ANALOG ADP165Z-REDYKIT/ADP166Z-REDYKIT User Guide

One Technology Way • P.O. Box 9106 • Norwood, MA 02062-9106, U.S.A. • Tel: 781.329.4700 • Fax: 781.461.3113 • www.analog.com

Setting Up the Evaluation Boards for the ADP165/ADP166

FEATURES

Input voltage range: 2.2 V to 5.5 V Output current range: 0 mA to 150 mA Output voltage accuracy: ±1% Operating temperature range: -40°C to +125°C

GENERAL DESCRIPTION

The ADP165/ADP166 evaluation boards are used to demonstrate the functionality of the ADP165/ADP166 series of linear regulators.

Simple device measurements such as line and load regulation, dropout voltage, and ground current can be demonstrated with only a single voltage supply, a voltmeter, an ammeter, and load resistors.

Complete specifications for the ADP165/ADP166 linear regulators are available in the ADP165/ADP166 data sheet available from Analog Devices, Inc., and should be consulted in conjunction with this user guide when using the evaluation boards.

ADP165/ADP166 EVALUATION BOARDS

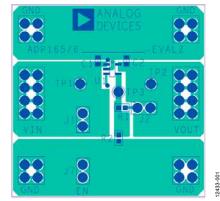
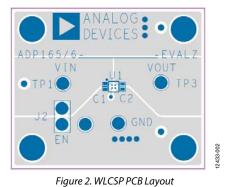



Figure 1. TSOT Printed Circuit Board (PCB) Layout

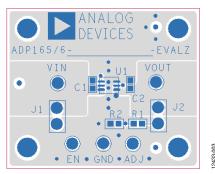


Figure 3. LFCSP PCB Layout

TABLE OF CONTENTS

Features 1
General Description 1
ADP165/ADP166 Evaluation Boards 1
Revision History 2
Evaluation Board Hardware 3
Evaluation Board Configurations
Output Voltage Measurements 4
Line Regulation Measurements 5
Load Regulation Measurements5

Dropout Voltage Measurements	5
Ground Current Measurements	6
Ground Current Consumption	7
Ordering Information	8
Bill of Materials	8
ADP165Z-REDYKIT Contents	8
ADP166Z-REDYKIT Contents	9

REVISION HISTORY

2/15—Rev. 0 to Rev. A
Changes to General Description Section 1
Changes to Figure 8 4
Added ADP165Z-REDYKIT Contents Section and Table 3;
Renumbered Sequentially
Added ADP166Z-REDYKIT Contents Section and Table 4 9

9/14—Revision 0: Initial Version

EVALUATION BOARD HARDWARE EVALUATION BOARD CONFIGURATIONS

The ADP165/ADP166 evaluation boards come supplied with different components, depending on the version ordered. Components common to all versions are C1, C2, and J1. Resistors R1 and R2 and Jumper J2 are used for the adjustable output ADP165/ADP166, the 6-lead LFCSP and 5-lead TSOT options. Figure 4, Figure 5, and Figure 6 show the schematics of these evaluation board configurations. Table 1 describes the components.

The adjustable ADP165/ADP166 has an output voltage range of 1.2 V to 4.2 V. The output voltage is set by the ratio of two external resistors, as shown in Figure 4 and Figure 6. The device servos the output to maintain the voltage at the ADJ pin at 1.0 V referenced to ground. The current in R1 is then equal to 1.0 V/R2, and the current in R1 is the current in R2 plus the ADJ pin bias current. The ADJ pin bias current, 10 nA at 25°C, flows through R1 into the ADJ pin.

Calculate the output voltage using the following equation:

 $V_{OUT} = 1.0 V(1 + R1/R2) + (ADJ_{I-BIAS})(R1)$

The value of R1 must be less than 200 k Ω to minimize errors in the output voltage caused by the ADJ pin bias current. For example, when R1 and R2 each equal 200 k Ω , the output voltage is 2.0 V. The output voltage error introduced by the ADJ pin bias current is 1 mV or 0.05%.

To minimize quiescent current in the ADP165/ADP166, use high values of resistance for R1 and R2. Using a value of 1 M Ω for R2 keeps the total, no load quiescent current below 2 μ A. However, high values of resistance introduce a small output voltage error. For example, assuming that R1 and R2 are 1 M Ω , the output voltage is 2 V. Taking into account the nominal ADJ pin bias current of 10 nA, the output voltage error is 0.25%.

Note that when the device is in shutdown, the output turns off, and the divider current is zero.

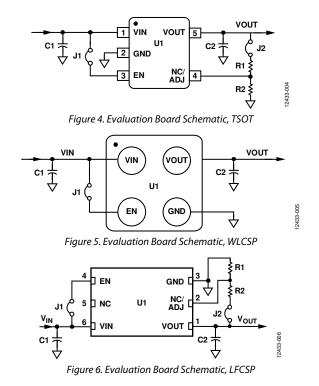


Table 1. Evaluation Board Hardware Components

Component	Description		
U1	ADP165/ADP166 low dropout linear regulator		
C1 ¹	Input bypass capacitor, 1 μF, 0603 size		
C2 ¹	Output capacitor, 1 μF, 0603 size		
J1	Jumper (connects EN to VIN for automatic startup)		
J2	Jumper (connects VOUT to the resistor divider for the adjustable ADP165/ADP166)		
R1, R2	Resistor divider to set ADP165/ADP166 output voltage		

¹ The ADP165/ADP166 evaluation boards require only one input bypass capacitor and one output capacitor for stable operation.

OUTPUT VOLTAGE MEASUREMENTS

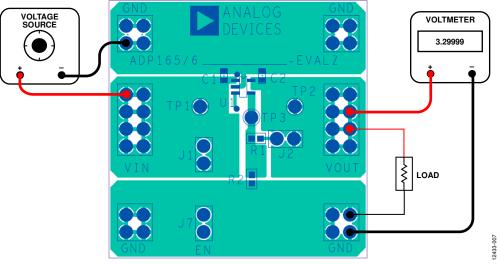


Figure 7. Output Voltage Measurement Setup, TSOT

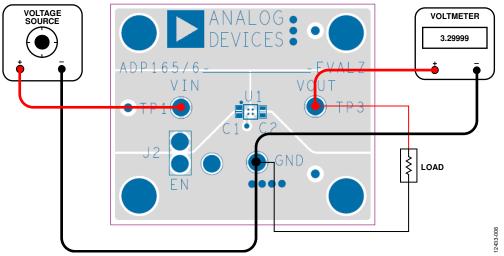


Figure 8. Output Voltage Measurement Setup, WLCSP

Figure 7 and Figure 8 show how the evaluation board can be connected to a voltage source and a voltmeter for basic output voltage accuracy measurements. Note that the LFCSP measurement setup is the same as the TSOT setup.

A resistor can be used as the load for the regulator. Ensure that the resistor has a power rating that is adequate to handle the power expected to dissipate across it. An electronic load can also be used as an alternative. Ensure that the voltage source can supply enough current for the expected load levels.

Follow these steps to connect the evaluation board to a voltage source and voltmeter:

- 1. Connect the negative terminal (–) of the voltage source to one of the GND pads on the evaluation board.
- 2. Connect the positive terminal (+) of the voltage source to the VIN pad on the evaluation board.

- 3. Connect a load between the VOUT pad and one of the GND pads on the evaluation board.
- 4. Connect the negative terminal (–) of the voltmeter to one of the GND pads on the evaluation board.
- 5. Connect the positive terminal (+) of the voltmeter to the VOUT pad on the evaluation board.

When these steps are completed, the voltage source can be turned on. If J1 is inserted (connecting EN to VIN for automatic startup), the regulator powers up.

If the load current is large, the user must connect the voltmeter as close as possible to the output capacitor to reduce the effects of IR drops.

LINE REGULATION MEASUREMENTS

For line regulation measurements, the output of the regulator is monitored while its input is varied. For good line regulation, the output must change as little as possible with varying input levels. To ensure that the device is not in dropout mode during line regulation measurement, V_{IN} must be varied between V_{OUTNOM} + 0.4 V (or 2.2 V, whichever is greater) and V_{INMAX} . For example, for an ADP165 with a fixed 3.3 V output, VIN must be varied between 2.7 V and 5.5 V. This measurement can be repeated under different load conditions. Figure 9 shows the typical line regulation performance of an ADP165 with a fixed 3.3 V output.

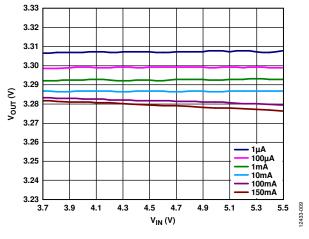


Figure 9. Output Voltage (V_{OUT}) vs. Input Voltage (V_{IN}) at $V_{OUT} = 3.3 V$, $T_A = 25 ^{\circ}$ C

LOAD REGULATION MEASUREMENTS

For load regulation measurements, the output of the regulator is monitored while the load is varied. For good load regulation, the output must change as little as possible with varying load. The input voltage must be held constant during load regulation measurement. The load current can be varied from 0 mA to 150 mA. Figure 10 shows the typical load regulation performance of an ADP165 with a fixed 3.3 V output for an input voltage of 3.8 V.

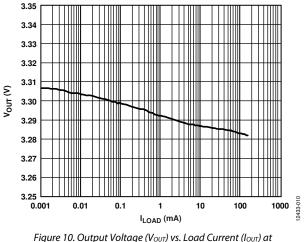
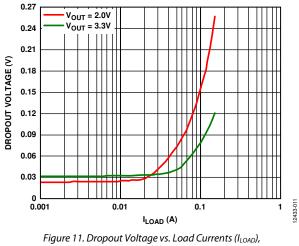



Figure 10. Output Voltage (V_{OUT}) vs. Load Current (I_{OUT}) at $V_{IN} = 3.8 V$, $V_{OUT} = 3.3 V$, $T_A = 25^{\circ}C$

DROPOUT VOLTAGE MEASUREMENTS

The dropout voltage can be measured using the configurations shown in Figure 7 and Figure 8. Dropout voltage is defined as the input to output voltage differential when the input voltage is set to the nominal output voltage. The ADP165/ADP166 only enter dropout mode for output voltages higher than 2.2 V; for lower voltage outputs, the ADP165/ADP166 shut down. The dropout voltage increases with larger loads.

For accurate measurements, use a second voltmeter to monitor the input voltage across the input capacitor. The input supply voltage may need adjusting to account for IR drops, especially when using large load currents. Figure 11 shows the typical curve of dropout voltage measurements with different load currents.

 $V_{OUT} = 2.0 V and 3.3 V, T_A = 25^{\circ}C$

GROUND CURRENT MEASUREMENTS

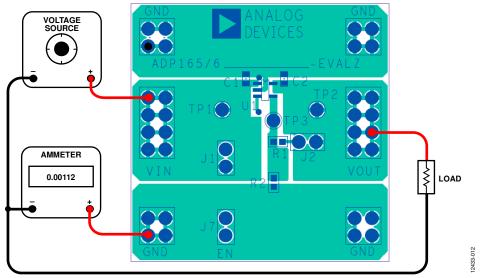


Figure 12. Ground Current Measurement Setup, TSOT

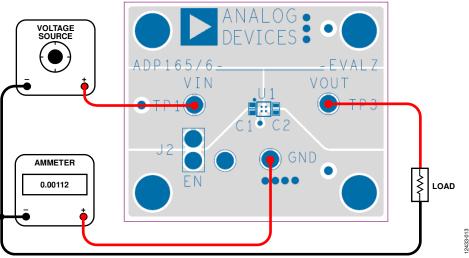


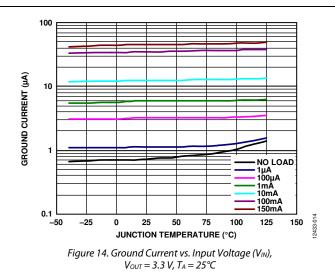
Figure 13. Ground Current Measurement Setup, WLCSP

Figure 12 and Figure 13 show how the evaluation board can be connected to a voltage source and an ammeter for ground current measurements. Note that the LFCSP measurement setup is the same as the TSOT setup

A resistor can be used as the load for the regulator. Ensure that the resistor has a power rating that is adequate to handle the power expected to be dissipated across it. An electronic load can be used as an alternative. Ensure that the voltage source can supply enough current for the expected load levels.

Follow these steps to connect the evaluation board to a voltage source and ammeter:

- 1. Connect the positive terminal (+) of the voltage source to the VIN pad on the evaluation board.
- 2. Connect the positive terminal (+) of the ammeter to one of the GND pads on the evaluation board.


- 3. Connect the negative terminal (–) of the ammeter to the negative terminal (–) of the voltage source.
- 4. Connect a load between the VOUT pad on the evaluation board and the negative terminal (–) of the voltage source.

When these connection steps are completed, the voltage source can be turned on. If J1 is inserted (connecting EN to VIN for automatic startup), the regulator powers up.

GROUND CURRENT CONSUMPTION

Ground current measurements can determine how much current the internal circuits of the regulator consume while the circuits perform the regulation function. To be efficient, the regulator must consume as little current as possible. Typically, the regulator uses the maximum current when supplying its largest load level (150 mA). Figure 14 shows the typical ground current consumption for various load levels at $V_{OUT} = 3.3$ V and $T_A = 25^{\circ}C$.

When the device is disabled (EN = GND), the ground current drops to less than 50 nA.

ORDERING INFORMATION BILL OF MATERIALS

Table 2.

Reference Designator	Description	Manufacturer	Part No.
C1, C2	Capacitor, MLCC, 1 µF, 16 V, 0603, X5R	Murata (or equivalent)	GRM188R61C105KA93
J1, J2	Header, single, STR, two pins	Sullins Connector Solutions	PEC02SAAN
U1	IC, low dropout (LDO) regulator	Analog Devices, Inc.	ADP165/ADP166
R1, R2	Resistor, 0402, 1% tolerance	Any manufacturer	Depends on manufacturer

ADP165Z-REDYKIT CONTENTS

Table 3.				
Quantity	Model	Output Voltage (V)	Maximum Current (mA)	Description
1	ADP165CB-EVALZ	1.8	150	Evaluation board
1	ADP165CP-EVALZ	2.3	150	Evaluation board
1	ADP165UJ-EVALZ	3.3	150	Evaluation board
1	ADP165ACPZN-R7	Adjustable	150	6-lead LFCSP
1	ADP165ACPZN-1.2-R7	1.2	150	6-lead LFCSP
1	ADP165ACPZN-1.8-R7	1.8	150	6-lead LFCSP
1	ADP165ACPZN-3.0-R7	3.0	150	6-lead LFCSP
1	ADP165ACPZN-3.3-R7	3.3	150	6-lead LFCSP
1	ADP165AUJZ-R7	Adjustable	150	5-lead TSOT
1	ADP165AUJZ-1.2-R7	1.2	150	5-lead TSOT
1	ADP165AUJZ-1.8-R7	1.8	150	5-lead TSOT
1	ADP165AUJZ-2.3-R7	2.3	150	5-lead TSOT
1	ADP165AUJZ-3.0-R7	3.0	150	5-lead TSOT

ADP166Z-REDYKIT CONTENTS

Table 4.				
Quantity	Model	Output Voltage (V)	Maximum Current (mA)	Description
1	ADP166CB-EVALZ	1.8	150	Evaluation board
1	ADP166CP-EVALZ	2.3	150	Evaluation board
1	ADP166UJ-EVALZ	3.3	150	Evaluation board
1	ADP166ACPZN-R7	Adjustable	150	6-lead LFCSP
1	ADP166ACPZN-1.2-R7	1.2	150	6-lead LFCSP
1	ADP166ACPZN-1.8-R7	1.8	150	6-lead LFCSP
1	ADP166ACPZN-3.0-R7	3.0	150	6-lead LFCSP
1	ADP166ACPZN-3.3-R7	3.3	150	6-lead LFCSP
1	ADP166AUJZ-R7	Adjustable	150	5-lead TSOT
1	ADP166AUJZ-1.2-R7	1.2	150	5-lead TSOT
1	ADP166AUJZ-1.8-R7	1.8	150	5-lead TSOT
1	ADP166AUJZ-2.3-R7	2.3	150	5-lead TSOT
1	ADP166AUJZ-3.0-R7	3.0	150	5-lead TSOT

ESD Caution

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

Legal Terms and Conditions

By using the evaluation board discussed herein (together with any tools, components documentation or support materials, the "Evaluation Board"), you are agreeing to be bound by the terms and conditions set forth below ("Agreement") unless you have purchased the Evaluation Board, in which case the Analog Devices Standard Terms and Conditions of Sale shall govern. Do not use the Evaluation Board until you have read and agreed to the Agreement. Your use of the Evaluation Board shall signify your acceptance of the Agreement. This Agreement is made by and between you ("Customer") and Analog Devices, Inc. ("ADI"), with its principal place of business at One Technology Way, Norwood, MA 02062, USA. Subject to the terms and conditions of the Agreement, ADI hereby grants to Customer a free, limited, personal, temporary, non-exclusive, non-sublicensable, non-transferable license to use the Evaluation Board FOR EVALUATION PURPOSES ONLY. Customer understands and agrees that the Evaluation Board is provided for the sole and exclusive purpose referenced above, and agrees not to use the Evaluation Board for any other purpose. Furthermore, the license granted is expressly made subject to the following additional limitations: Customer shall not (i) rent, lease, display, sell, transfer, assign, sublicense, or distribute the Evaluation Board, and (ii) permit any Third Party to access the Evaluation Board. As used herein, the term "Third Party" includes any entity other than ADI, Customer, their employees, affiliates and in-house consultants. The Evaluation Board is NOT sold to Customer; all rights not expressly granted herein, including ownership of the Evaluation Board, are reserved by ADI. CONFIDENTIALITY. This Agreement and the Evaluation Board shall all be considered the confidential and proprietary information of ADI. Customer may not disclose or transfer any portion of the Evaluation Board to any other party for any reason. Upon discontinuation of use of the Evaluation Board or termination of this Agreement, Customer agrees to promptly return the Evaluation Board to ADI. ADDITIONAL RESTRICTIONS. Customer may not disassemble, decompile or reverse engineer chips on the Evaluation Board. Customer shall inform ADI of any occurred damages or any modifications or alterations it makes to the Evaluation Board, including but not limited to soldering or any other activity that affects the material content of the Evaluation Board. Modifications to the Evaluation Board must comply with applicable law, including but not limited to the RoHS Directive. TERMINATION. ADI may terminate this Agreement at any time upon giving written notice to Customer. Customer agrees to return to ADI the Evaluation Board at that time. LIMITATION OF LIABILITY. THE EVALUATION BOARD PROVIDED HEREUNDER IS PROVIDED "AS IS" AND ADI MAKES NO WARRANTIES OR REPRESENTATIONS OF ANY KIND WITH RESPECT TO IT. ADI SPECIFICALLY DISCLAIMS ANY REPRESENTATIONS, ENDORSEMENTS, GUARANTEES, OR WARRANTIES, EXPRESS OR IMPLIED, RELATED TO THE EVALUATION BOARD INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, TITLE, FITNESS FOR A PARTICULAR PURPOSE OR NONINFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS. IN NO EVENT WILL ADI AND ITS LICENSORS BE LIABLE FOR ANY INCIDENTAL, SPECIAL, INDIRECT, OR CONSEQUENTIAL DAMAGES RESULTING FROM CUSTOMER'S POSSESSION OR USE OF THE EVALUATION BOARD, INCLUDING BUT NOT LIMITED TO LOST PROFITS. DELAY COSTS, LABOR COSTS OR LOSS OF GOODWILL ADIS TOTAL LIABILITY FROM ANY AND ALL CAUSES SHALL BE LIMITED TO THE AMOUNT OF ONE HUNDRED US DOLLARS (\$100.00). EXPORT. Customer agrees that it will not directly or indirectly export the Evaluation Board to another country, and that it will comply with all applicable United States federal laws and regulations relating to exports. GOVERNING LAW. This Agreement shall be governed by and construed in accordance with the substantive laws of the Commonwealth of Massachusetts (excluding conflict of law rules). Any legal action regarding this Agreement will be heard in the state or federal courts having jurisdiction in Suffolk County, Massachusetts, and Customer hereby submits to the personal jurisdiction and venue of such courts. The United Nations Convention on Contracts for the International Sale of Goods shall not apply to this Agreement and is expressly disclaimed.

©2014–2015 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. UG12433-0-2/15(A)

www.analog.com