MN1380 Series

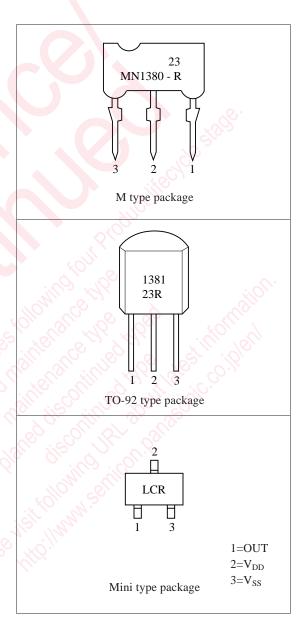
CMOS LSIs for Voltage Detection

Overview

The MN1380 series are elements that monitor the power supply voltage supplied to microcomputers and other LSI systems and issue reset signals for initializing the system after the power is first applied or for preventing runaway operation when the supply voltage fluctuates.

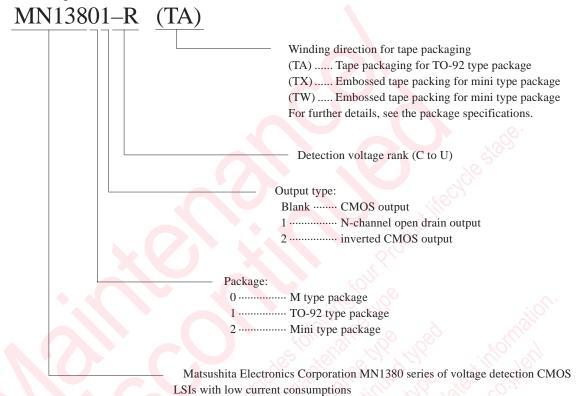
There is a choice of three output types: CMOS output, N-channel open drain output, and inverted CMOS output. There are also three package types: M, TO-92, and a mini type for surface mounting.

Choose the ideal element for your application from the series' wide selection of detection ranks (17 ranks between 2.0 and 4.9 volts), output types, and package types.

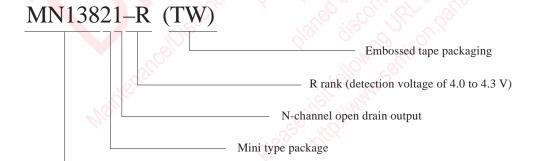

Features

- Three-pin element requiring no adjustment
- Wide selection of detection ranks (17 ranks between 2.0 and 4.9 volts)
- Highly precise detection voltage
- Detection voltage with hysteresis characteristic
 ΔVD = 50 mV for ranks C to K
 ΔVD = 100 mV for ranks L to U
- Low current consumption: $I_{DD} = 1\mu A$ (typ.) for $V_{DD} = 5 \text{ V}$
- Low fluctuation in detection voltage with temperature (typ. 1 mV/°C)
- Wide selection of output types: CMOS output, Nchannel open drain output, and inverted CMOS output
- Wide selection of package types: M, TO-92, and a mini type for surface mounting.

Applications


- Battery checkers
- Power outage detectors
- Level discriminators
- Memory backup systems
- Microcomputer reset circuits
- Reset circuits for other electronic circuits

■ Pin Assignment



■ MN1380 Series Naming Conventions

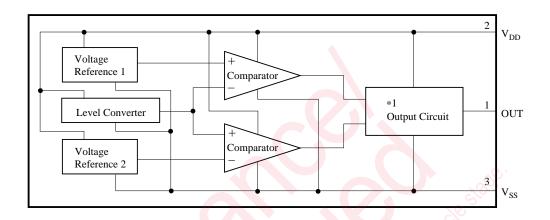
The MN1380 series offers a wide selection of detection ranks, output types, package types, and packaging. All combinations use the following naming conventions. When ordering, be sure to give the correct part number using these naming conventions.

(Example)

MN1380 series of voltage detection CMOS LSIs with low current consumption

■ Minimum Packaging Unit

Bulk (M and TO-92 types)	1,000
Magazine (Mini type)	50
Taping (Mini and TO-92 types)	3.000


■ Series Lineup

Output Package	M type Package	TO-92 type Package	Mini type Package
CMOS output	MN1380	MN1381	MN1382
N-channel open drain output	MN13801	MN13811	MN13821
Inverted CMOS output	MN13802	MN13812	MN13822

■ Detection Ranks (on Voltage)

Rank	Detection Voltage for Drop in Power Supply Voltage (V _{DL})		Unit	Detection Voltage I	-lysteresis Width (ΔVD)	Unit
- Kank	min	max	Offic	min	max	OTILL
C	2.0	2.2				
D	2.1	2.3				
Е	2.2	2.4	V	50	200	m.V
F	2.3	2.5	V	50	300	mV
G	2.4	2.6			S	
Н	2.5	2.7				
J	2.6	2.9	V	50	200	m.V
K	2.8	3.1	V 50		300	mV
L	3.0	3.3		90		
M	3.2	3.5		640		
N	3.4	3.7				
P	3.6	3.9				ο.
Q	3.8	4.1	V	100	300	mV
R	4.0	4.3			000	
S	4.2	4.5	SIO	US, 1/6 1/1	5 (0)	
T	4.4	4.7	5	10 CB 11 9 1	90:112	5
U	4.6	4.9	V(0),	Williams In	6, 462 CO:JA	

■ Block Diagram

Note *1: Circuits vary slightly depending on the output type (CMOS output, N-channel open drain output, or inverted CMOS output)

■ Pin Descriptions

Pin No.	Symbol	Function Description
1	OUT	Reset signal output pin
2	V_{DD}	Power supply pin
3	V _{SS}	Ground pin

■ Absolute Maximum Ratings V_{SS}=0V, Ta=25°C

Parameter	Symbol	Rating	Unit
Power supply voltage	V_{DD}	7.0	V
Output voltage	V_{O}	-0.3 to $V_{DD} + 0.3$	V
Operating ambient temperature	Ta	-20 to +70	°C
Storage temperature	$T_{ m stg}$	-55 to +125	°C

■ Recommended Operating Conditions V_{SS}=0V, Ta=25°C

Parameter	Symbol	Conditions	min	typ	max	Unit
Power supply	V_{DD}	See Figures 1 and 4.	1.5		6.0	V
voltage						

■ Electrical Characteristics

1) DC Characteristics V_{SS}=0V, Ta=-20°C to +70°C

Parameter	Symbol	Cond	ditions	min	typ	max	Unit
Power supply current	I_{DD}	V _{DD} = 5 V *1 Load resistance = 10 kW			A THE STATE OF THE	5	μΑ
Detection voltage for drop in power supply voltage *2	V _{DL}	Ta=25°C		*2	2	*2	V
Detection voltage hysteresis width *2	ΔVD	See Figures 1	and 4.	*2		*2	mV
"H" level output voltage	V _{OH}	CMOS output	I _{OH} =- 40μA	$0.8V_{\mathrm{DD}}$		V_{DD}	
		Inverted CMOS output	V_{DD} =1.8V I_{OH} =-0.5mA	0.8	160	V _{DD} -1.5	V
"L" level output voltage	V _{OL}	N-channel open drain output	V_{DD} =1.8V I_{OL} =0.7mA	V _{SS}	10° ×	0.4	77
		Inverted CMOS output	V _{DD} =6.0V I _{OH} =0.3mA	V _{SS}	OULC	0.6	V

Notes

^{*1:} This includes the output pin's leakage current.

^{*2:} For particulars, see the detection voltage rank table.

■ Electrical Characteristics (continued)

2) AC Characteristics V_{SS}=0V, Ta=25°C

Parameter	Symbol	Cond	itiono	All	lowable Value (t	ур)	Unit
Parameter	Symbol	Cona	itions	MN1380	MN13801	MN13802	Unit
			Rank	MN1381 MN1382	MN13811 MN13821	MN13812 MN13822	
			С	171141002	WINTIOGET	WIITTOOLL	
			D				
			E	3.0	2.5	230.0	
			F	5.0		250.0	
			G				
		See	Н				
Reset release time	t _{OH}	Figures	J	3.0	3.0	100.0	μs
	On	2 and 3.	K			50	5
			L			10/0	
			M			with the same of t	
			N			lillo	
			P		N	5	
			Q	2.0	4.0	30.0	
			R				
			S		400		
			T		10 4/6		1000
			C	11011	~ C	6,	USP.
			D	601.	91, 126, 11		11. 7
			E	250.0	160.0	3.0	781.
			F		1 M. N.	N X 8 -0	16.
			G	6	Will 9 13	110000	
		See	Н	alle alle	C) 1/2 X	Op. Coll.	
Reset time	t_{OL}	Figures	1 0	115.0	100.0	3.0	μs
		2 and 3.	K		CO THE	0,0,	
			L	9,0,0	(O_{ij}, O_{ij})		
	'VCR.		M		MII. Will		
	10/		N	(0)	150		
	9		P		Mr.		
			Q	15.0	35.0	3.0	
			R	S. S. VIII.			
			S				
			T				

■ Description of Operation

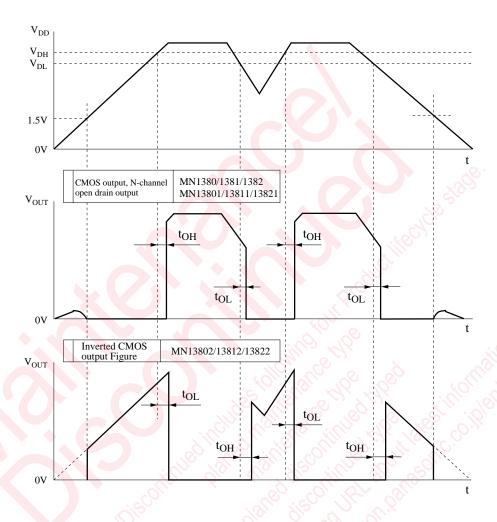


Figure 1. Description of Operation

Notes

- 1: Output cannot be specified for power supply voltages under 1.5 V because operation is not guaranteed for that range.
- 2: V_{DL} : Detection voltage for drop in power supply voltage
 - V_{DH}: Detection voltage for rise in power supply voltage
 - t_{OL} : Time lag between the time that the power supply voltage reaches the detection voltage (V_{DL} or V_{DH}) and the time that the output pin (OUT) goes to "L" level.
 - t_{OH} : Time lag between the time that the power supply voltage reaches the detection voltage (V_{DL} or V_{DH}) and the time that the output pin (OUT) goes to "H" level.
- 3: These characteristics for the N-channel open drain output are when a load resistor is connected between the OUT and V_{DD} pins.

■ Description for Measuring the Output Characteristics

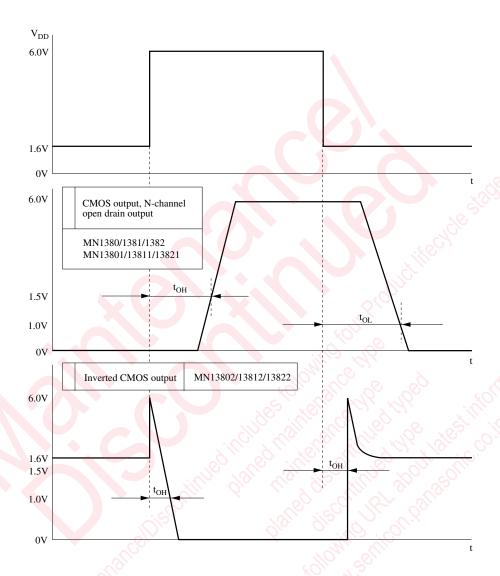


Figure 2. Description chart of Measuring the Output Characteristics

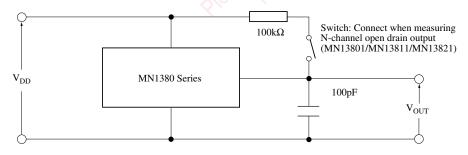
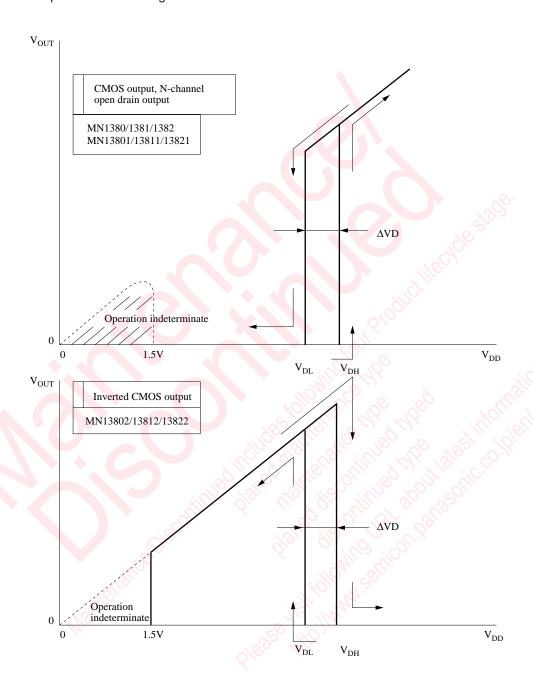
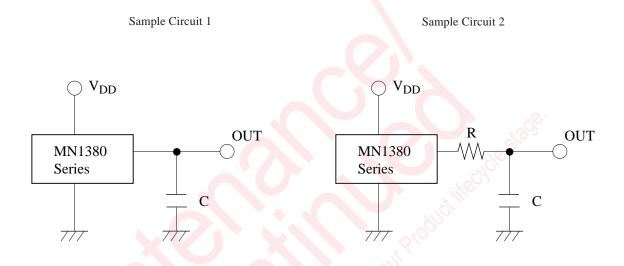


Figure 3. Circuit for Measuring the Output Characteristics

■ Description for Measuring the I/O Characteristics

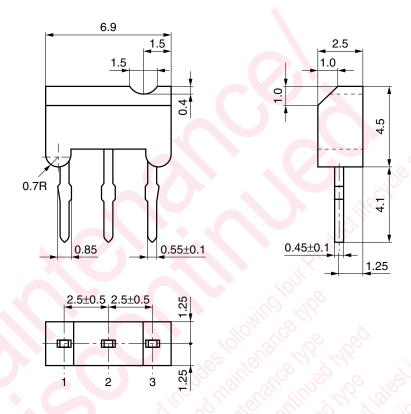



Figure 4. Description chart for Measuring the I/O Characteristics

Notes

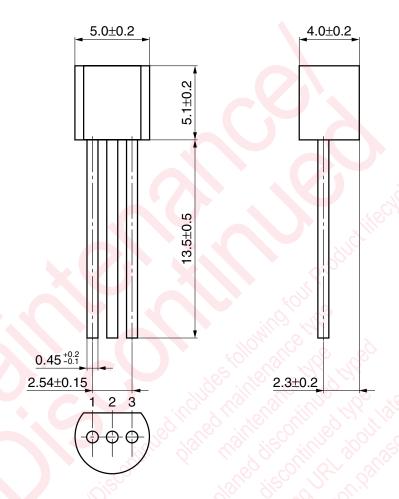
- 1: Output cannot be specified for power supply voltages under 1.5 V because operation is not guaranteed for that range.
- 2: V_{DL}: Detection voltage for drop in power supply voltage
 - V_{DH} : Detection voltage for rise in power supply voltage
- 3: These characteristics for the N-channel open drain output are when a load resistor is connected between the OUT and V_{DD} pins.

■ Application Circuit Example


Connect resistors, capacitors, and the like only to the output pin on the MN1380 series element. Note that connecting them to the Power source pins changes V_{DH} , V_{DL} , and ΔVD .

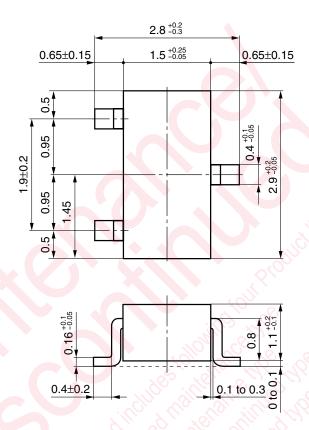
Select the values of R and C to match the application.

■ Package Dimensions (Unit: mm)


M type package

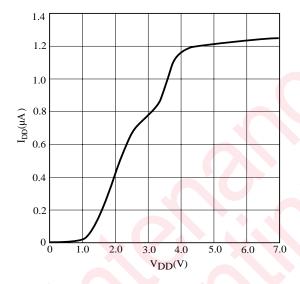
Note) The package will be changed to lead-free type (M3A). See the new package dimensions section later of this datasheet.

■ Package Dimensions (Unit: mm)(continued)


TO-92 type package

Note) The package will be changed to lead-free type (SSIP003-P-0000S). See the new package dimensions section later of this datasheet.

■ Package Dimensions (Unit: mm)(continued)


Mini type package

Note) The package will be changed to lead-free type (MINI-3DC). See the new package dimensions section later of this datasheet.

■ Reference Characteristics

The following characteristics curves represent results from a specific sample therefore they do not guarantee the characteristics for the final product.

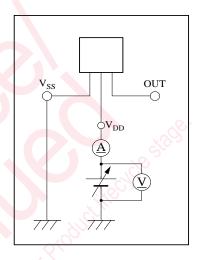


Figure 5.a. I_{DD} vs. V_{DD} Characteristic (Rank Q)

Figure 5.b. Measurement Circuit

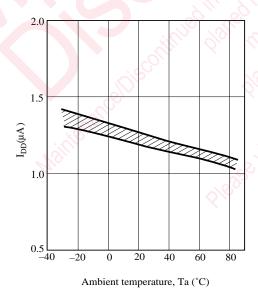


Figure 6.a. I_{DD} Temperature Characteristic (Rank Q)

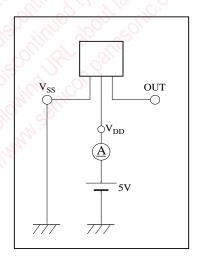
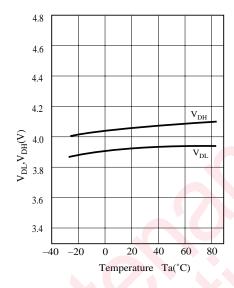



Figure 6.b. Measurement Circuit

■ Reference Characteristics (continued)

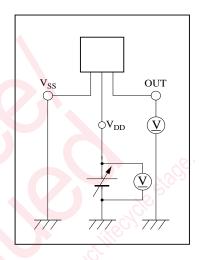
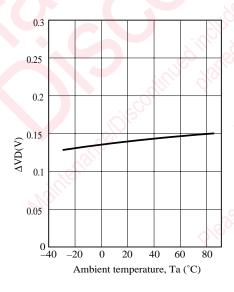



Figure 7.a. V_{DL}/V_{DH} Temperature Characteristic (Rank Q)

Figure 7.b. Measurement Circuit

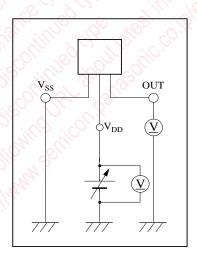
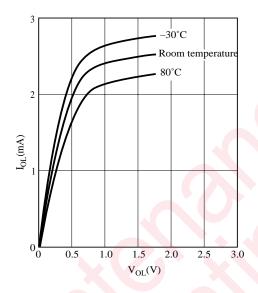



Figure 8.b. Measurement Circuit

■ Reference Characteristics (continued)

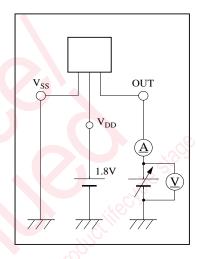
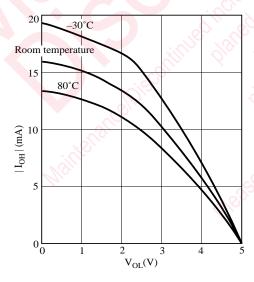



Figure 9.a. I_{OL} vs. V_{OL} Characteristic

Figure 9.b. Measurement Circuit

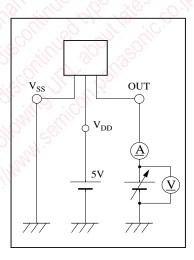
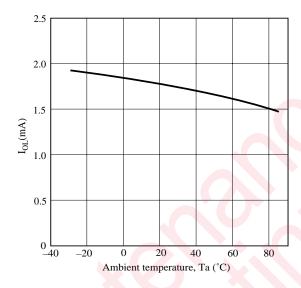



Figure 10.b. Measurement Circuit

■ Reference Characteristics (continued)

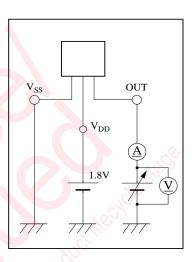
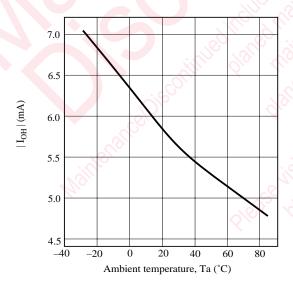



Figure 11.a. I_{OL} vs. Temperature Characteristic

Figure 11.b. Measurement Circuit

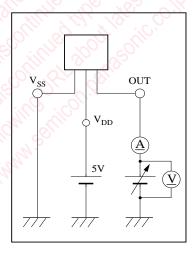


Figure 12.b. Measurement Circuit

■ TO-92 Type Package Taping-Specifications (MN1381/MN13811/MN13812)

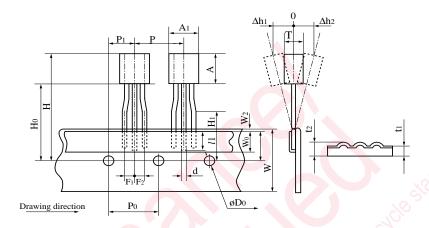


Figure 13. TO-92 Type Package Taping-Dimensions (Ammunition pack)

TO-92 Type Package Taping Dimensions (Ammunition pack)

Name	Symbol	Length (mm)
Product height*	A	5.3 max
Product width*	A1	5.2 max
Product thickness*	T	4.2 max
Lead width*	d	$0.45^{+0.15}_{-0.1}$
Taped lead length	l1	2.0 max
Product pitch	P	12.7±1.0
Feed hole pitch	P0	12.7±0.3
Feed hole position	P1	6.35±0.5
Lead spacing	F1, F2	$2.5^{+0.5}_{-0.2}$
Product deflection angle	Δ h1, Δ h2	2.0 max
Tape width	W	$18.0^{+1.0}_{-0.5}$

Name	Symbol	Length (mm)
Adhesive tape width	W0	6.0±0.5
Feed hole position	W1	9.0±0.5
Adhesive tape position	W2	0.5 max
Distance to top of product	Н (25.0 max
Distance to bottom of product	H0 &	19.0±0.5
Lead clinch height)H1	16.0±0.5
Feed hole diameter	D0	4.0±0.2
Tape thickness	t1	0.7±0.2
Total tape thickness	t2	1.5 max
	7.	

Note*1: For further details, see the specifications issued separately.

W	Н	D
330	250	41

Unit: mm

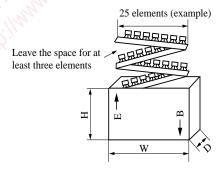


Figure 14. Box Dimensions for TO-92 Type Packages with Ammunition pack

■ Embossed Taping Specifications for Mini Type Package (MN1382/MN13821/MN13822)

There is a choice of two orientations, TW and TX, for the product relative to the tape.

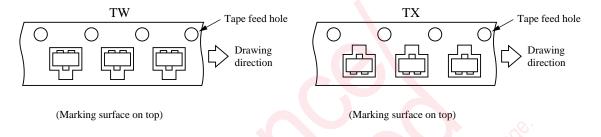
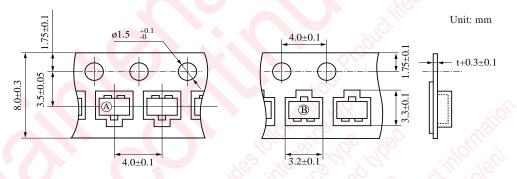



Figure 15. TW Orientation

Figure 16. TX Orientation

Product orientation A is labeled TW; orientation B, TX.

Figure 17. Embossed Taping Dimensions for Mini Type Package

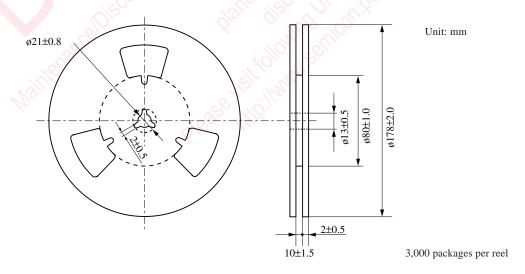


Figure 18. Embossed Taping Reel Dimensions for Mini Type Package

Temperature cycle test

Pressure cooker test *1

Solder heat resistance test *1

Soldering test

0/15

0/15

0/15

0/15

■ Reliability Testing Results for MN1380 Series

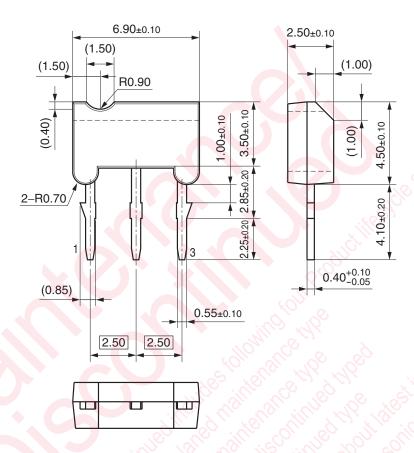
(1) M type package (MN1380/MN13801/MN13802) and TO-92 type package (MN1381/MN13811/MN13812)

Test Subjects	Test Conditions	Results
Operating lifetime test	V _{DD} =5.5V, Ta=125°C, t=1000hrs	0/15
High-temperature storage test	Ta=150°C, t=1000hrs	0/15
Low-temperature storage test	Ta=-65°C, t=1000hrs	0/15
High-temperature,	Ta=85°C, RH=85%, t=1000hrs	0/15
high-humidity storage test		
High-temperature,	V _{DD} =5.5V, Ta=85°C, RH=85%, t=1000hrs	0/15
high-humidity bias test		
Thermal shock test	Ta=150°C and -65°C.	0/15
	Five minutes at each temperature for ten cycles	<i>∞</i> .
Temperature cycle test	Ta=150°C and -65°C.	0/15
	Thirty minutes at each temperature for ten cycles	
Pressure cooker test	Two atmospheres for 50 hours at ambient temperature (Ta) of 121°C	0/15
Soldering test	Ambient temperature (Ta) of 230°C for five seconds	0/15
Solder heat resistance test	Ambient temperature (Ta) of 270°C for ten seconds	0/15
(2) Mini type package (MN1382/	MN13821/MN13822)	
Test Subjects	Test Conditions	Results
Operating lifetime test	V _{DD} =5.5V, Ta=125°C, t=1000hrs	0/15
High-temperature storage test	$Ta=150^{\circ}C$, $t=1000$ hrs	0/15
Low-temperature storage test	Ta=-65°C, t=1000hrs	0/15
High-temperature,	Ta=85°C, RH=85%, t=1000hrs	0/15
high-humidity storage test	182, 1845 141, 141, 141, 111,	10/10/1
High-temperature,	V _{DD} =5.5V, Ta=85°C, RH=85%, t=1000hrs	0/15
high-humidity bias test	ing the supplied the last of	0.,
Thermal shock test	Ta=150°C and -65°C.	0/15

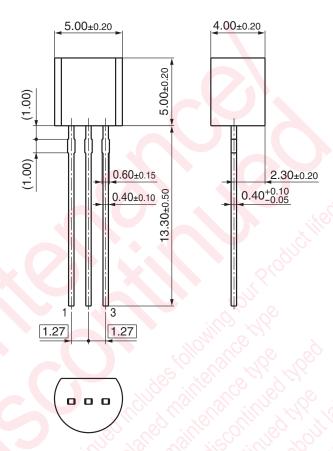
Five minutes at each temperature for ten cycles

Thirty minutes at each temperature for ten cycles

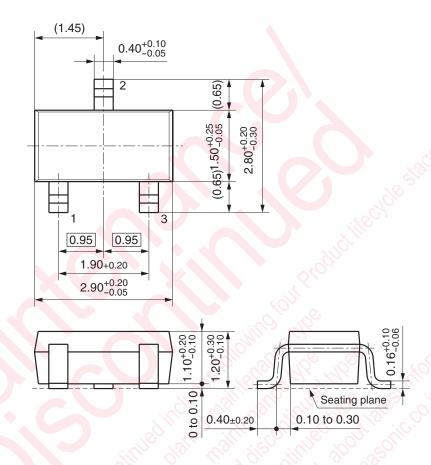
Ambient temperature (Ta) of 230°C for five seconds


Ambient temperature (Ta) of 260°C for five seconds

Two atmospheres for 24 hours at ambient temperature (Ta) of 121°C


Note*1: Note that the testing conditions for the mini package differ from those for the other two packages.

Ta=150°C and -65°C.


- New Package Dimensions (Unit: mm)
- M3A (Lead-free package)

- New Package Dimensions (Unit: mm)(continued)
- SSIP003-P-0000S (Lead-free package)

- New Package Dimensions (Unit: mm)(continued)
- MINI-3DC (Lead-free package)

Request for your special attention and precautions in using the technical information and semiconductors described in this book

- (1) If any of the products or technical information described in this book is to be exported or provided to non-residents, the laws and regulations of the exporting country, especially, those with regard to security export control, must be observed.
- (2) The technical information described in this book is intended only to show the main characteristics and application circuit examples of the products, and no license is granted under any intellectual property right or other right owned by our company or any other company. Therefore, no responsibility is assumed by our company as to the infringement upon any such right owned by any other company which may arise as a result of the use of technical information described in this book.
- (3) The products described in this book are intended to be used for standard applications or general electronic equipment (such as office equipment, communications equipment, measuring instruments and household appliances).
 Consult our sales staff in advance for information on the following applications:
 - Special applications (such as for airplanes, aerospace, automobiles, traffic control equipment, combustion equipment, life support systems and safety devices) in which exceptional quality and reliability are required, or if the failure or malfunction of the products may directly jeopardize life or harm the human body.
 - · Any applications other than the standard applications intended.
- (4) The products and product specifications described in this book are subject to change without notice for modification and/or improvement. At the final stage of your design, purchasing, or use of the products, therefore, ask for the most up-to-date Product Standards in advance to make sure that the latest specifications satisfy your requirements.
- (5) When designing your equipment, comply with the range of absolute maximum rating and the guaranteed operating conditions (operating power supply voltage and operating environment etc.). Especially, please be careful not to exceed the range of absolute maximum rating on the transient state, such as power-on, power-off and mode-switching. Otherwise, we will not be liable for any defect which may arise later in your equipment.
 - Even when the products are used within the guaranteed values, take into the consideration of incidence of break down and failure mode, possible to occur to semiconductor products. Measures on the systems such as redundant design, arresting the spread of fire or preventing glitch are recommended in order to prevent physical injury, fire, social damages, for example, by using the products.
- (6) Comply with the instructions for use in order to prevent breakdown and characteristics change due to external factors (ESD, EOS, thermal stress and mechanical stress) at the time of handling, mounting or at customer's process. When using products for which damp-proof packing is required, satisfy the conditions, such as shelf life and the elapsed time since first opening the packages.
- (7) This book may be not reprinted or reproduced whether wholly or partially, without the prior written permission of Matsushita Electric Industrial Co., Ltd.