

CY62168GN30 MoBL

16-Mbit (2M words × 8 bits) Static RAM

Features

- Ultra-low standby power
 Typical standby current: 1.5 μA
 Maximum standby current: 8 μA
- High speed: 45 ns
- Wide voltage range: 2.2 V to 3.6 V
- 1.0 V data retention
- Transistor-transistor logic (TTL) compatible inputs and outputs
- Available in Pb-free 48-ball VFBGA package

Functional Description

CY62168GN30 is high-performance CMOS low-power (MoBL) SRAM devices. Both devices are offered in single and dual chip enable options and in multiple pin configurations.

Devices with a single chip enable input are accessed by asserting the chip enable input $\overline{(CE)}$ LOW. Dual chip enable

Product Portfolio

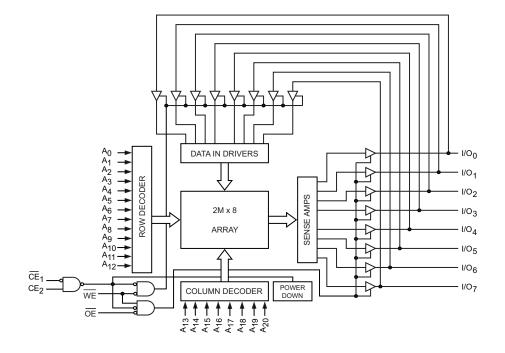
devices are accessed by asserting both chip enable inputs – \overline{CE}_1 as LOW and CE₂ as HIGH.

Write to the device by taking Chip Enable 1 (\overline{CE}_1) LOW and Chip Enable 2 (CE_2) HIGH and the Write Enable (WE) input LOW. Data on the eight I/O pins (I/O₀ through I/O₇) is then written into the location specified on the address pins (A₀ through A₂₀).

Read from the device by taking Chip Enable 1 (\overline{CE}_1) and Output Enable (\overline{OE}) L<u>OW</u> and Chip Enable 2 (CE_2) HIGH while forcing Write Enable (WE) HIGH. Under these conditions, the contents of the memory location specified by the address pins will appear on the I/O pins.

The eight input and output pins (I/O₀ through I/O₇) are place<u>d in</u> a high impedance state when the device is <u>deselected</u> (\overline{CE}_1 HIGH or \overline{CE}_2 LOW), the outp<u>uts</u> are disabled (\overline{OE} HIGH), <u>or a</u> write operation is in progress (\overline{CE}_1 LOW and \overline{CE}_2 HIGH and WE LOW). See the Truth Table – CY62168GN30 on page 12 for a complete description of read and write modes.

The CY62168GN30 device is available in a Pb-free 48-pin VFBGA package. The logic block diagrams are on page 2.

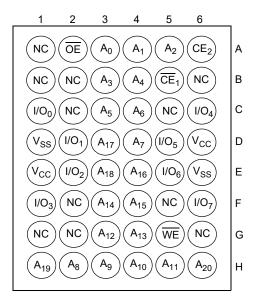

Product	Features and Options			Speed	Power Dissipation				
		Danga	V Benge (1)		Operating I _{CC} , (mA)		Standby I (UA)		
Product	(see Pin Configurations	Range	V _{CC} Range (V)	(ns)	f = 1	f = f _{max} St		Standby, I _{SB2} (µA)	
	section)				Typ ^[2]	Max	Typ ^[2]	Мах	
CY62168GN30 ^[3, 4]	Single or dual Chip Enables	Industrial	2.2 V–3.6 V	45	29	35	1.5	8	

Notes

- 1. This device does not support automatic write-back on error detection.
- Typical values are included for reference only and are not guaranteed or tested. Typical values are measured at V_{CC} = 3 V (for V_{CC} range of 2.2 V–3.6 V), T_A = 25 °C.
- 3. This device offers improved I_{CC}, I_{SB1} and I_{SB2} specifications compared to the previous revision with same marketing part number.
- 4. For previous version of this device, kindly refer here. Further details about improvement and comparison between old and new versions can be found in the PCN193805.

Logic Block Diagram

Contents


Pin Configurations	4
Maximum Ratings	5
Operating Range	
DC Electrical Characteristics	5
Capacitance	6
Thermal Resistance	
AC Test Loads and Waveforms	6
Data Retention Characteristics	7
Data Retention Waveform	7
Switching Characteristics	8
Switching Waveforms	
Truth Table – CY62168GN30	
Ordering Information	
Ordering Code Definitions	

Package Diagrams Acronyms	
Document Conventions	
Units of Measure	15
Document History Page	16
Sales, Solutions, and Legal Information	17
Worldwide Sales and Design Support	17
Products	17
PSoC® Solutions	17
Cypress Developer Community	17
Technical Support	17

Pin Configurations

Figure 1. 48-ball VFBGA (6 × 8 × 1 mm) pinout ^[5] CY62168GN30

Note

5. NC pins are not connected internally to the die and are typically used for address expansion to a higher-density device. Refer to the respective datasheets for pin configuration.

Maximum Ratings

Exceeding maximum ratings may shorten the useful life of the device. User guidelines are not tested.

Storage temperature65 °C to + 150 °C
Ambient temperature with power applied–55 °C to + 125 °C
Supply voltage to ground potential0.5 V to 6 V
DC voltage applied to outputs in High Z state $^{[6]}$ 0.5 V to V_{CC} + 0.5 V

DC input voltage ^[6]	–0.5 V to V _{CC} + 0.5 V
Output current into outputs (LOW)	
Static discharge voltage (MIL-STD-883, Method 3015)	>2001 V
Latch-up current	>140 mA

Operating Range

Grade	Ambient Temperature	V_{cc} ^[7]
Industrial	–40 °C to +85 °C	2.2 V to 3.6 V

DC Electrical Characteristics

Over the operating range of –40 $^\circ\text{C}$ to 85 $^\circ\text{C}$	
---	--

Devementer	Description		Test Conditions			Unit		
Parameter	Desc	ripuon	Test Cond	luons	Min	Typ ^[8]	Max	Unit
V _{OH}	Output HIGH	2.2 V to 2.7 V	V_{CC} = Min, I_{OH} = -0.1 mA		2.0	_	_	V
	voltage	2.7 V to 3.6 V	V _{CC} = Min, I _{OH} = -1.0	mA	2.4	_	_	V
V _{OL}	Output LOW	2.2 V to 2.7 V	V _{CC} = Min, I _{OL} = 0.1 r	nA	I	_	0.4	V
	voltage	2.7 V to 3.6 V	V _{CC} = Min, I _{OL} = 2.1 r	nA	I	_	0.4	V
V _{IH}	Input HIGH	2.2 V to 2.7 V	-		1.8	_	V _{CC} + 0.3	V
	voltage	2.7 V to 3.6 V	-		2.0	_	V _{CC} + 0.3	V
V _{IL}	Input LOW	2.2 V to 2.7 V	-		-0.3	_	0.6	V
	voltage ^[6]	2.7 V to 3.6 V	-	_		_	0.8	V
I _{IX}	Input leakage c	urrent	$GND \le V_{IN} \le V_{CC}$		-1.0	_	+1.0	μA
I _{OZ}	Output leakage	current	GND \leq V _{OUT} \leq V _{CC} , Output disabled		-1.0	_	+1.0	μA
I _{CC} ^[9, 10]	V _{CC} operating s	supply current	$V_{CC} = Max,$ f = 22.22 MHz $I_{OUT} = 0$ mA, (45 ns) CMOS levels		-	29.0	35.0	mA
			CMOS levels	f = 1 MHz	-	7.0	9.0	mA
I _{SB1} ^[9, 10, 11]	Automatic powe CMOS inputs; V _{CC} = 2.2 to 3.6	er down current – 6 V	$\overline{CE}_1 \ge V_{CC} - 0.2 \text{ V or } CE_2 \le 0.2 \text{ V}, \\ V_{IN} \ge V_{CC} - 0.2 \text{ V}, V_{IN} \le 0.2 \text{ V}, \\ f = f_{max} \text{ (address and data only)}, \\ f = 0 (\overline{OE}, \text{ and } \overline{WE}), V_{CC} = V_{CC(max)}$		_	1.5	8.0	μΑ
I _{SB2} ^[9, 10, 12]	Automatic powe	er down current –	$\frac{\overline{CE}_1 \ge V_{CC} - 0.2 \text{ V or}}{CE_2 \le 0.2 \text{ V},}$	25 °C ^[13]	-	1.5	3.0 ^[13]	μA
	CMOS inputs; $V_{CC} = 2.2$ to 3.6	6 V		40 0	_	-	3.5 ^[13]	μA
			$V_{IN} \ge V_{CC} - 0.2 \text{ V or}$ $V_{IN} \le 0.2 \text{ V,}$	70 °C ^[13]	_	-	6.5 ^[13]	μA
			$V_{IN} \le 0.2 V$, f = 0, $V_{CC} = V_{CC(max)}$	85 °C	—	_	8.0	μA

Notes

Notes
 V_{IL(min)} = -2.0 V and V_{IH(max)} = V_{CC} + 2 V for pulse durations of less than 20 ns.
 Full Device AC operation assumes a 100 µs ramp time from 0 to V_{CC(min)} and 200 µs wait time after V_{CC} stabilization.
 Typical values are included for reference only and are not guaranteed or tested. Typical values are measured at V_{CC} = 3 V (for V_{CC} range of 2.2 V–3.6 V), T_A = 25 °C.
 This device offers improved I_{CC}, I_{SB1} and I_{SB2} specifications compared to the previous revision with same marketing part number.

11. This parameter is guaranteed by design and is not tested.

^{10.} For previous version of this device, kindly refer here. Further details about improvement and comparison between old and new versions can be found in the PCN193805.

Chip enables (CE₁ and CE₂) must be tied to CMOS levels to meet the I_{SB1}/I_{SB2}/I_{CCDR} spec. Other inputs can be left floating.
 The I_{SB2} limits at 25 °C, 40 °C, 70 °C and typical limit at 85 °C are guaranteed by design and not 100% tested.

Capacitance

Parameter ^[14]	Description	Test Conditions	Max	Unit
C _{IN}	Input capacitance	$T_A = 25 \text{ °C}, f = 1 \text{ MHz}, V_{CC} = V_{CC(typ)}$	10	pF
C _{OUT}	Output capacitance		10	pF

Thermal Resistance

Parameter ^[14]	Description	Test Conditions	48-ball VFBGA	Unit
Θ_{JA}	Thermal resistance (junction to ambient)	Still air, soldered on a 3 × 4.5 inch, four-layer printed circuit board	31.50	°C/W
Θ ^{JC}	Thermal resistance (junction to case)		15.75	°C/W

AC Test Loads and Waveforms

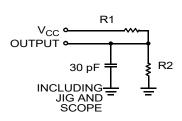
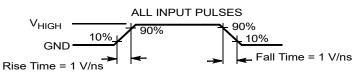
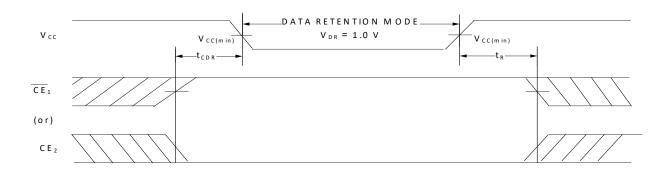



Figure 2. AC Test Loads and Waveforms

Equivalent to: THÉVENIN EQUIVALENT

Parameters	1.8 V	2.5 V	3.0 V	5.0 V	Unit
R1	13500	16667	1103	1800	Ω
R2	10800	15385	1554	990	Ω
R _{TH}	6000	8000	645	639	Ω
V _{TH}	0.8	1.2	1.75	1.77	V
V _{HIGH}	1.8	2.5	3.0	5.0	V


Data Retention Characteristics

Over the Operating Range

Parameter	Description	Conditions	Min	Typ ^[15]	Max	Unit
V _{DR}	V _{CC} for data retention		1.0	-	Ι	V
I _{CCDR} ^[16, 17, 18, 19]	Data retention current	1.2 V <u><</u> V _{CC} ≤ 2.2 V,	_	_	16.0	μA
		$\overline{CE}_1 \ge V_{CC} - 0.2 \text{ V or } CE_2 \le 0.2 \text{ V},$				
		$V_{IN} \ge V_{CC} - 0.2 \text{ V or } V_{IN} \le 0.2 \text{ V}$				
		2.2 V < V _{CC} \leq 3.6 V or 4.5 V \leq V _{CC} \leq 5.5 V,	-	-	8.0	μΑ
		$\overline{CE}_1 \ge V_{CC} - 0.2 \text{ V or } CE_2 \le 0.2 \text{ V},$				
		$V_{\text{IN}} \geq V_{\text{CC}} - 0.2 \text{ V} \text{ or } V_{\text{IN}} \leq 0.2 \text{ V}$				
t _{CDR} ^[20]	Chip deselect to data retention time		0	_	_	-
t _R ^[20, 21]	Operation recovery time		45/55	_	-	ns

Data Retention Waveform

Figure 3. Data Retention Waveform

Notes

- Notes 15. Typical values are included for reference only and are not guaranteed or tested. Typical values are measured at $V_{CC} = 3 V$ (for V_{CC} range of 2.2 V–3.6 V), $T_A = 25 °C$. 16. Chip enables (\overline{CE}_1 and CE_2) must be tied to CMOS levels to meet the $I_{SB1}/I_{SD2}/I_{CCDR}$ spec. Other inputs can be left floating. 17. I_{CCDR} is guaranteed only after device is first powered up to $V_{CC(min)}$ and brought down to V_{DR} . 18. This device offers improved I_{CC} , I_{SB1} and I_{SB2} specifications compared to the previous revision with same marketing part number. 19. For previous version of this device, kindly refer here. Further details about improvement and comparison between old and new versions can be found in the PCN193805. 20. These parameters are guaranteed by design. 21. Full device operation requires linear V_{CC} ramp from V_{DR} to $V_{CC(min)} \ge 100 \ \mu s$ or stable at $V_{CC(min)} \ge 100 \ \mu s$.

Switching Characteristics

Parameter ^[22, 23]	Description	45	45 ns	
Parameter (,)	Description		Max	- Unit
Read Cycle		<u>.</u>		
t _{RC}	Read cycle time	45.0	-	ns
t _{AA}	Address to data valid	-	45.0	ns
t _{OHA}	Data hold from address change	10.0	-	ns
t _{ACE}	CE ₁ LOW and CE ₂ HIGH to data valid	-	45.0	ns
t _{DOE}	OE LOW to data valid	-	22.0	ns
t _{LZOE}	OE LOW to Low Z ^[23, 24]	5.0	-	ns
t _{HZOE}	OE HIGH to High Z ^[23, 24, 25]	-	18.0	ns
t _{LZCE}	CE ₁ LOW and CE ₂ HIGH to Low Z ^[23, 24]	10.0	-	ns
t _{HZCE}	CE ₁ HIGH and CE ₂ LOW to High Z ^[23, 24, 25]	-	18.0	ns
t _{PU} ^[26]	CE ₁ LOW and CE ₂ HIGH to power-up	0	-	ns
t _{PD} ^[26]	CE ₁ HIGH and CE ₂ LOW to power-down	-	45.0	ns
Write Cycle ^[27, 28]	1	<u>.</u>		
t _{WC}	Write cycle time	45.0	-	ns
t _{SCE}	CE ₁ LOW and CE ₂ HIGH to write end	35.0	-	ns
t _{AW}	Address setup to write end	35.0	-	ns
t _{HA}	Address hold from write end	0	-	ns
t _{SA}	Address setup to write start	0	-	ns
t _{PWE}	WE pulse width	35.0	-	ns
t _{SD}	Data setup to write end	25.0	-	ns
t _{HD}	Data hold from write end	0	-	ns
t _{HZWE}	WE LOW to High Z ^[23, 24, 25]	_	18.0	ns
t _{LZWE}	WE HIGH to Low Z ^[23, 24]	10.0	-	ns

Notes

- 22. Test conditions assume signal transition time (rise/fall) of 3 ns or less, timing reference levels of 1.5 V (for V_{CC} ≥ 3 V) and V_{CC}/2 (for V_{CC} < 3 V), and input pulse levels of 0 to 3 V (for V_{CC} ≥ 3 V) and 0 to V_{CC} (for V_{CC} < 3V). Test conditions for the read cycle use output loading shown in AC Test Loads and Waveforms section, unless specified otherwise.
- At any temperature and voltage condition, t_{HZCE} is less than t_{LZCE}, t_{HZOE} is less than t_{LZOE}, and t_{HZWE} is less than t_{LZWE} for any device.
 Tested initially and after any design or process changes that may affect these parameters.
- 25. t_{HZOE} , t_{HZCE} , and t_{HZWE} transitions are measured when the outputs enter a high impedance state.
- 26. These parameters are guaranteed by design and are not tested.
- 27. The internal write time of the memory is defined by the overlap of WE = V_{IL}, CE₁ = V_{IL}, and CE₂ = V_{IH}. All signals must be ACTIVE to initiate a write and any of these signals can terminate a write by going INACTIVE. The data input setup and hold timing must refer to the edge of the signal that terminates the write.
- 28. The minimum write cycle pulse width for write cycle No. 2 (WE Controlled, OE Low) should be equal to he sum of t_{HZWE} and t_{SD}.

Switching Waveforms

Figure 4. Read Cycle No. 1 of CY62168GN (Address Transition Controlled) ^[29, 30]

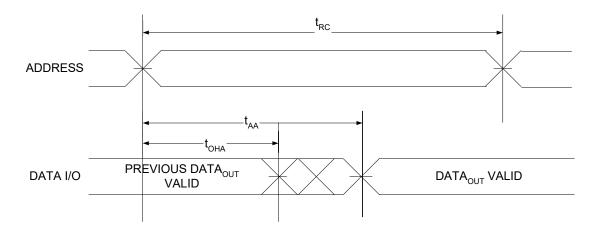
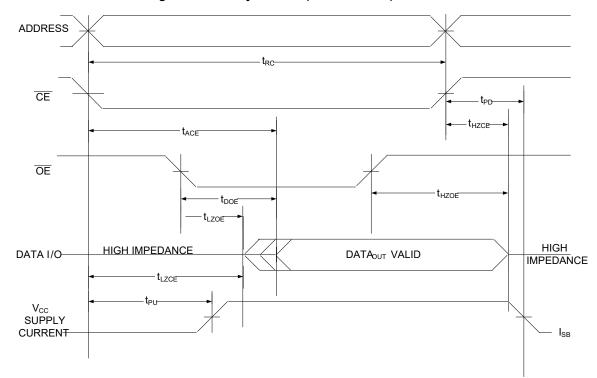
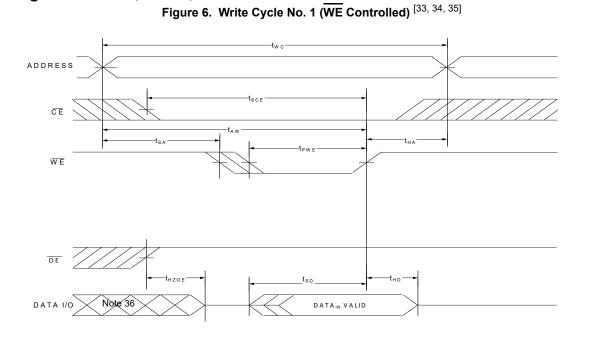



Figure 5. Read Cycle No. 2 (OE Controlled) ^[30, 31, 32]

Notes


29. The device is continuously selected. $\overline{OE} = V_{IL}$, $\overline{CE} = V_{IL}$.

30. WE is HIGH for read cycle. 31. Eor all dual chip enable devices, \overline{CE} is the logical combination of \overline{CE}_1 and CE_2 . When \overline{CE}_1 is LOW and CE_2 is HIGH, \overline{CE} is LOW; when \overline{CE}_1 is HIGH or CE_2 is LOW,

CE is HIGH. 32. Address valid prior to or coincident with CE LOW transition.

Switching Waveforms (continued)

Notes

- 33. For all dual chip enable devices, CE is the logical combination of CE₁ and CE₂. When CE₁ is LOW and CE₂ is HIGH, CE is LOW; when CE₁ is HIGH or CE₂ is LOW, CE is HIGH.
- 34. The internal write time of the memory is defined by the overlap of $\overline{WE} = V_{|L}$, $\overline{CE}_1 = V_{|L}$, and $CE_2 = V_{|H}$. All signals must be ACTIVE to initiate a write and any of these signals can terminate a write by going INACTIVE. The data input setup and hold timing must refer to the edge of the signal that terminates the write.

35. Data I/O is in the high-impedance state if $\overline{CE} = V_{IH}$, or $\overline{OE} = V_{IH}$. 36. During this period, the I/Os are in output state. Do not apply input signals.

Switching Waveforms (continued)

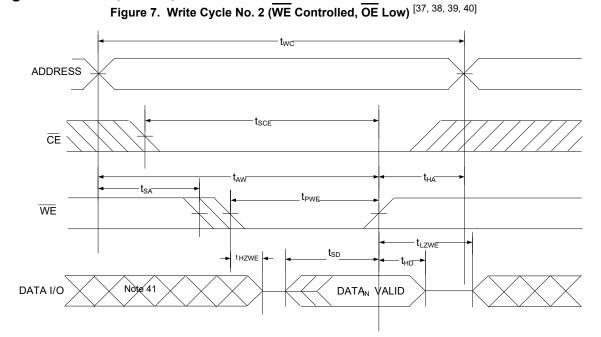
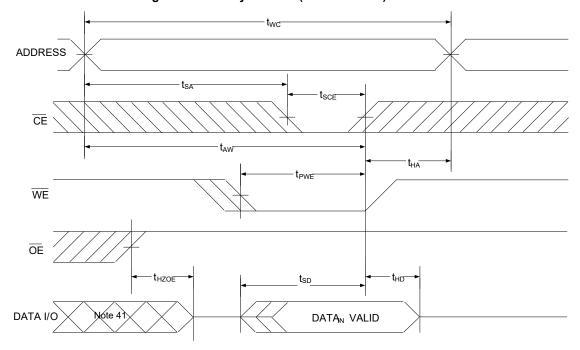



Figure 8. Write Cycle No. 3 (CE Controlled) [37, 38, 39]

Notes

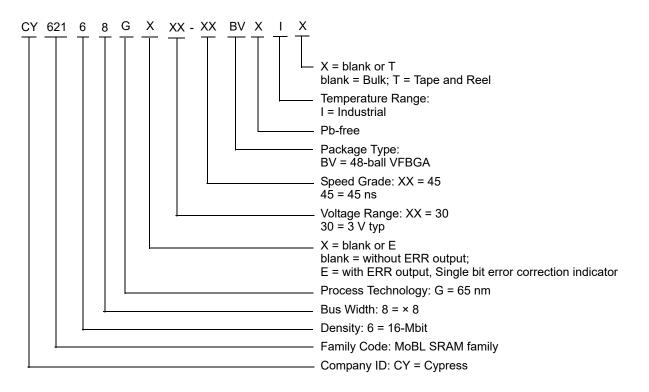
- 37. For all dual chip enable devices, \overline{CE} is the logical combination of \overline{CE}_1 and CE_2 . When \overline{CE}_1 is LOW and CE_2 is HIGH, \overline{CE} is LOW; when \overline{CE}_1 is HIGH or CE_2 is LOW, \overline{CE} is HIGH.
- 38. The internal write time of the memory is defined by the overlap of $\overline{WE} = V_{|L}$, $\overline{CE}_1 = V_{|L}$, and $CE_2 = V_{|H}$. All signals must be ACTIVE to initiate a write and any of these signals can terminate a write by going INACTIVE. The data input setup and hold timing must refer to the edge of the signal that terminates the write.

39. Data I/O is in high impedance state if $\overline{CE} = V_{IH}$, or $\overline{OE} = V_{IH}$.

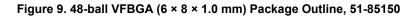
- 40. The minimum write cycle pulse width should be equal to the sum of the $t_{\mbox{HZWE}}$ and $t_{\mbox{SD}}$
- 41. During this period I/O are in the output state. Do not apply input signals.

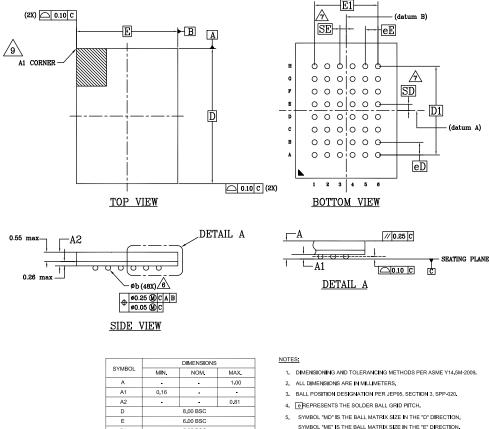
Truth Table – CY62168GN30

CE ₁	CE ₂	WE	OE	I/Os	Mode	Power
Н	X ^[42]	X ^[42]	X ^[42]	High Z	Deselect/Power down	Standby (I _{SB2})
X ^[42]	L	X ^[42]	X ^[42]	High Z	Deselect/Power down	Standby (I _{SB2})
L	Н	Н	L	Data Out (I/O ₀ –I/O ₇)	Read	Active (I _{CC})
L	Н	Н	Н	High Z	Output disabled	Active (I _{CC})
L	Н	L	Х	Data In (I/O ₀ –I/O ₇)	Write	Active (I _{CC})


Note 42. The 'X' (Don't care) state for the chip enables refer to the logic state (either HIGH or LOW). Intermediate voltage levels on these pins is not permitted.

Ordering Information


Speed (ns)	Ordering Code	Package Diagram	Package Type (all Pb-free)	Operating Range
45	CY62168GN30-45BVXI	51-85150	48-ball VFBGA	Industrial
	CY62168GN30-45BVXIT		48-ball VFBGA, Tape and Reel	


Ordering Code Definitions

Package Diagrams

SYMBOL "ME" IS THE BALL MATRIX SIZE IN THE "E" DIRECTION. n IS THE NUMBER OF POPULATED SOLDER BALL POSITIONS FOR MATRIX SIZE MD X ME.

 $\label{eq:solution} \stackrel{\rm vsd'}{\longrightarrow} {\rm solution} = {\rm solution} {\rm solu$

WHEN THERE IS AN EVEN NUMBER OF SOLDER BALLS IN THE OUTER ROW, "SD" = eD/2 AND "SE" = eE/2.

8. "+" INDICATES THE THEORETICAL CENTER OF DEPOPULATED BALLS.

A 1 CORNER TO BE IDENTIFIED BY CHAMFER, LASER OR INK MARK METALIZED MARK, INDENTATION OR OTHER MEANS,

51-85150 *I

0111202	MIN.	NOM.	MAX.
A	-	-	1.00
A1	0.16	-	-
A2	•	-	0.81
D		8.00 BSC	
E		6.00 BSC	
D1		5.25 BSC	
E1	3.75 BSC		
MD	8		
ME	6		
n	48		
Øь	0.25	0.30	0.35
еE	0.75 BSC		
eD	0.75 BSC		
SD	0.375 BSC		
SE	0.375 BSC		

DIMENSION "b" IS MEASURED AT THE MAXIMUM BALL DIAMETER IN A PLANE

 PARALLEL TO DATUM C.

Acronyms

Acronym	Description		
CE	Chip Enable		
CMOS	Complementary Metal Oxide Semiconductor		
I/O	Input/Output		
OE	Output Enable		
SRAM	Static Random Access Memory		
VFBGA	Very Fine-Pitch Ball Grid Array		
WE	Write Enable		

Document Conventions

Units of Measure

Symbol	Unit of Measure
°C	degree Celsius
MHz	megahertz
μA	microampere
μs	microsecond
mA	milliampere
mm	millimeter
ns	nanosecond
Ω	ohm
%	percent
pF	picofarad
V	volt
W	watt

Document History Page

Document Title: CY62168GN30 MoBL, 16-Mbit (2M words × 8 bits) Static RAM Document Number: 002-28483				
Rev.	ECN No.	Submission Date	Description of Change	
**	6680216	10/06/2019	New data sheet.	
*A	6834957	03/20/2020	Updated Product Portfolio: Updated Note 3. Updated DC Electrical Characteristics: Updated Note 9. Updated Data Retention Characteristics: Updated Note 18. Updated to new template.	

Sales, Solutions, and Legal Information

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

Products

Arm [®] Cortex [®] Microcontrollers	cypress.com/arm
Automotive	cypress.com/automotive
Clocks & Buffers	cypress.com/clocks
Interface	cypress.com/interface
Internet of Things	cypress.com/iot
Memory	cypress.com/memory
Microcontrollers	cypress.com/mcu
PSoC	cypress.com/psoc
Power Management ICs	cypress.com/pmic
Touch Sensing	cypress.com/touch
USB Controllers	cypress.com/usb
Wireless Connectivity	cypress.com/wireless

PSoC[®] Solutions

PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP | PSoC 6 MCU

Cypress Developer Community

Community | Code Examples | Projects | Video | Blogs | Training | Components

Technical Support

cypress.com/support

© Cypress Semiconductor Corporation, 2019–2020. This document is the property of Cypress Semiconductor Corporation and its subsidiaries ("Cypress"). This document, including any software or firmware included or referenced in this document ("Software"), is owned by Cypress under the intellectual property laws and treaties of the United States and other countries worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software then Cypress hardware produces, only internally within your organization, and (b) to distribute the Software in binary code form externally to end users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress's patents that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware solely for use with Cypress hardware product on the Software product. Any other use, reproduction, modification, translation, or compilation of the Software is prohibited.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. No computing device can be absolutely secure. Therefore, despite security measures implemented in Cypress hardware or software products, Cypress shall have no liability arising out of any security breach, such as unauthorized access to or use of a Cypress product. CYPRESS DOES NOT REPRESENT, WARRANT, OR GUARANTEE THAT CYPRESS PRODUCTS, OX SYSTEMS CREATED USING CYPRESS PRODUCTS, WILL BE FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE, HACKING, DATA LOSS OR THEFT, OR OTHER SECURITY INTRUSION (collectively, "Security Breach"). Cypress disclaims any liability relating to any Security Breach, and you shall and hereby do release Cypress from any claim, damage, or other liability arising from any Security Breach. In addition, the products described in these materials may contain design defects or errors known as errata which may cause the product to deviate from published specifications. To the extent permitted by applicable law, Cypress reserves the right to make changes to this document, including any sample design information or programming code, is provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. "High-Risk Device" means any device or system whose failure could cause personal injury, death, or properly damage. Examples of High-Risk Devices are weapons, nuclear installations, surgical implants, and other medical devices. "Critical Component" means any component of a High-Risk Device whose failure to perform can be reasonably expected to cause, directly or indirectly, the failure of the High-Risk Device, or to affect its safety or effectiveness. Cypress is

Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners.