IsoBlock I-ST

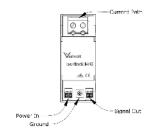
Single-Channel High Performance **Shunt Current Measuring Module**

OVERVIEW

The IsoBlock I-ST is a sensor designed for high-quality isolated current measurements up to 80 Amperes. The IsoBlock I-ST module provides 1400V primary-to-secondary sustained isolation, which allows users to monitor a miscellaneous of currents at different potentials.

The IsoBlock I-ST uses shunt methodology to measure the current flowing through the input conductor. In essence, this technique works by placing a high performance low impedance resistor along the current path (primary), while a galvanic isolation separates primary and secondary sides. The input current is then obtained by amplifying the voltage induced across the shunt resistor. This is followed by an anti-aliasing filter and a conditioning stage to output a ±10V signal.

The compact form factor of the IsoBlock I-ST module allows users to setup high channel density monitoring systems, making it ideal for deployed and portable systems.

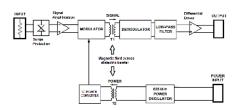

SPECIFICATION

Eletrical	
Accuracy	±(0.2% of reading + 0.005% range)
	t(0.1% of reading + 0.005% range)
Max total phase shift at 60Hz	< 0.05°
Max Input delay	< 5 μs
Isolation voltage from	> ±2000V
primary to secondary	- 120001
Withstanding common	±5000V
mode surge voltage (1min)	130000
Thermal drift gain	< ±0.01% / °C
Machanical	
Mechanical	
Mounting Type	DIN Rail
Outer Dimensions	3.5" x 2.5" x 1.5"
Weight	205 g (7.2 oz)

Performance	
Input ranges	±10mA, ±20mA, ±30mA, 50±mA, ±100mA, ±200mA, ±300mA, ±500mA, ±1A, ±2A, ±3A, ±4A, ±5A, ±10A, ±20A, ±30A, ±50A, ±60A, ±70A, ±80A, ±100A, 100A AC
Input-Output non-linearity	< 280 ppm/A
Output voltage	±10V, ±5V Custom
Gain temperature drift	±50 ppm/°C
Power Supply Voltage	9V to 28V
Output type	Differential signal
Output Offset Voltage	$2\sigma < \pm 500 \mu\text{V (typical)}$ $4\sigma < \pm 1 \text{mV} $
Output impedance	100Ω
Common mode impedance	> 2 GΩ 4pF
Differential Input impedance	> 1 MΩ
Environmental	
Operating temperature	– 25 to 65 °C
Storage temperature	– 40 to 70 °C

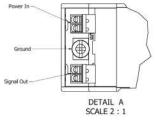
HARDWARE DESCRIPTION

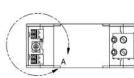
The current input connector is located at the top of the module in the figure bellow. A connector that servers to power the unit, output signal and ground the sensor lay along the bottom.

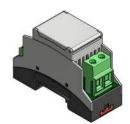


indication of input, output and power of the IsoBlock I-ST

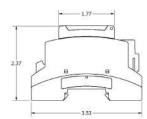
The IsoBlock module is designed to mount on standard NS-35 or NS-32 DIN rails with minimal preparation, providing users ease of use and flexibility.


Installation on DIN rail




IsoBlock I-ST block diagram.


MERCHANICAL DIMENSIONS



HARDWARE CONFIGURATION

A. Connect external power source to power the unit. For proper functioning the power supply should provide a voltage as specified with at least 0.2A of continuous current and 0.4A surge during module start-up.

B. Securely connect one end of a twisted pair to the output terminals, and the other end to the inputs of your data acquisition unit

C. Pass conductor through aperture and observe orientation for proper signal polarity.

