

Monolithic Amplifier

PMA-5452+

Mini-Circuits

50Ω 0.05 to 6 GHz

THE BIG DEAL

- Single Positive Supply Voltage, 3V, Id=40mA
- Ultra Low Noise Figure, 0.6 dB typ. at 0.5 GHz
- High IP3, 32 dBm typ. 1GHz
- Gain, 19 dB typ. at 1 GHz
- Output Power, up to +18.5dBm typ.
- Micro-miniature size, 3mm x 3mm
- Aqueous washable

Generic photo used for illustration purposes only CASE STYLE: DO849

+RoHS Compliant The +Suffix identifies RoHS Compliance. See our web site for RoHS Compliance methodologies and qualifications

APPLICATIONS

- Cellular
- ISM
- GSM
- WCDMA
- LTE
- WiMAX
- WLAN
- UNII and HIPERLAN

PRODUCT OVERVIEW

Mini-Circuits PMA-5452+ is a E-PHEMT* based Ultra-Low Noise MMIC Amplifier operating from 50 MHz to 6 GHz with a unique combination of low noise and high IP3 making this amplifier ideal for sensitive receiver applications. This design operates on a single 3V supply at only 40mA and is internally matched to 50 Ohms.

KEY FEATURES Feature Advantages Ultra Low Noise, 0.6dB Outstanding Noise Figure, measured in a 50 Ohm environment without any external matching Combining Low Noise and High IP3 makes this MMIC amplifier ideal for Low Noise Receiver Front End (RFE) because it gives High IP3, 32 dBm the user advantages at both ends of the dynamic range: sensitivity & two-tone spur-free dynamic range At only 40mA, the PMA-5452+ is ideal for remote applications with limited available power or densely packed applications Low Current, 40 mA where thermal management is critical. **Broad Band** Operating over a broadband the PMA-5452+ covers the primary wireless communications bands: Cellular, PCS, LTE, WiMAX Internally Matched No external matching elements required to achieve the advertised noise and output power over the full band MCLP Package Low Inductance, repeatable transitions, excellent thermal pad Max Input Power, +20 dBm Ruggedized design operates up to input powers of +20dBm without the need of an external limiter Low, small signal operating current of 40 mA nominal maintains junction temperatures typically below 105°C at 85°C ground **High Reliability** lead temperature

*Enhancement mode Pseudomorphic High Electron Mobility Transistor.

Mini-Circuits

REV. E ECO-013311 PMA-5452+ TH/RS/CP 220518

LOW NOISE, HIGH IP3 Monolithic Amplifier

Mini-Circuits

ELECTRICAL SPECIFICATIONS⁽¹⁾ AT 25°C, ZO=50Ω, (REFER TO CHARACTERIZATION CIRCUIT, FIG. 1)

Parameter	Condition (GHz)	Min.	Тур.	Max.	Units	
Frequency Range		0.05		6.0	GHz	
DC Voltage (V _d)			3.0		V	
DC Current (I _d) ⁽⁶⁾		28	40	54	mA	
DC Current (I _{Rbias})			2.4		mA	
· · · · · · · · · · · · · · · ·	0.05		1.2			
	0.5		0.6	_		
	1.0		0.7	_	dB	
	2.0		0.9	1.3		
Noise Figure	3.0		1.3	_		
	4.0		1.5	_		
	5.0		1.9	_		
	6.0		2.1	_		
	0.05	_	25.1	_		
	0.5	_	22.6	_		
	1.0	_	19.0	_		
Caia	2.0	12.6	14.0	15.4	dB	
Gain	3.0	_	11.0	_		
	4.0	_	8.7	_		
	5.0	—	6.9	—		
	6.0	—	5.5	—		
Input Return Loss	0.05-0.5		9.0		dB	
	0.5-6		7.0			
Output Return Loss	0.05-0.1		13.0		dB	
	0.1-6		18.0			
	0.05		29.6			
	0.5		30.7		dBm	
	1.0		32.1			
Output IP3	2.0		34.1			
	3.0		34.9			
	4.0		34.5			
	5.0		35.3			
	6.0		35.8			
	0.05		18.4		dBm	
	0.5		18.5			
	1.0		18.4			
Output Power @ 1 dB compression (2)	2.0		18.3			
	3.0		18.3			
	4.0 5.0		18.5 18.8			
	6.0		18.8			
DC Current Variation vs. Temperature ⁽³⁾	0.0		-0.035		mA/°C	
Thermal Resistance			128		°C/W	

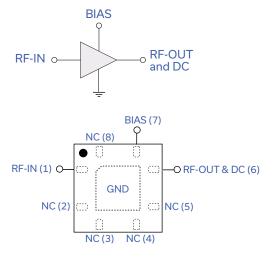
MAXIMUM RATINGS⁽⁴⁾

Parameter	Ratings
Operating Temperature (5)	-40°C to 85°C
Storage Temperature	-55°C to 100°C
Channel Temperature	150°C
DC Voltage (Pad 6)	5V
Power Dissipation	500mW
DC Current (Pad 6)	100mA
Bias Current (Pad 7)	10mA
Input Power (7)	+20dBm

(1) Measured on Mini-Circuits Characterization test board TB-502+ See Characterization Test Circuit (Fig. 1) (2) PIdB specified with external current limiting of 50mA; Capable of higher PIdB at higher current (see Fig. 2) (3) (Current at 85°C - Current at -45°C)/130

(4) Permanent damage may occur if any of these limits are exceeded. These maximum ratings are not intended for continuous normal operation. (5) Defined with reference to ground pad temperature.

(6) Specified DC current consumption is under small signal conditions. Current will increase with input RF Power. To maintain maximum current consumption, external DC current limiting circuits are required on Vd line. (7) Maximum input power is specified based upon external Vd current limiting of 60 mA. Maximum input power


will degrade without external current limiting.

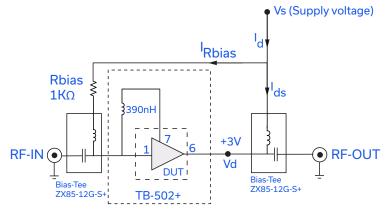
LOW NOISE, HIGH IP3 Monolithic Amplifier PMA-5452+

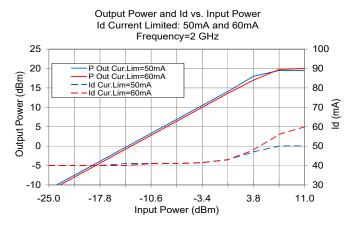
Mini-Circuits

SIMPLIFIED SCHEMATIC AND PAD DESCRIPTION

Function	Pad Number	Description (See Figure 1)
RF-IN	1	RF input pad
RF-OUT & DC	6	RF output pad (connected to RF-OUT via blocking external cap C2, and Supply voltage Vs via RF Choke L1)
BIAS	7	Bias pad (connected to Vs via Rbias)
GND	paddle in center of bottom	Connected to ground
NOT USED	2,3,4,5,8	No internal connection; recommended use: per PCB Layout PL-299

CHARACTERIZATION TEST CIRCUIT




Fig 1. Block Diagram of Test Circuit used for characterization. (DUT soldered on Mini-Circuits Characterization Test Board TB-502+) Gain, Output power at 1dB compression (P1dB), Output IP3 (OIP3) and Noise Figure measured using Agilent's N5242A PNA-X Microwave network analyzer.

Conditions:

21.0

1. Gain: Pin=-25 dBm

- 2. Output IP3 (OIP3): Two tones, spaced 1 MHz apart, 5 dBm/tone at output.
- 3. Vs adjusted for 3V at device (Vd), compensating loss of bias tee.

Output Power at 1dB Compression vs. Frequency Id Current Limited: 50mA and 60mA

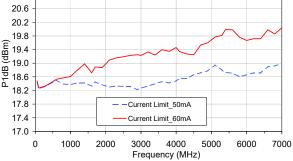


Fig 2. Output Power and Id vs. Input Power and Frequency.

Performance measured on Mini-Circuits Characterization test board TB-502+. See Characterization Test Circuit (Fig. 1) Measurements performed with current (Id) limited as noted.

Mini-Circuits

LOW NOISE, HIGH IP3 Monolithic Amplifier PMA-5452+

Mini-Circuits

RECOMMENDED APPLICATION CIRCUIT

(refer to evaluation board for PCB Layout and component values)

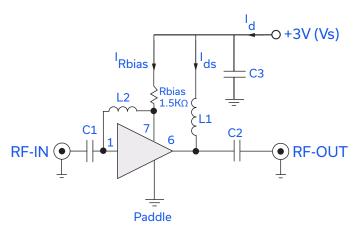
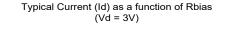
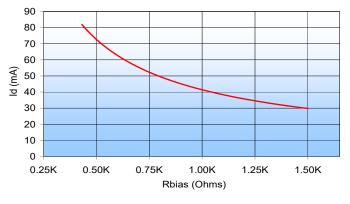
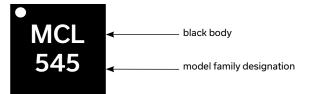





Fig 3. Recommended Application Circuit Note: Resistance of L1, 0.1-0.2Ω typically

PRODUCT MARKING

Marking may contain other features or characters for internal lot control

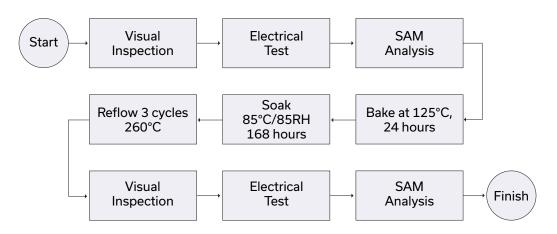
LOW NOISE, HIGH IP3 Monolithic Amplifier

Mini-Circuits

ADDITIONAL DETAILED TECHNICAL INFORMATION IS AVAILABLE ON OUR DASH BOARD. TO ACCESS **CLICK HERE**

	Data Table	
Performance Data	Swept Graphs	
	S-Parameter (S2P Files) Data Set (.zip file)	
Case Style	VIe Case Style: DQ849 Plastic package, exposed paddle, lead finish: tin-silver over nickel	
Tape & Reel	F104	
Standard quantities available on reel	Standard quantities availabe on reel: 7" reels with 20, 50, 100, 200, 500, 1K, or 2K devices	
Suggested Layout for PCB Design	PL-299	
Evaluation Board	TB-501-2+ (50-5000 MHz)	
Environmental Ratings	ENV08T1	

ESD RATING


Human Body Model (HBM): Class 1A (250V to <500V) in accordance with ANSI/ESD STM 5.1 - 2001

Machine Model (MM): Class M1 (<100V) in accordance with ANSI/ESD STM5.2-1999; passes 40V

MSL RATING

Moisture Sensitivity: MSL1 in accordance with IPC/JEDEC J-STD-020D

MSL TEST FLOW CHART

NOTES

- A. Performance and quality attributes and conditions not expressly stated in this specification document are intended to be excluded and do not form a part of this specification document
- B. Electrical specifications and performance data contained in this specification document are based on Mini-Circuit's applicable established test performance criteria and measurement instructions.
- The parts covered by this specification document are subject to Mini-Circuits standard limited warranty and terms and conditions (collectively, "Standard Terms"); Purchasers of this part are entitled to the rights and benefits contained therein. For a full statement of the standard. Terms and the exclusive rights and remedies thereunder, please visit Mini-Circuits' website at www.minicircuits.com/MCLStore/terms.jsp C.

Mini-Circuits