	Power Good VOL	I _{PG} = 1mA	-40°C to 125°C			0.2	V
D	Smort Bull Down Desiston		25°C		500		kΩ
R _{PD,ON}	Smart Pull Down Resistance		-40°C to 125°C			700	kΩ
P	OOD Posistance		25°C		50		Ω
R _{QOD}	QOD Resistance		-40°C to 125°C			75	Ω
Protection							
TSD	Thermal Shutdown		-	150	170	190	°C
TSD _{HYS}	Thermal Shutdown Hysteresis		-		20		°C

6.6 Electrical Characteristics (VBIAS = 3.3 V)

over operating free-air temperature range (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	T _A	MIN	TYP	MAX	UNIT
Power Consumption							
I _{SD,VBIAS}	VBIAS Shutdown Current	ON = 0V	25°C		0.1		uA
			-40°C to 85°C			0.5	uA
			-40°C to 125°C			1	uA

Copyright © 2022 Texas Instruments Incorporated

6.6 Electrical Characteristics (VBIAS = 3.3 V) (continued)

over operating free-air temperature range (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	T _A	MIN	TYP	MAX	UNIT
			25°C		10		uA
I _{Q,VBIAS}	VBIAS Quiescent Current	ON > V _{IH}	-40°C to 85°C			15	uA
			-40°C to 125°C			15	uA
			25°C		0.1		uA
I _{SD,VIN}	VIN Shutdown Current	ON = 0V	-40°C to 85°C			1	uA
			-40°C to 125°C			7	uA
I _{ON}	ON pin leakage	ON = VBIAS	-40°C to 125°C		0.1		uA
Performanc	e	l.					
R _{ON}			25°C		4		mΩ
	On-Resistance	VIN = 3.3V	-40°C to 85°C			6	mΩ
			-40°C to 125°C			7	mΩ
	On-Resistance	VIN = 1.8V	25°C		4		mΩ
R _{ON}			-40°C to 85°C			6	mΩ
			-40°C to 125°C			7	mΩ
	On-Resistance	VIN = 1.2V	25°C		4		mΩ
R _{ON}			-40°C to 85°C			6	mΩ
			-40°C to 125°C			7	mΩ
			25°C		4		mΩ
R _{ON}	On-Resistance	VIN = 0.8V	-40°C to 85°C			6	mΩ
			-40°C to 125°C			7	mΩ
V _{OL,PG}	Power Good VOL	I _{PG} = 1mA	-40°C to 125°C			0.2	V
D	Smart Pull Down Resistance		25°C		500		kΩ
R _{PD,ON}	Smart Full Down Resistance		-40°C to 125°C			700	kΩ
D	QOD Resistance		25°C		50		Ω
R _{QOD}			-40°C to 125°C			100	Ω
Protection			· ·			1	
TSD	Thermal Shutdown		-	150	170	190	°C
TSD _{HYS}	Thermal Shutdown Hysteresis		-		20		°C

6.7 Electrical Characteristics (VBIAS = 1.5 V)

over operating free-air temperature range (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	T _A	MIN	TYP	MAX	UNIT
Power Cons	sumption						
			25°C		0.1		uA
I _{SD,VBIAS}	VBIAS Shutdown Current	ON = 0V	-40°C to 85°C			0.5	uA
			-40°C to 125°C			1	uA
	VBIAS Quiescent Current	ON > V _{IH}	25°C		10		uA
I _{Q,VBIAS}			-40°C to 85°C			15	uA
			-40°C to 125°C			15	uA
			25°C		0.1		uA
I _{SD,VIN}	VIN Shutdown Current	ON = 0V	-40°C to 85°C			1	uA
			-40°C to 125°C			7	uA
I _{ON}	ON pin leakage	ON = VBIAS	-40°C to 125°C		0.1		uA
Performance	e	1	I				-

6.7 Electrical Characteristics (VBIAS = 1.5 V) (continued)

over operating free-air temperature range (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	T _A	MIN	TYP	MAX	UNIT
			25°C		4.5		mΩ
R _{ON}	On-Resistance	VIN = 1.5V	-40°C to 85°C			6	mΩ
			-40°C to 125°C			7	mΩ
			25°C		4.5		mΩ
R _{ON}	On-Resistance	VIN = 1.2V	-40°C to 85°C			6	mΩ
			-40°C to 125°C			7	mΩ
	On-Resistance	VIN = 0.8V	25°C		4.5		mΩ
R _{ON}			-40°C to 85°C			6	mΩ
			-40°C to 125°C			7	mΩ
V _{OL,PG}	Power Good VOL	I _{PG} = 1mA	-40°C to 125°C			0.2	V
D	Smart Pull Down Resistance		25°C		500		kΩ
R _{PD,ON}	Smart Puil Down Resistance		-40°C to 125°C			700	kΩ
D			25°C		55		Ω
R _{QOD}	QOD Resistance		-40°C to 125°C			100	Ω
Protection			I I				
TSD	Thermal Shutdown		-	150	170	190	°C
TSD _{HYS}	Thermal Shutdown Hysteresis		-		20		°C

6.8 Switching Characteristics (VBIAS = 5 V)

over operating free-air temperature range (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN TYP N	IAX UNIT
VIN = 5	v			
tON	Turn ON time	R _L = 100Ω, C _L = 10uF, CT = 1000pF	1170	us
tRISE	Rise time	$R_L = 100\Omega, C_L = 10 \mu F, CT = 1000 \mu F$	819	us
tD	Delay time	$R_L = 100\Omega, C_L = 10 \mu F, CT = 1000 \mu F$	347	us
tFALL	Fall time	$R_L = 100\Omega, C_L = 10 \mu F, CT = 1000 \mu F$	2090	us
tOFF	Turn OFF time	$R_L = 100\Omega, C_L = 10 \mu F, CT = 1000 \mu F$	108	us
VIN = 3.	.3V			
tON	Turn ON time	$R_L = 100\Omega, C_L = 10 \mu F, CT = 1000 \mu F$	944	us
tRISE	Rise time	$R_L = 100\Omega, C_L = 10 \mu F, CT = 1000 \mu F$	567	us
tD	Delay time	$R_L = 100\Omega, C_L = 10 \mu F, CT = 1000 \mu F$	377	us
tFALL	Fall time	$R_{L} = 100\Omega, C_{L} = 10uF, CT = 1000pF$	2110	us
tOFF	Turn OFF time	$R_L = 100\Omega, C_L = 10uF, CT = 1000pF$	113	us
VIN = 1.	.8V			
tON	Turn ON time	$R_L = 100\Omega, C_L = 10 \mu F, CT = 1000 \mu F$	692	us
tRISE	Rise time	$R_L = 100\Omega, C_L = 10 \mu F, CT = 1000 \mu F$	327	us
tD	Delay time	$R_L = 100\Omega, C_L = 10 \mu F, CT = 1000 \mu F$	365	us
tFALL	Fall time	$R_L = 100\Omega, C_L = 10 \mu F, CT = 1000 \mu F$	2150	us
tOFF	Turn OFF time	$R_L = 100\Omega, C_L = 10 \mu F, CT = 1000 \mu F$	117	us
VIN = 1.	.2V			
tON	Turn ON time	$R_L = 100\Omega, C_L = 10 \mu F, CT = 1000 \mu F$	591	us
tRISE	Rise time	$R_L = 100\Omega, C_L = 10 \mu F, CT = 1000 \mu F$	227	us
tD	Delay time	$R_L = 100\Omega, C_L = 10uF, CT = 1000pF$	364	us
tFALL	Fall time	R _L = 100Ω, C _L = 10uF, CT = 1000pF	2180	us

Copyright © 2022 Texas Instruments Incorporated

6.8 Switching Characteristics (VBIAS = 5 V) (continued)

over operating free-air temperature range (unless otherwise noted)

PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT		
tOFF	Turn OFF time	$R_L = 100\Omega, C_L = 10 \mu F, CT = 1000 \mu F$	120			us		
VIN = 0.	8V	· ·			#			
tON	Turn ON time	$R_L = 100\Omega, C_L = 10 \mu F, CT = 1000 \mu F$		523		us		
tRISE	Rise time	$R_L = 100\Omega, C_L = 10 \mu F, CT = 1000 \mu F$		159		us		
tD	Delay time	$R_L = 100\Omega, C_L = 10 \mu F, CT = 1000 \mu F$		365		us		
tFALL	Fall time	$R_L = 100\Omega, C_L = 10 \mu F, CT = 1000 \mu F$		2260		us		
tOFF	Turn OFF time	$R_L = 100\Omega, C_L = 10 \mu F, CT = 1000 \mu F$		129		us		

6.9 Switching Characteristics (VBIAS = 3.3 V)

over operating free-air temperature range (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
VIN = 3.	.3V	-			I	
tON	Turn ON time	$R_L = 100\Omega, C_L = 10 \mu F, CT = 1000 \mu F$		898		us
tRISE	Rise time	$R_L = 100\Omega, C_L = 10 \mu F, CT = 1000 \mu F$		563		us
tD	Delay time	$R_L = 100\Omega, C_L = 10 \mu F, CT = 1000 \mu F$		336		us
tFALL	Fall time	$R_{L} = 100\Omega, C_{L} = 10 \mu F, CT = 1000 \mu F$		2100		us
tOFF	Turn OFF time	$R_{L} = 100\Omega, C_{L} = 10 \mu F, CT = 1000 \mu F$		108		us
VIN = 1.	.8V					
tON	Turn ON time	$R_L = 100\Omega, C_L = 10 \mu F, CT = 1000 \mu F$		708		us
tRISE	Rise time	$R_L = 100\Omega, C_L = 10 \mu F, CT = 1000 \mu F$		331		us
tD	Delay time	$R_{L} = 100\Omega, C_{L} = 10 \mu F, CT = 1000 \mu F$		377		us
tFALL	Fall time	$R_{L} = 100\Omega, C_{L} = 10 \mu F, CT = 1000 \mu F$		2145		us
tOFF	Turn OFF time	$R_L = 100\Omega, C_L = 10 \mu F, CT = 1000 \mu F$		113		us
VIN = 1.	2V					
tON	Turn ON time	$R_L = 100\Omega, C_L = 10 \mu F, CT = 1000 \mu F$		605		us
tRISE	Rise time	$R_{L} = 100\Omega, C_{L} = 10 \mu F, CT = 1000 \mu F$		231		us
tD	Delay time	$R_{L} = 100\Omega, C_{L} = 10 \mu F, CT = 1000 \mu F$		375		us
tFALL	Fall time	$R_L = 100\Omega, C_L = 10 \mu F, CT = 1000 \mu F$		2190		us
tOFF	Turn OFF time	$R_L = 100\Omega, C_L = 10 \mu F, CT = 1000 \mu F$		119		us
VIN = 0.	.8V				I	
tON	Turn ON time	$R_{L} = 100\Omega, C_{L} = 10 \mu F, CT = 1000 \mu F$		536		us
tRISE	Rise time	$R_{L} = 100\Omega, C_{L} = 10 \mu F, CT = 1000 \mu F$		162		us
tD	Delay time	$R_L = 100\Omega, C_L = 10 \mu F, CT = 1000 \mu F$		373		us
tFALL	Fall time	$R_L = 100\Omega, C_L = 10 \mu F, CT = 1000 \mu F$		2260		us
tOFF	Turn OFF time	R _L = 100Ω, C _L = 10uF, CT = 1000pF		126		us

6.10 Switching Characteristics (VBIAS = 1.5 V)

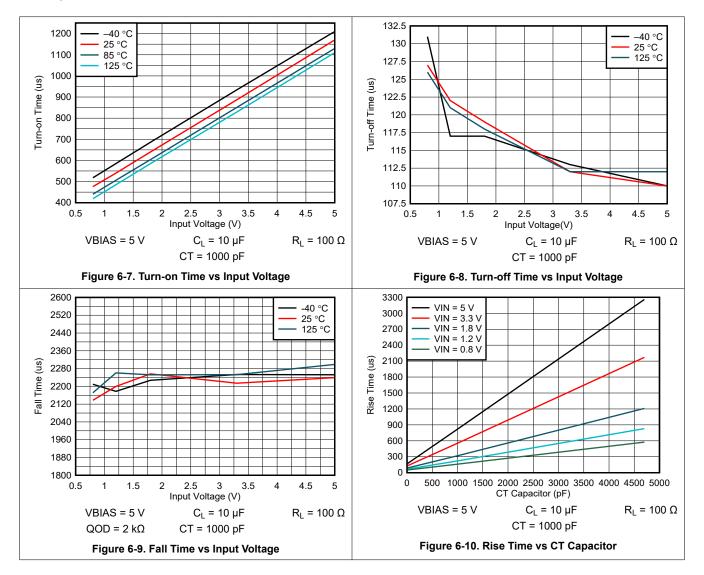
over operating free-air temperature range (unless otherwise noted)

PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT
VIN = 1.5	5V					
tON	Turn ON time	$R_L = 100\Omega, C_L = 10 \mu F, CT = 1000 \mu F$		620		us
tRISE	Rise time	$R_L = 100\Omega, C_L = 10 \mu F, CT = 1000 \mu F$		281		us
tD	Delay time	$R_L = 100\Omega, C_L = 10 \mu F, CT = 1000 \mu F$		340		us


6.10 Switching Characteristics (VBIAS = 1.5 V) (continued)

over operating free-air temperature range (unless otherwise noted)

PARAMETER		TEST CONDITIONS	MIN TYP	MAX	UNIT
tFALL	Fall time	$R_L = 100\Omega, C_L = 10 \mu F, CT = 1000 \mu F$	2150		us
tOFF	Turn OFF time	$R_L = 100\Omega, C_L = 10 \mu F, CT = 1000 \mu F$	111		us
VIN = 1.	2V			L	
tON	Turn ON time	$R_L = 100\Omega, C_L = 10 \mu F, CT = 1000 \mu F$	642		us
tRISE	Rise time	$R_L = 100\Omega, C_L = 10 \mu F, CT = 1000 \mu F$	237		us
tD	Delay time	$R_L = 100\Omega, C_L = 10 \mu F, CT = 1000 \mu F$	404		us
tFALL	Fall time	$R_L = 100\Omega, C_L = 10 \mu F, CT = 1000 \mu F$	2170		us
tOFF	Turn OFF time	$R_L = 100\Omega, C_L = 10 \mu F, CT = 1000 \mu F$	114		us
VIN = 0.	8V				
tON	Turn ON time	$R_L = 100\Omega, C_L = 10 \mu F, CT = 1000 \mu F$	535		us
tRISE	Rise time	$R_L = 100\Omega, C_L = 10 \mu F, CT = 1000 \mu F$	166		us
tD	Delay time	$R_L = 100\Omega, C_L = 10 \mu F, CT = 1000 \mu F$	368		us
tFALL	Fall time	$R_{L} = 100\Omega, C_{L} = 10 \mu F, CT = 1000 \mu F$	2245		us
tOFF	Turn OFF time	$R_L = 100\Omega, C_L = 10 \mu F, CT = 1000 \mu F$	171		us



6.11 Typical Characteristics

6.11 Typical Characteristics (continued)

7 Parameter Measurement Information

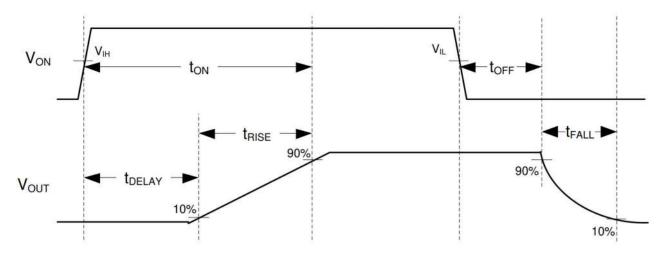
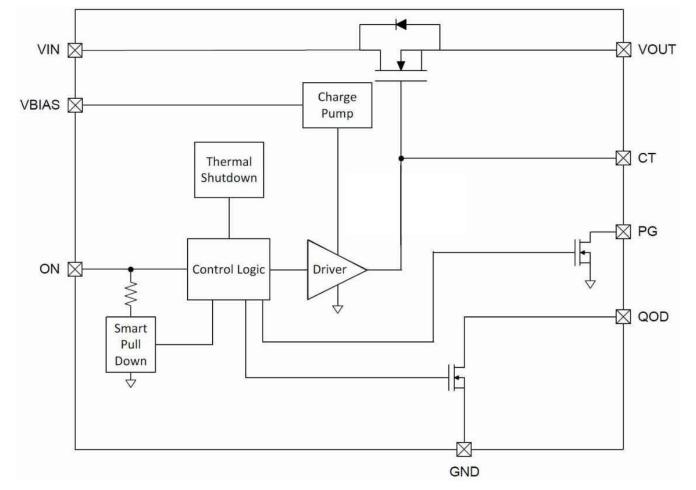


Figure 7-1. TPS22997 Timing Diagram


8 Detailed Description

8.1 Overview

The TPS22997 device is a single-channel load switch with a 4-m Ω power MOSFET designed to operate up to 10 A. The voltage range is 0.1 V to 5.5 V. A configurable rise time provides flexibility for power sequencing and minimizes inrush current for high capacitance loads.

The switch is controlled by an enable pin (ON), which is capable of interfacing directly with low voltage GPIO signals down to its V_{IH} level of 0.8 V. The TPS22997 device has an optional QOD pin for quick output discharge when switch is turned off, and the fall time (t_{FALL}) of the output can be adjusted through an external capacitor. There is a Power Good (PG) signal on the device that indicates when the main MOSFET is fully turned on and the on-resistance is at its final value.

8.2 Functional Block Diagram

8.3 Feature Description

8.3.1 ON and OFF Control

The ON pin controls the state of the switch. The ON pin is compatible with standard GPIO logic threshold so it can be used in a wide variety of applications. When the pin pull high, the device enables, and when it is low, the device disables.

8.3.2 Adjustable Slew Rate

A capacitor to GND on the CT pin sets the slew rate, and the higher the capacitance the lower the slew rate. The voltage on the CT pin can be as high as 15 V; therefore, the minimum voltage rating for the CT capacitor must be 30 V for optimal performance. Rise times for VBIAS = 5 V are shown below.

CT Capacitor	VIN = 5 V	VIN = 3.3 V	VIN = 1.8 V	VIN = 1.2 V	VIN = 0.8 V
0 pF	165 µs	126 µs	86 µs	66 µs	51 µs
220 pF	309 µs	221 µs	137 µs	99 µs	74 µs
1000 pF	819 µs	554 µs	319 µs	222 µs	160 µs
4700 pF	3260 µs	2170 µs	1210 µs	829 µs	575 µs

The following equation can be used to estimate the rise time for different VIN and CT capacitors at VBIAS = 5 V.

(1)

Where:

- t_R = Rise time in µs
- V_{IN} = Input voltage in V
- CT = CT capacitance in pF

8.3.3 Adjustable Quick Output Discharge

The TPS22997 device includes a QOD feature that can be configured in one of three ways:

- 1. QOD pin shorted to VOUT pin. Using this method, the discharge rate after the switch becomes disabled is controlled with the value of the internal resistance RQOD. The value of this resistance is listed in the Electrical Characteristics table.
- QOD pin connected to VOUT pin using an external resistor R_{EXT}. After the switch becomes disabled, the discharge rate is controlled by the value of the total resistance of the QOD.
- 3. QOD pin is unused and left floating. Using this method, there is no quick output discharge functionality, and the output remains floating after the switch is disabled.

Fall time is dependent on the strength of the configured pulldown resistance on the output.

8.3.4 Thermal Shutdown

When the device temperature reaches 150°C (typical), the device shuts itself off to prevent thermal damage. After it cools off by about 20°C, the device turns back on. If the device is kept in a thermally stressful environment, then the device oscillates between these two states until it can keep its temperature below the thermal shutdown point.

8.3.5 Power Good (PG) Signal

The TPS22997 device has a Power Good (PG) output signal to indicate the gate of the pass FET is driven high and the switch is on with the on-resistance close to its final value (full load ready). The signal is an active high and open drain output which can be connected to a voltage source through an external pullup resistor, R_{PU} . This voltage source can be VOUT from the TPS22997 device or another external voltage. VBIAS is required for PG to have a valid output.

8.4 Device Functional Modes

The below table summarizes the device functional modes:

ON	Fault Condition	VOUT State
L	N/A	Hi-Z
Н	None	V _{IN} (through R _{ON})

ON	Fault Condition	VOUT State
X	Thermal shutdown	Hi-Z

9 Application and Implementation

Note

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes, as well as validating and testing their design implementation to confirm system functionality.

9.1 Application Information

This section highlights some of the design considerations when implementing this device in various applications.

9.2 Typical Application

This typical application demonstrates how to use the TPS22997 device to limit startup inrush current.

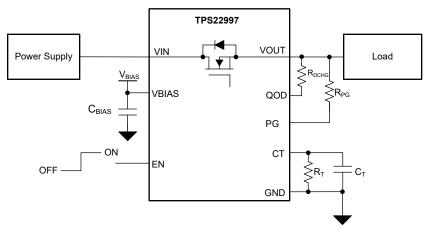


Figure 9-1. TPS22997 Basic Application

Table 9-1	Component Descriptions	
-----------	------------------------	--

PARAMETER	Purpose					
C _{BIAS}	Stabilize the bias supply and filter out low frequency noise.					
C _T	Adjustable rise time capacitor.					
R _T	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$					
R _{DCHG}	Adjustable output discharge resistor.					

9.2.1 Design Requirements

For this example, the values below are used as the design parameters.

Table 9-2. Design Parameters

PARAMETER	VALUE
V _{BIAS}	5.0 V
V _{IN}	5.0 V
Load capacitance	220 µF
Maximum inrush current	1.5 A

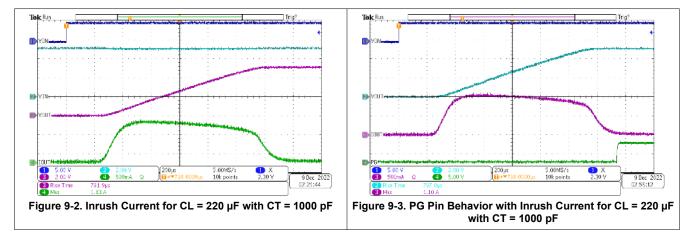
9.2.2 Detailed Design Procedure

When the switch enables, the charge up the output capacitance from 0 V to the set value (1.8 V in this example). This charge arrives in the form of inrush current. Calculate inrush current using Equation 2.

Inrush Current =
$$C_L \times dVOUT/dt$$

Where:

- C_L is the output capacitance.
- dVOUT is the change in VOUT during the ramp up of the output voltage when device is enabled. Because rise time is 10% of VOUT to 90% of VOUT, this is 80% of the VIN value.
- dt is the rise time in VOUT during the ramp up of the output voltage when the device is enabled.


The TPS22997 offers an adjustable rise time for VOUT, allowing the user to control the inrush current during turn on. Calculate the appropriate rise time using the design requirements and the inrush current equation as shown below.

$$1.5 A = 220 \ \mu F \times (5.0 \ V \times 80\%) \ / \ dt \tag{3}$$

dt = 586 us

To ensure an inrush current of less than 1.5 A, a C_T setting that yields a rise time of more than 586 μ s must be chosen. By using a 1000pF capacitance, a rise time of 819 μ s is selected, limiting the inrush current to below 1.5 A.

9.2.3 Application Performance Plots

9.3 Power Supply Recommendations

The TPS22997 device is designed to operate with a VIN range of 0.1 V to 5.5 V. Regulate the VIN power supply well. The power supply must be able to withstand all transient load current steps. In most situations, using an input capacitance (C_{IN}) of 1 μ F is sufficient to prevent the supply voltage from dipping when the switch is turned on. In cases where the power supply is slow to respond to a large transient current or large load current step, additional bulk capacitance can be required on the input.

A capacitor (C_{BIAS}) is recommended to be placed as close to the device as possible to stabilize the supply and filter our low frequency noise.

(4)

9.4 Layout

9.4.1 Layout Guidelines

For best performance, all traces must be as short as possible. To be most effective, place the input and output capacitors close to the device to minimize the effects that parasitic trace inductances can have on normal operation. Using wide traces for VIN, VOUT, and GND helps minimize the parasitic electrical effects.

9.4.2 Layout Example

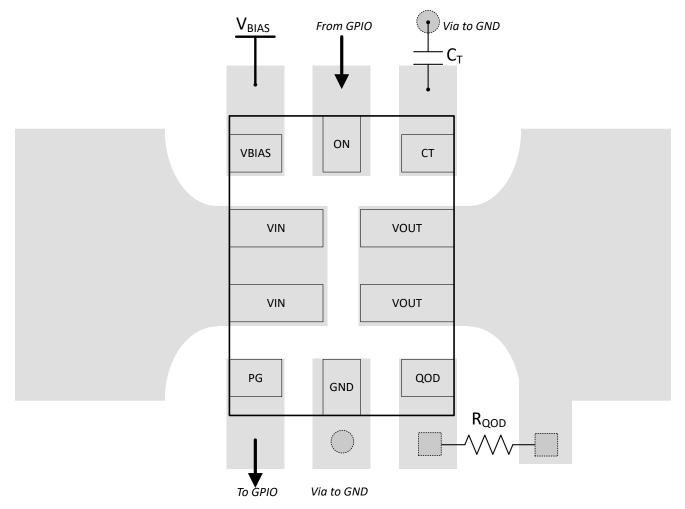


Figure 9-4. TPS22997 Layout Example

10 Device and Documentation Support

TI offers an extensive line of development tools. Tools and software to evaluate the performance of the device, generate code, and develop solutions are listed below.

10.1 Receiving Notification of Documentation Updates

To receive notification of documentation updates, navigate to the device product folder on ti.com. Click on *Subscribe to updates* to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

10.2 Support Resources

TI E2E[™] support forums are an engineer's go-to source for fast, verified answers and design help — straight from the experts. Search existing answers or ask your own question to get the quick design help you need.

Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

10.3 Trademarks

TI E2E[™] is a trademark of Texas Instruments. All trademarks are the property of their respective owners.

10.4 Electrostatic Discharge Caution

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

10.5 Glossary

TI Glossary This glossary lists and explains terms, acronyms, and definitions.

11 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead finish/ Ball material	MSL Peak Temp (3)	Op Temp (°C)	Device Marking (4/5)	Samples
TPS22997RYZR	ACTIVE	WQFN-HR	RYZ	10	3000	RoHS & Green	NIPDAU	Level-2-260C-1 YEAR	-40 to 125	(102, 102)	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

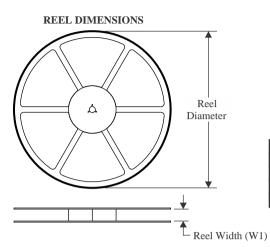
Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

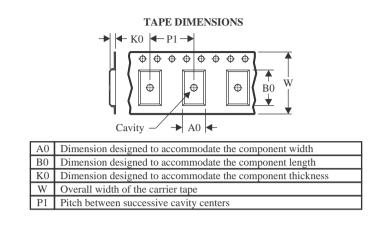
⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

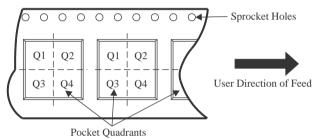
⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

⁽⁵⁾ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

⁽⁶⁾ Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

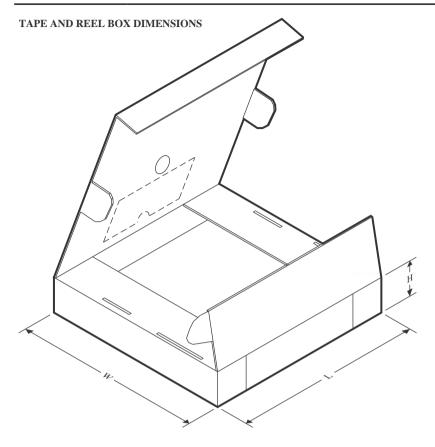

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.


In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.


www.ti.com

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE


Device	0	Package Drawing			Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TPS22997RYZR	WQFN- HR	RYZ	10	3000	180.0	8.4	1.75	2.25	1.0	4.0	8.0	Q1

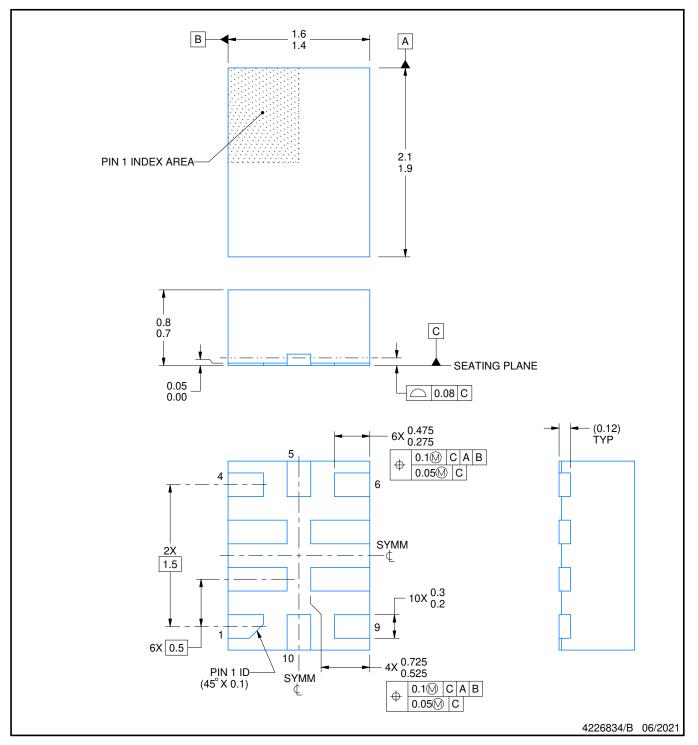
www.ti.com

PACKAGE MATERIALS INFORMATION

31-Dec-2022

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
TPS22997RYZR	WQFN-HR	RYZ	10	3000	210.0	185.0	35.0


RYZ0010A

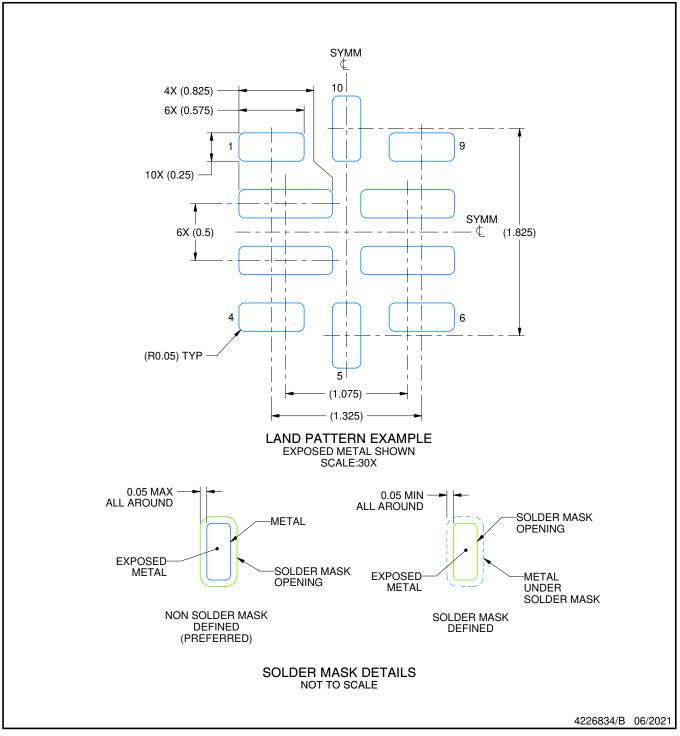
PACKAGE OUTLINE

WQFN-HR - 0.8 mm max height

PLASTIC QUAD FLATPACK - NO LEAD

NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
- 2. This drawing is subject to change without notice.



RYZ0010A

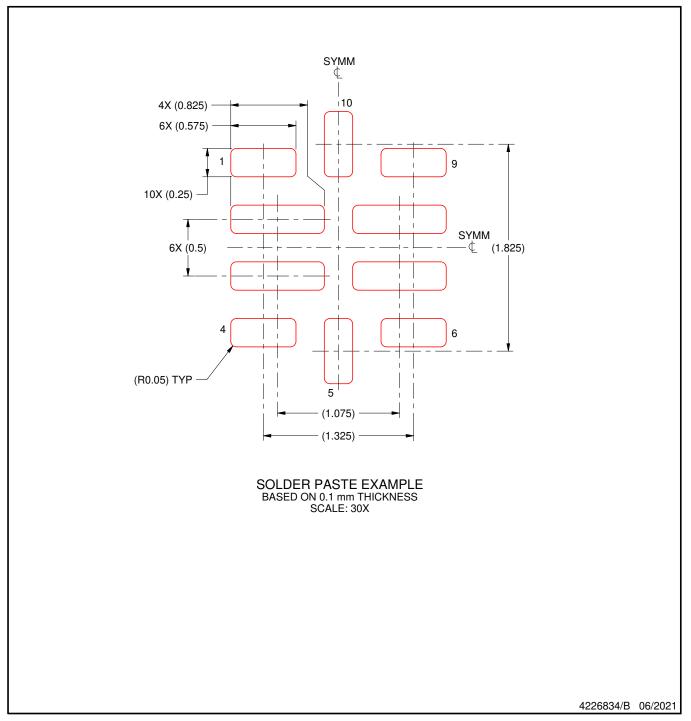
EXAMPLE BOARD LAYOUT

WQFN-HR - 0.8 mm max height

PLASTIC QUAD FLATPACK - NO LEAD

NOTES: (continued)

3. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).



RYZ0010A

EXAMPLE STENCIL DESIGN

WQFN-HR - 0.8 mm max height

PLASTIC QUAD FLATPACK - NO LEAD

NOTES: (continued)

5. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2023, Texas Instruments Incorporated