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Preface

WHAT IS µC/OS-III?

μC/OS-III (pronounced “Micro C O S Three) is a scalable, ROMable, preemptive real-time

kernel that manages an unlimited number of tasks. μC/OS-III is a third-generation kernel

and offers all of the services expected from a modern real-time kernel, such as resource

management, synchronization, inter-task communications, and more. However, μC/OS-III

offers many unique features not found in other real-time kernels, such as the ability to

complete performance measurements at run-time, to directly signal or send messages to

tasks, achieve pending on multiple kernel objects, and more.

WHY A NEW µC/OS VERSION?

The μC/OS series, first introduced in 1992, has undergone a number of changes over the

years based on feedback from thousands of people using and deploying its evolving

versions. 

μC/OS-III is the sum of this feedback and experience. Rarely used μC/OS-II features were

eliminated and newer, more efficient features and services, were added. Probably the most

common request was to add round robin scheduling, which was not possible for μC/OS-II,

but is now a feature of μC/OS-III.

μC/OS-III also provides additional features that better exploit the capabilities of today’s

newer processors. Specifically, μC/OS-III was designed with 32-bit processors in mind,

although it certainly works well with 16- and even several 8-bit processors.
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µC/OS-III GOALS

The main goal of μC/OS-III is to provide a best-in-class real-time kernel that literally shaves

months of development time from an embedded-product schedule. Using a commercial

real-time kernel such as μC/OS-III provides a solid foundation and framework to the design

engineer dealing with the growing complexity of embedded designs.

Another goal for μC/OS-III, and therefore this book, is to explain inner workings of a

commercial-grade kernel. This understanding will assist the reader in making logical design

decisions and informed tradeoffs between hardware and software that make sense.
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Chapter

1
Introduction

Real-time systems are systems whereby the correctness of the computed values and their

timeliness are at the forefront. There are two types of real-time systems, hard and soft real time.

What differentiates hard and soft real-time systems is their tolerance to missing deadlines

and the consequences associated with those misses. Correctly computed values after a

deadline has passed are often useless.

For hard real-time systems, missing deadlines is not an option. In fact, in many cases,

missing a deadline often results in catastrophe, which may involve human lives. For soft

real-time systems, however, missing deadlines is generally not as critical.

Real-time applications cover a wide range, but many real-time systems are embedded. An embedded

system is a computer built into a system and not acknowledged by the user as being a computer.

The following list shows just a few examples of embedded systems:

Real-time systems are typically more complicated to design, debug, and deploy than

non-real-time systems.

Aerospace

■ Flight management systems

■ Jet engine controls

■ Weapons systems

Audio

■ MP3 players

■ Amplifiers and tuners

Automotive

■ Antilock braking systems

■ Climate control

■ Engine controls

■ Navigation systems (GPS)

Communications

■ Routers 

■ Switches

■ Cell phones

Computer peripherals

■ Printers

■ Scanners

Domestic

■ Air conditioning units

■ Thermostats

■ White goods

Office automation

■ FAX machines / copiers

Process control

■ Chemical plants

■ Factory automation

■ Food processing

Robots

Video

■ Broadcasting equipment

■ HD Televisions

And many more
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1-1  FOREGROUND/BACKGROUND SYSTEMS

Small systems of low complexity are typically designed as foreground/background systems

or super-loops. An application consists of an infinite loop that calls modules (i.e., tasks) to

perform the desired operations (background). Interrupt Service Routines (ISRs) handle

asynchronous events (foreground). Foreground is also called interrupt level; background is

called task level.

Critical operations that should be performed at the task level must unfortunately be handled

by the ISRs to ensure that they are dealt with in a timely fashion. This causes ISRs to take

longer than they should. Also, information for a background module that an ISR makes

available is not processed until the background routine gets its turn to execute, which is

called the task-level response. The worst-case task-level response time depends on how

long a background loop takes to execute since the execution time of typical code is not

constant, the time for successive passes through a portion of the loop is nondeterministic.

Furthermore, if a code change is made, the timing of the loop is affected.

Most high-volume and low-cost microcontroller-based applications (e.g., microwave ovens,

telephones, toys, etc.) are designed as foreground/background systems.

Figure 1-1 Foreground/Background (SuperLoops) systems
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1-2  REAL-TIME KERNELS

A real-time kernel is software that manages the time and resources of a microprocessor,

microcontroller or Digital Signal Processor (DSP).

The design process of a real-time application involves splitting the work into tasks, each

responsible for a portion of the job. A task (also called a thread) is a simple program that

thinks it has the Central Processing Unit (CPU) completely to itself. On a single CPU, only

one task executes at any given time.

The kernel is responsible for the management of tasks. This is called multitasking. Multitasking

is the process of scheduling and switching the CPU between several tasks. The CPU switches

its attention between several sequential tasks. Multitasking provides the illusion of having

multiple CPUs and maximizes the use of the CPU. Multitasking also helps in the creation of

modular applications. One of the most important aspects of multitasking is that it allows the

application programmer to manage the complexity inherent in real-time applications.

Application programs are easier to design and maintain when multitasking is used.

μC/OS-III is a preemptive kernel, which means that μC/OS-III always runs the most

important task that is ready to run as shown in Figure 1-2.

Figure 1-2 µC/OS-III is a preemptive kernel
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F1-2(1) A low-priority task is executing.

F1-2(2) An interrupt occurs, and the CPU vectors to the ISR responsible for servicing

the interrupting device.

F1-2(3) The ISR services the interrupt device, but actually does very little work. The ISR

will signal or send a message to a higher-priority task that will be responsible

for most of the processing of the interrupting device. For example, if the

interrupt comes from an Ethernet controller, the ISR simply signals a task,

which will process the received packet.

F1-2(4) When the ISR finishes, μC/OS-III notices that a more important task has been

made ready to run by the ISR and will not return to the interrupted task, but

instead context switch to the more important task.

F1-2(5) The higher-priority task executes and performs the necessary processing in

response to the interrupt device.

F1-2(6) When the higher-priority task completes its work, it loops back to the

beginning of the task code and makes a μC/OS-III function call to wait for the

next interrupt from the device.

F1-2(7) The low-priority task resumes exactly at the point where it was interrupted, not

knowing what happened.

Kernels such as μC/OS-III are also responsible for managing communication between tasks,

and managing system resources (memory and I/O devices).

A kernel adds overhead to a system because the services provided by the kernel require

time to execute. The amount of overhead depends on how often these services are invoked.

In a well-designed application, a kernel uses between 2% and 4% of a CPU’s time. And,

since μC/OS-III is software that is added to an application, it requires extra ROM (code

space) and RAM (data space).

Low-end single-chip microcontrollers are generally not able to run a real-time kernel such

as μC/OS-III since they have access to very little RAM. μC/OS-III requires between 1 Kbyte

and 4 Kbytes of RAM, plus each task requires its own stack space. It is possible for

μC/OS-III to work on processors having as little as 4 Kbytes of RAM.
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Finally, μC/OS-III allows for better use of the CPU by providing approximately 70

indispensable services. After designing a system using a real-time kernel such as μC/OS-III,

you will not return to designing a foreground/background system.

1-3  RTOS (REAL-TIME OPERATING SYSTEM)

A Real Time Operating System generally contains a real-time kernel and other higher-level

services such as file management, protocol stacks, a Graphical User Interface (GUI), and

other components. Most additional services revolve around I/O devices.

Micriμm offers a complete suite of RTOS components including: μC/FS (an Embedded File

System), μC/TCP-IP (a TCP/IP stack), μC/GUI (a Graphical User Interface), μC/USB (a USB

device, host and OTG stack), and more. Most of these components are designed to work

standalone. Except for μC/TCP-IP, a real-time kernel is not required to use the components

in an application. In fact, users can pick and choose only the components required for the

application. Contact Micriμm (www.micrium.com) for additional details and pricing.

1-4  µC/OS-III

μC/OS-III is a scalable, ROMable, preemptive real-time kernel that manages an unlimited

number of tasks. μC/OS-III is a third-generation kernel, offering all of the services expected

from a modern real-time kernel including resource management, synchronization, inter-task

communication, and more. However, μC/OS-III also offers many unique features not found

in other real-time kernels, such as the ability to perform performance measurements at run

time, directly signal or send messages to tasks, and pending (i.e., waiting) on such multiple

kernel objects as semaphores and message queues.

Here is a list of features provided by μC/OS-III:

Source Code: μC/OS-III is provided in ANSI-C source form to licensees. The source code

for μC/OS-III is arguably the cleanest and most consistent kernel code available. Clean

source is part of the corporate culture at Micriμm. Although many commercial kernel

vendors provide source code for their products, unless the code follows strict coding

standards and is accompanied by complete documentation with examples to show how the
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code works, these products may be cumbersome and difficult to harness. With this book,

you will gain a deep understanding of the inner workings of μC/OS-III, which will protect

your investment.

Intuitive Application Programming Interface (API): μC/OS-III is highly intuitive. Once

familiar with the consistent coding conventions used, it is simple to predict the functions to

call for the services required, and even predict which arguments are needed. For example, a

pointer to an object is always the first argument, and a pointer to an error code is always the

last one.

Preemptive multitasking: μC/OS-III is a preemptive multi-tasking kernel and therefore,

μC/OS-III always runs the most important ready-to-run task.

Round robin scheduling of tasks at equal priority: μC/OS-III allows multiple tasks to

run at the same priority level. When multiple tasks at the same priority are ready to run, and

that priority level is the most important level, μC/OS-III runs each task for a user-specified

time called a time quanta. Each task can define its own time quanta, and a task can also

give up the CPU to another task at the same priority if it does not require the full time

quanta.

Low interrupt disable time: μC/OS-III has a number of internal data structures and

variables that it needs to access atomically. To ensure this, μC/OS-III is able to protect these

critical regions by locking the scheduler instead of disabling interrupts. Interrupts are

therefore disabled for very little time. This ensures that μC/OS-III is able to respond to some

of the fastest interrupt sources.

Deterministic: Interrupt response with μC/OS-III is deterministic. Also, execution times of

most services provided by μC/OS-III are deterministic.

Scalable: The footprint (both code and data) can be adjusted based on the requirements of

the application. This assumes access to the source code for μC/OS-III since adding and

removing features (i.e., services) is performed at compile time through approximately 40

#defines (see OS_CFG.H). μC/OS-III also performs a number of run-time checks on

arguments passed to μC/OS-III services. Specifically, μC/OS-III verifies that the user is not

passing NULL pointers, not calling task level services from ISRs, that arguments are within

allowable range, and options specified are valid, etc.. These checks can be disabled (at

compile time) to further reduce the code footprint and improve performance. The fact that

μC/OS-III is scalable allows it to be used in a wide range of applications and projects.
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Portable: μC/OS-III can be ported to a large number of CPU architectures. Most μC/OS-II ports

are easily converted to work on μC/OS-III with minimal changes in just a matter of minutes and

therefore benefit from more than 45 CPU architectures already supported by μC/OS-II.

ROMable: μC/OS-III was designed especially for embedded systems and can be ROMed

along with the application code.

Run-time configurable: μC/OS-III allows the user to configure the kernel at run time.

Specifically, all kernel objects such as tasks, stacks, semaphores, event-flag groups, message

queues, number of messages, mutual exclusion semaphores, memory partitions and timers, are

allocated by the user at run time. This prevents over-allocating resources at compile time.

Unlimited number of tasks: μC/OS-III supports an unlimited number of tasks. From a

practical standpoint, however, the number of tasks is actually limited by the amount of

memory (both code and data space) that the processor has access to. Each task requires its

own stack space and, μC/OS-III provides features to allow stack growth of the tasks to be

monitored at run-time. 

μC/OS-III does not impose any limitations on the size of each task, except that there be a

minimum size based on the CPU used.

Unlimited number of priorities: μC/OS-III supports an unlimited number of priority

levels. However, configuring μC/OS-III for between 32 and 256 different priority levels is

more than adequate for most applications.

Unlimited number of kernel objects: μC/OS-III allows for any number of tasks,

semaphores, mutual exclusion semaphores, event flags, message queues, timers, and

memory partitions. The user at run-time allocates all kernel objects.

Services: μC/OS-III provides all the services expected from a high-end real-time kernel,

such as task management, time management, semaphores, event flags, mutexes, message

queues, software timers, fixed-size memory pools, etc.

Mutual Exclusion Semaphores (Mutexes): Mutexes are provided for resource

management. Mutexes are special types of semaphores that have built-in priority

inheritance, which eliminate unbounded priority inversions. Accesses to a mutex can be

nested and therefore, a task can acquire the same mutex up to 250 times. Of course, the

mutex owner needs to release the mutex an equal number of times.
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Nested task suspension: μC/OS-III allows a task to suspend itself or another task.

Suspending a task means that the task will not be allowed to execute until the task is

resumed by another task. Suspension can be nested up to 250 levels deep. In other words,

a task can suspend another task up to 250 times. Of course, the task must be resumed an

equal number of times for it to become eligible to run on the CPU.

Software timers: Define any number of “one-shot” and/or “periodic” timers. Timers are

countdown counters that perform a user-definable action upon counting down to 0. Each

timer can have its own action and, if a timer is periodic, the timer is automatically reloaded

and the action is executed every time the countdown reaches zero.

Pend on multiple objects: μC/OS-III allows an application to wait (i.e., pend) on multiple

events at the same time. Specifically, a task can wait on multiple semaphores and/or

message queues to be posted. The waiting task wakes up as soon as one of the events

occurs.

Task Signals: μC/OS-III allows an ISR or task to directly signal a task. This avoids having to

create an intermediate kernel object such as a semaphore or event flag just to signal a task,

and results in better performance.

Task Messages: μC/OS-III allows an ISR or a task to send messages directly to a task. This

avoids having to create and use a message queue, and also results in better performance.

Task registers: Each task can have a user-definable number of “task registers.” Task

registers are different than CPU registers. Task registers can be used to hold “errno” type

variable, IDs, interrupt disable time measurement on a per-task basis, and more.

Error checking: μC/OS-III verifies that NULL pointers are not passed, that the user is not

calling task-level services from ISRs, that arguments are within allowable range, that options

specified are valid, that a handler is passed to the proper object as part of the arguments to

services that manipulate the desired object, and more. Each μC/OS-III API function returns

an error code concerning the outcome of the function call.

Built-in performance measurements: μC/OS-III has built-in features to measure the

execution time of each task, stack usage of each task, number of times a task executes, CPU

usage, ISR-to-task and task-to-task response time, peak number of entries in certain lists,

interrupt disable and scheduler lock time on a per-task basis, and more.
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Can easily be optimized: μC/OS-III was designed so that it could easily be optimized

based on the CPU architecture. Most data types used in μC/OS-III can be changed to make

better use of the CPU’s natural word size. Also, the priority resolution algorithm can easily

be written in assembly language to benefit from special instructions such as bit set and

clear, as well as count-leading-zeros (CLZ), or find-first-one (FF1) instructions.

Deadlock prevention: All of the μC/OS-III “pend” services include timeouts, which help

avoid deadlocks.

Tick handling at task level: The clock tick manager in μC/OS-III is accomplished by a

task that receives a trigger from an ISR. Handling delays and timeouts by a task greatly

reduces interrupt latency. Also, μC/OS-III uses a hashed delta list mechanism, which further

reduces the amount of overhead in processing delays and timeouts of tasks.

User definable hooks: μC/OS-III allows the port and application programmer to define

“hook” functions, which are called by μC/OS-III. A hook is simply a defined function that

allows the user to extend the functionality of μC/OS-III. One such hook is called during a

context switch, another when a task is created, yet another when a task is deleted, etc.

Timestamps: For time measurements, μC/OS-III requires that a 16-bit or 32-bit free running

counter be made available. This counter can be read at run time to make time

measurements of certain events. For example, when an ISR posts a message to a task, the

timestamp counter is automatically read and saved as part of the message posted. When the

recipient receives the message, the timestamp is provided to the recipient, and by reading

the current timestamp, the time it took for the message to be received can be determined.

Built-in support for Kernel Awareness debuggers: This feature allows kernel

awareness debuggers to examine and display μC/OS-III variables and data structures in a

user-friendly way, but only when the debugger hits a breakpoint. Instead of a static view of

the environment the kernel awareness support in μC/OS-III is also used by μC/Probe to

display the same information at run-time.

Object names: Each μC/OS-III kernel object can have a name associated with it. This

makes it easy to recognize what the object is assigned to. Assign an ASCII name to a task, a

semaphore, a mutex, an event flag group, a message queue, a memory partition, and a

timer. The object name can have any length, but must be NUL terminated.
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1-5  µC/OS, µC/OS-II AND µC/OS-III FEATURES COMPARISON

Table 1-1 shows the evolution of μC/OS over the years, comparing the features available in

each version.

Feature µC/OS µC/OS-II µC/OS-III

Year introduced 1992 1998 2009

Book Yes Yes Yes

Source code available Yes Yes Yes

(Licensees only)

Preemptive Multitasking Yes Yes Yes

Maximum number of tasks 64 255 Unlimited

Number of tasks at each priority level 1 1 Unlimited

Round Robin Scheduling No No Yes

Semaphores Yes Yes Yes

Mutual Exclusion Semaphores No Yes Yes (Nestable)

Event Flags No Yes Yes

Message Mailboxes Yes Yes No (not needed)

Message Queues Yes Yes Yes

Fixed Sized Memory Management No Yes Yes

Signal a task without requiring a semaphore No No Yes

Send messages to a task without requiring a 

message queue

No No Yes

Software Timers No Yes Yes

Task suspend/resume No Yes Yes (Nestable)

Deadlock prevention Yes Yes Yes

Scalable Yes Yes Yes

      Code Footprint 3K to 8K 6K to 26K 6K to 20K

      Data Footprint 1K+ 1K+ 1K+

ROMable Yes Yes Yes
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Table 1-1 µC/OS-II and µC/OS-III Features Comparison Chart

Run-time configurable No No Yes

Compile-time configurable Yes Yes Yes

ASCII names for each kernel object No Yes Yes

Pend on multiple objects No Yes Yes

Task registers No Yes Yes

Built-in performance measurements No Limited Extensive

User definable hook functions No Yes Yes

Time stamps on posts No No Yes

Built-in Kernel Awareness support No Yes Yes

Optimizable Scheduler in assembly language No No Yes

Tick handling at task level No No Yes

Source code available Yes Yes Yes

Number of services ~20 ~90 ~70

MISRA-C:1998 No Yes

(except 10 rules)

N/A

MISRA-C:2004 No No Yes

(except 7 rules)

DO178B Level A and EUROCAE ED-12B No Yes In progress

Medical FDA pre-market notification (510(k))

and pre-market approval (PMA)

No Yes In progress

SIL3/SIL4 IEC for transportation and nuclear systems No Yes In progress

IEC-61508 No Yes In progress

Feature µC/OS µC/OS-II µC/OS-III
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1-6  HOW THE BOOK IS ORGANIZED

This book consists of two books in one.

Part I describes μC/OS-III and is not tied to any specific CPU architecture. Here, the reader

will learn about real-time kernels through μC/OS-III. Specifically, critical sections, task

management, the ready list, scheduling, context switching, interrupt management, wait lists,

time management, timers, resource management, synchronization, memory management,

how to use μC/OS-III’s API, how to configure μC/OS-III, and how to port μC/OS-III to

different CPU architectures, are all covered.

Part II describes the port of a popular CPU architecture. Here, learn about this CPU

architecture and how μC/OS-III gets the most out of the CPU. Examples are provided to

actually run code on the evaluation board that is available with this book.

As I just mentioned, this book assumes the presence of an evaluation board that allows the

user to experiment with the wonderful world of real-time kernels, and specifically

μC/OS-III. The book and board are complemented by a full set of tools that are provided

free of charge either in a companion CD/DVD, or downloadable through the Internet. The

tools and the use of μC/OS-III are free as long as they are used with the evaluation board,

and there is no commercial intent to use them on a project. In other words, there is no

additional charge except for the initial cost of the book, evaluation board and tools, as long

as they are used for educational purposes.

The book also comes with a trial version of an award-winning tool from Micriμm called

μC/Probe. The trial version allows the user to monitor and change up to five variables in a

target system.

1-7  µC/PROBE

μC/Probe is a Microsoft Windows™ based application that enables the user to visualize

variables in a target at run time. Specifically, display or change the value of any variable in a

system while the target is running. These variables can be displayed using such graphical

elements as gauges, meters, bar graphs, virtual LEDs, numeric indicators, and many more.

Sliders, switches, and buttons can be used to change variables. This is accomplished

without the user writing a single line of code!
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μC/Probe interfaces to any target (8-, 16-, 32-, 64-bit, or even DSPs) through one of the

many interfaces supported ( J-Tag, RS-232C, USB, Ethernet, etc.). μC/Probe displays or

changes any variable (as long as they are global) in the application, including μC/OS-III’s

internal variables.

μC/Probe works with any compiler/assembler/linker able to generate an ELF/DWARF or

IEEE695 file. This is the exact same file that the user will download to the evaluation board

or a final target. From this file, μC/Probe is able to extract symbolic information about

variables, and determine where variables are stored in RAM or ROM.

μC/Probe also allows users to log the data displayed into a file for analysis of the collected

data at a later time. μC/Probe also provides μC/OS-III kernel awareness as a built-in feature.

The trial version that accompanies the book is limited to the display or change of up to five

variables.

μC/Probe is a tool that serious embedded software engineers should have in their toolbox. The full

version of μC/Probe is included when licensing μC/OS-III. See www.micrium.com for more details.

1-8  CONVENTIONS

There are a number of conventions in this book.

First, notice that when a specific element in a figure is referenced, the element has a

number next to it in parenthesis. A description of this element follows the figure and in this

case, the letter “F” followed by the figure number, and then the number in parenthesis. For

example, F3-4(2) indicates that this description refers to Figure 3-4 and the element (2) in

that figure. This convention also applies to listings (starts with an “L”) and tables (starts with

a “T”).

Second, notice that sections and listings are started where it makes sense. Specifically, do

not be surprised to see the bottom half of a page empty. New sections begin on a new

page, and listings are found on a single page, instead of breaking listings on two pages.

Third, code quality is something I’ve been avidly promoting throughout my whole career. At

Micriμm, we pride ourselves in having the cleanest code in the industry. Examples of this

are seen in this book. I created and published a coding standard in 1992 that was published
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in the original μC/OS book. This standard has evolved over the years, but the spirit of the

standard has been maintained throughout. The Micriμm coding standard is available for

download from the Micriμm website, www.micrium.com

One of the conventions used is that all functions, variables, macros and #define constants

are prefixed by “OS” (which stands for Operating System) followed by the acronym of the

module (e.g., Sem), and then the operation performed by the function. For example

OSSemPost() indicates that the function belongs to the OS (μC/OS-III), that it is part of

the Semaphore services, and specifically that the function performs a Post (i.e., signal)

operation. This allows all related functions to be grouped together in the reference manual,

and makes those services intuitive to use.

Notice that signaling or sending a message to a task is called posting, and waiting for a

signal or a message is called pending. In other words, an ISR or a task signals or sends a

message to another task by using OS???Post(), where ??? is the type of service: Sem,

TaskSem, Flag, Mutex, Q, and TaskQ. Similarly, a task can wait for a signal or a message by

calling OS???Pend().

1-9  CHAPTER CONTENTS

Figure 1-3 shows the layout and flow of Part I of the book. This diagram should be useful to

understand the relationship between chapters. The first column on the left indicates

chapters that should be read in order to understand μC/OS-III’s structure. The second

column shows chapters that are related to additional services provided by μC/OS-III. The

third column relates to chapters that will help port μC/OS-III to different CPU architectures.

The top of the fourth column explains how to obtain valuable run-time and compile-time

statistics from μC/OS-III. This is especially useful if developing a kernel awareness plug-in

for a debugger, or using μC/Probe. The middle of column four contains the μC/OS-III API

and configuration manuals. Reference these sections regularly when designing a product

using μC/OS-III. Finally, the bottom of the last column contains miscellaneous appendices.
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Figure 1-3   µC/OS-III Book Layout

Chapter 1, Introduction. This chapter.

Chapter 2, Directories and Files. This chapter explains the directory structure and files

needed to build a μC/OS-III-based application. Learn about the files that are needed, where

they should be placed, which module does what, and more.

Chapter 3, Getting Started with µC/OS-III. In this chapter, learn how to properly

initialize and start a μC/OS-III-based application.

Chapter 4, Critical Sections. This chapter explains what critical sections are, and how

they are protected.
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Chapter 5, Task Management. This chapter is an introduction to one of the most important

aspects of a real-time kernel, the management of tasks in a multitasking environment.

Chapter 6, The Ready List. In this chapter, learn how μC/OS-III efficiently keeps track of

all of the tasks that are waiting to execute on the CPU.

Chapter 7, Scheduling. This chapter explains the scheduling algorithms used by

μC/OS-III, and how it decides which task will run next.

Chapter 8, Context Switching. This chapter explains what a context switch is, and

describes the process of suspending execution of a task and resuming execution of a

higher-priority task.

Chapter 9, Interrupt Management. Here is how μC/OS-III deals with interrupts and an

overview of services that are available from Interrupt Service Routines (ISRs). Learn how

μC/OS-III supports nearly any interrupt controller.

Chapter 10, Pend Lists (or Wait Lists). Tasks that are not able to run are most likely

blocked waiting for specific events to occur. Pend Lists (or wait lists), are used to keep track

of tasks that are waiting for a resource or event. This chapter describes how μC/OS-III

maintains these lists.

Chapter 11, Time Management. In this chapter, learn about μC/OS-III’s services that allow

users to suspend a task until some time expires. With μC/OS-III, specify to delay execution of a

task for an integral number of clock ticks or until the clock-tick counter reaches a certain value.

The chapter will also show how a delayed task can be resumed, and describe how to get the

current value of the clock tick counter, or set this counter, if needed.

Chapter 12, Timer Management. μC/OS-III allows users to define any number of

software timers. When a timer expires, a function can be called to perform some action.

Timers can be configured to be either periodic or one-shot. This chapter also explains how

the timer-management module works.

Chapter 13, Resource Management. In this chapter, learn different techniques so that

tasks share resources. Each of these techniques has advantages and disadvantages that will

be discussed. This chapter also explains the internals of semaphores, and mutual exclusion

semaphore management.
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Chapter 14, Synchronization. μC/OS-III provides two types of services for

synchronization: semaphores and event flags and these are explained in this chapter, as well

as what happens when calling specific services provided in this module.

Chapter 15, Message Passing. μC/OS-III allows a task or an ISR to send messages to a

task. This chapter describes some of the services provided by the message queue

management module.

Chapter 16, Pending on multiple objects. In this chapter, see how μC/OS-III allows an

application to pend (or wait) on multiple kernel objects (semaphores or message queues) at

the same time. This feature makes the waiting task ready to run as soon as any one of the

objects is posted (i.e., OR condition), or a timeout occurs.

Chapter 17, Memory Management. Here is how μC/OS-III’s fixed-size memory partition

manager can be used to allocate and deallocate dynamic memory.

Chapter 18, Porting µC/OS-III. This chapter explains, in generic terms, how to port

μC/OS-III to any CPU architecture.

Chapter 19, Run-Time Statistics. μC/OS-III provides a wealth of information about the

run-time environment, such as number of context switches, CPU usage (as a percentage),

stack usage on a per-task basis, μC/OS-III RAM usage, maximum interrupt disable time,

maximum scheduler lock time, and more.

Appendix A, µC/OS-III API Reference Manual. This appendix provides a alphabetical

reference for all user-available services provided by μC/OS-III. 

Appendix B, µC/OS-III Configuration Manual. This appendix describes how to

configure a μC/OS-III-based application. OS_CFG.H configures the μC/OS-III features

(semaphores, queues, event flags, etc.), while OS_CFG_APP.H configures the run-time

characteristics (tick rate, tick wheel size, stack size for the idle task, etc.).

Appendix C, Migrating from µC/OS-II to µC/OS-III. μC/OS-III has its roots in μC/OS-II and,

in fact, most of the μC/OS-II ports can be easily converted to μC/OS-III. However, most APIs have

changed from μC/OS-II to μC/OS-III, and this appendix describes some of the differences.

Appendix D, MISRA-C:2004 rules and µC/OS-III. μC/OS-III follows most of the

MISRA-C:2004, except for 7 of these rules.
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Appendix E, Bibliography.

Appendix F, Licensing µC/OS-III.

1-10  LICENSING

This book contains μC/OS-III precompiled in linkable object form, an evaluation board, and

tools (compiler/assembler/linker/debugger). Use μC/OS-III for free, as long as it is only

used with the evaluation board that accompanies this book. You will need to purchase a

license when using this code in a commercial project, where the intent is to make a profit.

Users do not pay anything beyond the price of the book, evaluation board and tools, as

long as they are used for educational purposes.

You will need to license μC/OS-III if you intend to use μC/OS-III in a commercial product

where you intend to make a profit. You need to purchase this license when you make the

decision to use μC/OS-III in a design, not when you are ready to go to production.

If you are unsure about whether you need to obtain a license for your application, please

contact Micriμm and discuss your use with a sales representative.

1-11  CONTACTING MICRIUM

Do not hesitate to contact Micriμm should you have any licensing questions regarding

μC/OS-III.

Micriμm

11290 Weston Road, Suite 306

Weston, FL 33326

USA

Phone:  +1 954 217 2036

Fax:    +1 954 217 2037

E-mail: Licensing@Micrium.com

Web:    www.Micrium.com
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2
Directories and Files

μC/OS-III is fairly easy to use once it is understood exactly which source files are needed to

make up a μC/OS-III-based application. This chapter will discuss the modules available for

μC/OS-III and how everything fits together.

Figure 2-1 shows the μC/OS-III architecture and its relationship with hardware. Of course,

in addition to the timer and interrupt controller, hardware would most likely contain such

other devices as Universal Asynchronous Receiver Transmitters (UARTs), Analog to Digital

Converters (ADCs), Ethernet controller(s) and more.

This chapter assumes development on a Windows®-based platform and makes references

to typical Windows-type directory structures (also called Folder). However, since μC/OS-III

is available in source form, it can also be used on Unix, Linux or other development

platforms. 

The names of the files are shown in upper case to make them “stand out”. However, file

names are actually lower case.
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Figure 2-1 µC/OS-III Architecture
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F2-1(1) The application code consists of project or product files. For convenience,

these are simply called APP.C and APP.H, however an application can contain

any number of files that do not have to be called APP.*. The application code

is typically where one would find main().

F2-1(2) Semiconductor manufacturers often provide library functions in source form for

accessing the peripherals on their CPU or MCU. These libraries are quite useful

and often save valuable time. Since there is no naming convention for these

files, *.C and *.H are assumed.

F2-1(3) The Board Support Package (BSP) is code that is typically written to interface

to peripherals on a target board. For example such code can turn on and off

Light Emitting Diodes (LEDs), turn on and off relays, or code to read switches,

temperature sensors, and more.

F2-1(4) This is the μC/OS-III processor-independent code. This code is written in

highly portable ANSI C and is available to μC/OS-III licensees only.

F2-1(5) This is the μC/OS-III code that is adapted to a specific CPU architecture and is

called a port. μC/OS-III has its roots in μC/OS-II and benefits from being able

to use most of the 45 or so ports available for μC/OS-II. μC/OS-II ports,

however, will require small changes to work with μC/OS-III. These changes are

described in Appendix C, “Migrating from μC/OS-II to μC/OS-III” on page 599. 

F2-1(6) At Micriμm, we like to encapsulate CPU functionality. These files define

functions to disable and enable interrupts, CPU_??? data types to be

independent of the CPU and compiler used, and many more functions.

F2-1(7) μC/LIB is of a series of source files that provide common functions such as

memory copy, string, and ASCII-related functions. Some are occasionally used to

replace stdlib functions provided by the compiler. The files are provided to

ensure that they are fully portable from application to application and especially,

from compiler to compiler. μC/OS-III does not use these files, but μC/CPU does.

F2-1(8) μC/OS-III configuration files defines μC/OS-III features (OS_CFG.H) to include

in the application, and specifies the size of certain variables and data structures

expected by μC/OS-III (OS_CFG_APP.H), such as idle task stack size, tick rate,

size of the message pool, etc.
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2-1  APPLICATION CODE

When Micriμm provides example projects, they are placed in a directory structure shown

below. Of course, a directory structure that suits a particular project/product can be used.

\Micrium

\Software

\EvalBoards

\<manufacturer>

\<board_name> 

\<compiler>

\<project name>

\*.*

\Micrium

This is where we place all software components and projects provided by Micriμm. This

directory generally starts from the root directory of the computer.

\Software

This sub-directory contains all software components and projects.

\EvalBoards

This sub-directory contains all projects related to evaluation boards supported by Micriμm.

\<manufacturer>

This is the name of the manufacturer of the evaluation board. The “<” and “>” are not part

of the actual name.

\<board name>

This is the name of the evaluation board. A board from Micriμm will typically be called

uC-Eval-xxxx where “xxxx” represents the CPU or MCU used on the board. The “<” and

“>” are not part of the actual name.

\<compiler>

This is the name of the compiler or compiler manufacturer used to build the code for the

evaluation board. The “<” and “>” are not part of the actual name.
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\<project name>

The name of the project that will be demonstrated. For example, a simple μC/OS-III project

might have a project name of “OS-Ex1”. The “-Ex1” represents a project containing only

μC/OS-III. The project name OS-Probe-Ex1 contains μC/OS-III and μC/Probe. 

\*.*

These are the project source files. Main files can optionally be called APP*.*. This directory

also contains configuration files OS_CFG.H, OS_CFG_APP.H and other required source files.

2-2  CPU

The directory where you will find semiconductor manufacturer peripheral interface source

files is shown below. Any directory structure that suits the project/product may be used.

\Micrium
\Software

\CPU
\<manufacturer>

\<architecture>
\*.*

\Micrium

The location of all software components and projects provided by Micriμm.

\Software

This sub-directory contains all software components and projects.

\CPU

This sub-directory is always called CPU.

\<manufacturer>

Is the name of the semiconductor manufacturer providing the peripheral library. 

\<architecture>

The name of the specific library, generally associated with a CPU name or an architecture.

\*.*

Indicates library source files. The semiconductor manufacturer names the files.
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2-3  BOARD SUPPORT PACKAGE (BSP)

The Board Support Package (BSP) is generally found with the evaluation or target board as

it is specific to that board. In fact, when well written, the BSP should be used for multiple

projects.

\Micrium

\Software

\EvalBoards

\<manufacturer>

\<board name>

\<compiler>

\BSP

\*.*

 

\Micrium

Contains all software components and projects provided by Micriμm.

\Software

This sub-directory contains all software components and projects.

\EvalBoards

This sub-directory contains all projects related to evaluation boards.

\<manufacturer>

The name of the manufacturer of the evaluation board. The “<” and “>” are not part of the

actual name.

\<board name>

The name of the evaluation board. A board from Micriμm will typically be called

uC-Eval-xxxx where “xxxx” is the name of the CPU or MCU used on the evaluation board.

The “<” and “>” are not part of the actual name.

\<compiler>

The name of the compiler or compiler manufacturer used to build code for the evaluation

board. The “<” and “>” are not part of the actual name.
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\BSP

This directory is always called BSP.

\*.*

The source files of the BSP. Typically all of the file names start with BSP. It is therefore

normal to find BSP.C and BSP.H in this directory. BSP code should contain such functions

as LED control functions, initialization of timers, interface to Ethernet controllers and more.

2-4  µC/OS-III, CPU INDEPENDENT SOURCE CODE 

The files in these directories are available to μC/OS-III licensees (see Appendix F, “Licensing

Policy” on page 645).

\Micrium

\Software

\uCOS-III

\Cfg\Template

\OS_APP_HOOKS.C

\OS_CFG.H

\OS_CFG_APP.H

\Source

\OS_CFG_APP.C

\OS_CORE.C

\OS_DBG.C

\OS_FLAG.C

\OS_INT.C

\OS_MEM.C

\OS_MSG.C

\OS_MUTEX.C

\OS_PEND_MULTI.C

\OS_PRIO.C

\OS_Q.C

\OS_SEM.C

\OS_STAT.C

\OS_TASK.C

\OS_TICK.C

\OS_TIME.C
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\OS_TMR.C

\OS_VAR

\OS.H

\OS_TYPE.H

\Micrium

Contains all software components and projects provided by Micriμm.

\Software

This sub-directory contains all software components and projects.

\uCOS-III

This is the main μC/OS-III directory.

\Cfg\Template

This directory contains examples of configuration files to copy to the project directory. You

will then modify these files to suit the needs of the application.

OS_APP_HOOKS.C shows how to write hook functions that are called by μC/OS-III.

Specifically, this file contains eight empty functions.

OS_CFG.H specifies which features of μC/OS-III are available for an application. The file

is typically copied into an application directory and edited based on which features are

required from μC/OS-III. If μC/OS-III is provided in linkable object code format, this file

will be provided to indicate features that are available in the object file. See

Appendix B, “μC/OS-III Configuration Manual” on page 579.

OS_CFG_APP.H is a configuration file to be copied into an application directory and

edited based on application requirements. This file enables the user to determine the

size of the idle task stack, the tick rate, the number of messages available in the

message pool and more. See Appendix B, “μC/OS-III Configuration Manual” on

page 579.

\Source

The directory containing the CPU-independent source code for μC/OS-III. All files in this

directory should be included in the build (assuming you have the source code). Features

that are not required will be compiled out based on the value of #define constants in

OS_CFG.H and OS_CFG_APP.H.
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OS_CFG_APP.C declares variables and arrays based on the values in OS_CFG_APP.H.

OS_CORE.C contains core functionality for μC/OS-III such as OSInit() to initialize μC/OS-III,

OSSched() for the task level scheduler, OSIntExit() for the interrupt level scheduler, pend

list (or wait list) management (see Chapter 10, “Pend Lists (or Wait Lists)” on page 177), ready

list management (see Chapter 6, “The Ready List” on page 123), and more.

OS_DBG.C contains declarations of constant variables used by a kernel aware debugger

or μC/Probe.

OS_FLAG.C contains the code for event flag management. See Chapter 14,

“Synchronization” on page 251 for details about event flags.

OS_INT.C contains code for the interrupt handler task, which is used when 

OS_CFG_ISR_POST_DEFERRED_EN (see OS_CFG.H) is set to 1. See Chapter 9, “Interrupt

Management” on page 157 for details regarding the interrupt handler task.

OS_MEM.C contains code for the μC/OS-III fixed-size memory manager, see Chapter 17,

“Memory Management” on page 323.

OS_MSG.C contains code to handle messages. μC/OS-III provides message queues and

task specific message queues. OS_MSG.C provides common code for these two services.

See Chapter 15, “Message Passing” on page 289.

OS_MUTEX.C contains code to manage mutual exclusion semaphores, see Chapter 13,

“Resource Management” on page 209.

OS_PEND_MULTI.C contains the code to allow code to pend on multiple semaphores or

message queues. This is described in Chapter 16, “Pending On Multiple Objects” on

page 313.

OS_PRIO.C contains the code to manage the bitmap table used to keep track of which

tasks are ready to run, see Chapter 6, “The Ready List” on page 123. This file can be

replaced by an assembly language equivalent to improve performance if the CPU used

provides bit set, clear and test instructions, and a count leading zeros instruction.
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OS_Q.C contains code to manage message queues. See Chapter 15, “Message Passing”

on page 289.

OS_SEM.C contains code to manage semaphores used for resource management and/or

synchronization. See Chapter 13, “Resource Management” on page 209 and Chapter 14,

“Synchronization” on page 251.

OS_STAT.C contains code for the statistic task, which is used to compute the global

CPU usage and the CPU usage of each of tasks. See Chapter 5, “Task Management” on

page 75.

OS_TASK.C contains code for managing tasks using OSTaskCreate(), OSTaskDel(),

OSTaskChangePrio(), and many more. See Chapter 5, “Task Management” on page 75.

OS_TICK.C contains code to manage tasks that have delayed themselves or that are

pending on a kernel object with a timeout. See Chapter 5, “Task Management” on

page 75.

OS_TIME.C contains code to allow a task to delay itself until some time expires. See

Chapter 11, “Time Management” on page 183.

OS_TMR.C contains code to manage software timers. See Chapter 12, “Timer

Management” on page 193.

OS_VAR.C contains the μC/OS-III global variables. These variables are for μC/OS-III to

manage and should not be accessed by application code.

OS.H contains the main μC/OS-III header file, which declares constants, macros,

μC/OS-III global variables (for use by μC/OS-III only), function prototypes, and more.

OS_TYPE.H contains declarations of μC/OS-III data types that can be changed by the

port designed to make better use of the CPU architecture. In this case, the file would

typically be copied to the port directory and then modified. μC/OS-III in linkable object

library format provides this file to enable the user to know what each data type maps

to. See Appendix B, “μC/OS-III Configuration Manual” on page 579.
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2-5  µC/OS-III, CPU SPECIFIC SOURCE CODE

The μC/OS-III port developer provides these files. See also Chapter 18, “Porting μC/OS-III”

on page 335.

\Micrium

\Software

\uCOS-III

\Ports

\<architecture>

\<compiler>

\OS_CPU.H

\OS_CPU_A.ASM

\OS_CPU_C.C

\Micrium

Contains all software components and projects provided by Micriμm.

\Software

This sub-directory contains all software components and projects.

\uCOS-III

The main μC/OS-III directory.

\Ports

The location of port files for the CPU architecture(s) to be used.

\<architecture>

This is the name of the CPU architecture that μC/OS-III was ported to. The “<” and “>” are

not part of the actual name.

\<compiler>

The name of the compiler or compiler manufacturer used to build code for the port. The “<”

and “>” are not part of the actual name. 

The files in this directory contain the μC/OS-III port, see Chapter 18, “Porting μC/OS-III” on

page 335 for details on the contents of these files.
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OS_CPU.H contains a macro declaration for OS_TASK_SW(), as well as the function

prototypes for at least the following functions: OSCtxSw(), OSIntCtxSw() and

OSStartHighRdy().

OS_CPU_A.ASM contains the assembly language functions to implement at least the

following functions: OSCtxSw(), OSIntCtxSw() and OSStartHighRdy().

OS_CPU_C.C contains the C code for the port specific hook functions and code to

initialize the stack frame for a task when the task is created.

2-6  µC/CPU, CPU SPECIFIC SOURCE CODE

μC/CPU consists of files that encapsulate common CPU-specific functionality and CPU and

compiler-specific data types. See Chapter 18, “Porting μC/OS-III” on page 335.

\Micrium

\Software

\uC-CPU

\CPU_CORE.C

\CPU_CORE.H

\CPU_DEF.H

\Cfg\Template

\CPU_CFG.H

\<architecture>

\<compiler>

\CPU.H

\CPU_A.ASM

\CPU_C.C

\Micrium

Contains all software components and projects provided by Micriμm.

\Software

This sub-directory contains all software components and projects.
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\uC-CPU

This is the main μC/CPU directory.

CPU_CORE.C contains C code that is common to all CPU architectures. Specifically, this

file contains functions to measure the interrupt disable time of the

CPU_CRITICAL_ENTER() and CPU_CRITICAL_EXIT() macros, a function that emulates a

count leading zeros instruction and a few other functions.

CPU_CORE.H contains function prototypes for the functions provided in CPU_CORE.C

and allocation of the variables used by the module to measure interrupt disable time.

CPU_DEF.H contains miscellaneous #define constants used by the μC/CPU module.

\Cfg\Template

This directory contains a configuration template file (CPU_CFG.H) that must be copied to the

application directory to configure the μC/CPU module based on application requirements.

CPU_CFG.H determines whether to enable measurement of the interrupt disable time,

whether the CPU implements a count leading zeros instruction in assembly language, or

whether it will be emulated in C, and more.

\<architecture>

The name of the CPU architecture that μC/CPU was ported to. The “<” and “>” are not part

of the actual name.

\<compiler>

The name of the compiler or compiler manufacturer used to build code for the μC/CPU

port. The “<” and “>” are not part of the actual name. 

The files in this directory contain the μC/CPU port, see Chapter 18, “Porting μC/OS-III” on

page 335 for details on the contents of these files.

CPU.H contains type definitions to make μC/OS-III and other modules independent of

the CPU and compiler word sizes. Specifically, one will find the declaration of the

CPU_INT16U, CPU_INT32U, CPU_FP32 and many other data types. This file also specifies

whether the CPU is a big or little endian machine, defines the CPU_STK data type used

by μC/OS-III, defines the macros OS_CRITICAL_ENTER() and OS_CRITICAL_EXIT(),

and contains function prototypes for functions specific to the CPU architecture, and more.
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CPU_A.ASM contains the assembly language functions to implement code to disable and

enable CPU interrupts, count leading zeros (if the CPU supports that instruction), and

other CPU specific functions that can only be written in assembly language. This file

may also contain code to enable caches, setup MPUs and MMU, and more. The

functions provided in this file are accessible from C. 

CPU_C.C contains C code of functions that are based on a specific CPU architecture but

written in C for portability. As a general rule, if a function can be written in C then it

should be, unless there is significant performance benefits available by writing it in

assembly language.

2-7  µC/LIB, PORTABLE LIBRARY FUNCTIONS

μC/LIB consists of library functions meant to be highly portable and not tied to any specific

compiler. This facilitates third-party certification of Micriμm products. μC/OS-III does not

use any μC/LIB functions, however the μC/CPU assumes the presence of LIB_DEF.H for

such definitions as: DEF_YES, DEF_NO, DEF_TRUE, DEF_FALSE, DEF_ON, DEF_OFF and more.

\Micrium

\Software

\uC-LIB

\LIB_ASCII.C

\LIB_ASCII.H

\LIB_DEF.H

\LIB_MATH.C

\LIB_MATH.H

\LIB_MEM.C

\LIB_MEM.H

\LIB_STR.C

\LIB_STR.H

\Cfg\Template

\LIB_CFG.H

\Ports

\<architecture>

\<compiler>

\LIB_MEM_A.ASM
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\Micrium

Contains all software components and projects provided by Micriμm.

\Software

This sub-directory contains all software components and projects.

\uC-LIB

This is the main μC/LIB directory.

\Cfg\Template

This directory contains a configuration template file (LIB_CFG.H) that are required to be

copied to the application directory to configure the μC/LIB module based on application

requirements. 

LIB_CFG.H determines whether to enable assembly language optimization (assuming there

is an assembly language file for the processor, i.e., LIB_MEM_A.ASM) and a few other

#defines.

2-8  SUMMARY

Below is a summary of all directories and files involved in a μC/OS-III-based project. The

“<-Cfg” on the far right indicates that these files are typically copied into the application

(i.e., project) directory and edited based on the project requirements.

\Micrium

\Software

\EvalBoards

\<manufacturer>

\<board name>

\<compiler>

\<project name>

\APP.C

\APP.H

\other

\CPU

\<manufacturer>

\<architecture>

\*.*
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\uCOS-III

\Cfg\Template

\OS_APP_HOOKS.C

\OS_CFG.H <-Cfg

\OS_CFG_APP.H <-Cfg

\Source

\OS_CFG_APP.C

\OS_CORE.C

\OS_DBG.C

\OS_FLAG.C

\OS_INT.C

\OS_MEM.C

\OS_MSG.C

\OS_MUTEX.C

\OS_PEND_MULTI.C

\OS_PRIO.C

\OS_Q.C

\OS_SEM.C

\OS_STAT.C

\OS_TASK.C

\OS_TICK.C

\OS_TIME.C

\OS_TMR.C

\OS_VAR.C

\OS.H

\OS_TYPE.H <-Cfg

\Ports

\<architecture>

\<compiler>

\OS_CPU.H

\OS_CPU_A.ASM

\OS_CPU_C.C

 \uC-CPU

\CPU_CORE.C

\CPU_CORE.H

\CPU_DEF.H

\Cfg\Template

\CPU_CFG.H <-Cfg
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\<architecture>

\<compiler>

\CPU.H

\CPU_A.ASM

\CPU_C.C

\uC-LIB

\LIB_ASCII.C

\LIB_ASCII.H

\LIB_DEF.H

\LIB_MATH.C

\LIB_MATH.H

\LIB_MEM.C

\LIB_MEM.H

\LIB_STR.C

\LIB_STR.H

\Cfg\Template

\LIB_CFG.H <-Cfg

\Ports

\<architecture>

\<compiler>

\LIB_MEM_A.ASM
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3
Getting Started with µC/OS-III

μC/OS-III provides services to application code in the form of a set of functions that

perform specific operations. μC/OS-III offers services to manage tasks, semaphores,

message queues, mutual exclusion semaphores and more. As far as the application is

concerned, it calls the μC/OS-III functions as if they were any other functions. In other

words, the application now has access to a library of approximately 70 new functions.

In this chapter, the reader will appreciate how easy it is to start using μC/OS-III. Refer to

Appendix A, “μC/OS-III API Reference Manual” on page 375, for the full description of

several of the μC/OS-III services presented in this chapter.

It is assumed that the project setup (files and directories) is as described in the previous

chapter, and that a C compiler exists for the target processor that is in use. However, this

chapter makes no assumptions about the tools or the processor that is used.
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3-1  SINGLE TASK APPLICATION

Listing 3-1 shows the top portion of a simple application file called APP.C.

Listing 3-1  APP.C (1st Part)

L3-1(1) As with any C programs, include the necessary headers to build the

application. 

APP_CFG.H is a header file that configures the application. For our example,

APP_CFG.H contains #define constants to establish task priorities, stack sizes,

and other application specifics.

BSP.H is the header file for the Board Support Package (BSP), which defines

#defines and function prototypes, such as BSP_Init(), BSP_LED_On(),

OS_TS_GET() and more.

/*

***********************************************************************************************

*                                     INCLUDE FILES

***********************************************************************************************

*/

#include <app_cfg.h>                                                        (1)

#include <bsp.h>                                                            

#include <os.h>

/*

***********************************************************************************************

*                                 LOCAL GLOBAL VARIABLES

***********************************************************************************************

*/

static  OS_TCB           AppTaskStartTCB;                                   (2)

static  CPU_STK          AppTaskStartStk[APP_TASK_START_STK_SIZE];          (3)

/*

***********************************************************************************************

*                                  FUNCTION PROTOTYPES

***********************************************************************************************

*/

static  void  AppTaskStart (void *p_arg);                                   (4)
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OS.H is the main header file for μC/OS-III, and includes the following header files:

OS_CFG.H

CPU.H

CPU_CFG.H

CPU_CORE.H

OS_TYPE.H

OS_CPU.H

L3-1(2) We will be creating an application task and it is necessary to allocate a task

control block (OS_TCB) for this task.

L3-1(3) Each task created requires its own stack. A stack must be declared using the

CPU_STK data type. The stack can be allocated statically as shown here, or

dynamically from the heap using malloc(). It should not be necessary to free

the stack space, because the task should never be stopped, and the stack will

always be used.

L3-1(4) This is the function prototype of the task that we will create.

Most C applications start at main() as shown in Listing 3-2.
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Listing 3-2 APP.C (2nd Part)

L3-2(1) Start main() by calling a BSP function that disables all interrupts. On most

processors, interrupts are disabled at startup until explicitly enabled by application

code. However, it is safer to turn off all peripheral interrupts during startup.

L3-2(2) Call OSInit(), which is responsible for initializing μC/OS-III. OSInit()

initializes internal variables and data structures, and also creates two (2) to five (5)

internal tasks. At a minimum, μC/OS-III creates the idle task (OS_IdleTask()),

which executes when no other task is ready to run. μC/OS-III also creates the

tick task, which is responsible for keeping track of time.

void  main (void)

{

    OS_ERR  err;

    BSP_IntDisAll();                                                               (1)

    OSInit(&err);                                                                  (2)

    if (err != OS_ERR_NONE) {

        /* Something didn�t get initialized correctly ...                    */

        /* ... check OS.H for the meaning of the error code, see OS_ERR_xxxx */

    }

    OSTaskCreate((OS_TCB     *)&AppTaskStartTCB,                                   (3)

                 (CPU_CHAR   *)�App Task Start�,                                   (4)

                 (OS_TASK_PTR )AppTaskStart,                                       (5)

                 (void       *)0,                                                  (6)

                 (OS_PRIO     )APP_TASK_START_PRIO,                                (7)

                 (CPU_STK    *)&AppTaskStartStk[0],                                (8)

                 (CPU_STK_SIZE)APP_TASK_START_STK_SIZE / 10,                       (9)

                 (CPU_STK_SIZE)APP_TASK_START_STK_SIZE,                           (10)

                 (OS_MSG_QTY  )0,                                                  

                 (OS_TICK     )0,

                 (void       *)0,

                 (OS_OPT      )(OS_OPT_TASK_STK_CHK | OS_OPT_TASK_STK_CLR),       (11)

                 (OS_ERR     *)&err);                                             (12)

    if (err != OS_ERR_NONE) {

        /* The task didn�t get created.  Lookup the value of the error code ... */

        /* ... in OS.H for the meaning of the error                             */

    }

    OSStart(&err);                                                                (13)

    if (err != OS_ERR_NONE) {

        /* Your code is NEVER supposed to come back to this point.              */

    }

}
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Depending on the value of #define constants, μC/OS-III will create the statistic

task (OS_StatTask()), the timer task (OS_TmrTask()), and the interrupt

handler queue management task (OS_IntQTask()). Those are discussed in

Chapter 5, “Task Management” on page 75.

Most of μC/OS-III’s functions return an error code via a pointer to an OS_ERR

variable, err in this case. If OSInit() was successful, err will be set to

OS_ERR_NONE. If OSInit() encounters a problem during initialization, it will

return immediately upon detecting the problem and set err accordingly. If this

occurs, look up the error code value in OS.H. Specifically, all error codes start

with OS_ERR_.

It is important to note that OSInit() must be called before any other μC/OS-III

function.

L3-2(3) Create a task by calling OSTaskCreate(). OSTaskCreate() requires 13

arguments. The first argument is the address of the OS_TCB that is declared for this

task. Chapter 5, “Task Management” on page 75 provides additional information

about tasks.

L3-2(4) OSTaskCreate() allows a name to be assigned to each of the tasks. μC/OS-III

stores a pointer to the task name inside the OS_TCB of the task. There is no

limit on the number of ASCII characters used for the name.

L3-2(5) The third argument is the address of the task code. A typical μC/OS-III task is

implemented as an infinite loop as shown:

The task receives an argument when it first starts. As far as the task is

concerned, it looks like any other C function that can be called by the code.

However, the code must not call MyTask(). The call is actually performed

through μC/OS-III.

void  MyTask (void *p_arg)

{

    /* Do something with �p_arg�.

    while (1) {

        /* Task body */

    }

}
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L3-2(6) The fourth argument of OSTaskCreate() is the actual argument that the task

receives when it first begins. In other words, the “p_arg� of MyTask(). In the

example a NULL pointer is passed, and thus “p_arg” for AppTaskStart() will

be a NULL pointer.

The argument passed to the task can actually be any pointer. For example, the

user may pass a pointer to a data structure containing parameters for the task.

L3-2(7) The next argument to OSTaskCreate() is the priority of the task. The

priority establishes the relative importance of this task with respect to the

other tasks in the application. A low-priority number indicates a high

priority (or more important task). Set the priority of the task to any value

between 1 and OS_CFG_PRIO_MAX-2, inclusively. Avoid using priority #0, and

priority OS_CFG_PRIO_MAX-1, because these are reserved for μC/OS-III.

OS_CFG_PRIO_MAX is a compile time configuration constant, which is declared

in OS_CFG.H.

L3-2(8) The sixth argument to OSTaskCreate() is the base address of the stack

assigned to this task. The base address is always the lowest memory location of

the stack.

L3-2(9) The next argument specifies the location of a “watermark” in the task’s stack

that can be used to determine the allowable stack growth of the task. See

Chapter 5, “Task Management” on page 75 for more details on using this

feature. In the code above, the value represents the amount of stack space (in

CPU_STK elements) before the stack is empty. In other words, in the example,

the limit is reached when there is 10% of the stack left.

L3-2(10) The eighth argument to OSTaskCreate() specifies the size of the task’s stack in

number of CPU_STK elements (not bytes). For example, if allocating 1 Kbyte of

stack space for a task and the CPU_STK is a 32-bit word, then pass 256.

L3-2(11) The next three arguments are skipped as they are not relevant for the current

discussion. The next argument to OSTaskCreate() specifies options. In this

example, we specify that the stack will be checked at run time (assuming the

statistic task was enabled in OS_CFG.H), and that the contents of the stack will

be cleared when the task is created.
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L3-2(12) The last argument of OSTaskCreate() is a pointer to a variable that will

receive an error code. If OSTaskCreate() is successful, the error code will be

OS_ERR_NONE otherwise, look up the value of the error code in OS.H (See

OS_ERR_xxxx) to determine the problem with the call. 

L3-2(13) The final step in main() is to call OSStart(), which starts the multitasking

process. Specifically, μC/OS-III will select the highest-priority task that was

created before calling OSStart(). The highest-priority task is always

OS_IntQTask() if that task is enabled in OS_CFG.H (through the

OS_CFG_ISR_POST_DEFERRED_EN constant). If this is the case, OS_IntQTask()

will perform some initialization of its own and then μC/OS-III will switch to the

next most important task that was created.

A few important points are worth noting. For one thing, create as many tasks as you want

before calling OSStart(). However, it is recommended to only create one task as shown in

the example because, having a single application task allows μC/OS-III to determine how

fast the CPU is, in order to determine the percentage of CPU usage at run-time. Also, if the

application needs other kernel objects such as semaphores and message queues then it is

recommended that these be created prior to calling OSStart(). Finally, notice that that

interrupts are not enabled. This will be discussed next by examining the contents of

AppTaskStart(), which is shown in Listing 3-3.
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Listing 3-3 APP.C (3rd Part)

L3-3(1) As previously mentioned, a task looks like any other C function. The argument

“p_arg” is passed to AppTaskStart() by OSTaskCreate(), as discussed in the

previous listing description.

L3-3(2) BSP_Init() is a Board Support Package (BSP) function that is responsible for

initializing the hardware on an evaluation or target board. The evaluation

board might have General Purpose Input Output (GPIO) lines that might

need to be configured, relays, sensors and more. This function is found in a

file called BSP.C. 

L3-3(3) CPU_Init() initializes the μC/CPU services. μC/CPU provides services to measure

interrupt latency, receive time stamps, and provides emulation of the count leading

zeros instruction if the processor used does not have that instruction and more.

L3-3(4) BSP_Cfg_Tick() sets up the μC/OS-III tick interrupt. For this, the function

needs to initialize one of the hardware timers to interrupt the CPU at a rate of:

OSCfg_TickRate_Hz, which is defined in OS_CFG_APP.H (See

OS_CFG_TICK_RATE_HZ).

static  void  AppTaskStart (void *p_arg)                        (1)

{

    OS_ERR  err;

    

    

    p_arg = p_arg;

    BSP_Init();                                                 (2)

    CPU_Init();                                                 (3)

    BSP_Cfg_Tick();                                             (4)

    BSP_LED_Off(0);                                             (5)

    while (1) {                                                 (6)

        BSP_LED_Toggle(0);                                      (7)

        OSTimeDlyHMSM((CPU_INT16U)  0,                          (8)

                      (CPU_INT16U)  0, 

                      (CPU_INT16U)  0, 

                      (CPU_INT32U)100, 

                      (OS_OPT    )OS_OPT_TIME_HMSM_STRICT,

                      (OS_ERR   *)&err);

        /* Check for �err� */

    }

}
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L3-3(5) BSP_LED_Off() is a function that will turn off all LEDs because the function is

written so that a zero argument means all the LEDs.

L3-3(6) Most μC/OS-III tasks will need to be written as an infinite loop.

L3-3(7) This BSP function toggles the state of the specified LED. Again, a zero indicates

that all the LEDs should be toggled on the evaluation board. Simply change the

zero to 1 and this will cause LED #1 to toggle. Exactly which LED is LED #1?

That depends on the BSP developer. Specifically, encapsulate access to

LEDs through such functions as BSP_LED_On(), BSP_LED_Off() and

BSP_LED_Toggle(). Also, we prefer to assign LEDs logical values (1, 2, 3, etc.)

instead of specifying which port and which bit on each port.

L3-3(8) Finally, each task in the application must call one of the μC/OS-III functions

that will cause the task to “wait for an event.” The task can wait for time to

expire (by calling OSTimeDly(), or OSTimeDlyHMSM()), or wait for a signal or a

message from an ISR or another task. Chapter 11, “Time Management” on

page 183 provides additional information about time delays.
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3-2  MULTIPLE TASKS APPLICATION WITH KERNEL OBJECTS

The code of Listing 3-4 through Listing 3-8 shows a more complete example and contains

three tasks: a mutual exclusion, semaphore, and a message queue.

Listing 3-4 APP.C (1st Part)

/*

***********************************************************************************************

*                                       INCLUDE FILES

***********************************************************************************************

*/

#include <app_cfg.h>                                                        

#include <bsp.h>                                                            

#include <os.h>

/*

***********************************************************************************************

*                                   LOCAL GLOBAL VARIABLES

***********************************************************************************************

*/

static  OS_TCB           AppTaskStartTCB;                                 (1)

static  OS_TCB           AppTask1_TCB;

static  OS_TCB           AppTask2_TCB;

static  OS_MUTEX         AppMutex;                                        (2)

static  OS_Q             AppQ;                                            (3)

static  CPU_STK          AppTaskStartStk[APP_TASK_START_STK_SIZE];        (4)  

static  CPU_STK          AppTask1_Stk[128];

static  CPU_STK          AppTask2_Stk[128];

/*

***********************************************************************************************

*                                    FUNCTION PROTOTYPES

***********************************************************************************************

*/

static  void  AppTaskStart (void *p_arg);                                 (5)

static  void  AppTask1     (void *p_arg);

static  void  AppTask2     (void *p_arg);
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L3-4(1) Allocate storage for the OS_TCBs of each task.

L3-4(2) A mutual exclusion semaphore (a.k.a. a mutex) is a kernel object (a data

structure) that is used to protect a shared resource from being accessed by

more than one task. A task that wants to access the shared resource must

obtain the mutex before it is allowed to proceed. The owner of the resource

relinquishes the mutex when it has finished accessing the resource. This

process is demonstrated in this example.

L3-4(3) A message queue is a kernel object through which Interrupt Service Routines

(ISRs) and/or tasks send messages to other tasks. The sender “formulates” a

message and sends it to the message queue. The task(s) wanting to receive

these messages wait on the message queue for messages to arrive. If there are

already messages in the message queue, the receiver immediately retrieves

those messages. If there are no messages waiting in the message queue, then

the receiver will be placed in a wait list associated with the message queue.

This process will be demonstrated in this example.

L3-4(4) Allocate a stack for each task.

L3-4(5) The user must prototype the tasks.

Listing 3-5 shows the entry point for C, main().
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Listing 3-5 APP.C (2nd Part)

void  main (void)

{

    OS_ERR  err;

    BSP_IntDisAll();                                                               

    OSInit(&err);                                                                  

    /* Check for �err� */

 

    OSMutexCreate((OS_MUTEX  *)&AppMutex,                                            (1)

                 (CPU_CHAR   *)�My App. Mutex�,

                 (OS_ERR     *)&err);

    /* Check for �err� */

 

    OSQCreate    ((OS_Q      *)&AppQ,                                                (2)

                 (CPU_CHAR   *)�My App Queue�,

                 (OS_MSG_QTY  )10,

                 (OS_ERR     *)&err);

    /* Check for �err� */

 

    OSTaskCreate((OS_TCB     *)&AppTaskStartTCB,                                     (3)

                 (CPU_CHAR   *)�App Task Start�,                                    

                 (OS_TASK_PTR )AppTaskStart,                                        

                 (void       *)0,                                                   

                 (OS_PRIO     )APP_TASK_START_PRIO,                                 

                 (CPU_STK    *)&AppTaskStartStk[0],                                 

                 (CPU_STK_SIZE)APP_TASK_START_STK_SIZE / 10,      

                 (CPU_STK_SIZE)APP_TASK_START_STK_SIZE,                            

                 (OS_MSG_QTY  )0,                                                  

                 (OS_TICK     )0,

                 (void       *)0,

                 (OS_OPT      )(OS_OPT_TASK_STK_CHK | OS_OPT_TASK_STK_CLR),        

                 (OS_ERR     *)&err);                                              

   /* Check for �err� */

 

    OSStart(&err);                                                                                                        

   /* Check for �err� */

}
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L3-5(1) Creating a mutex is simply a matter of calling OSMutexCreate(). Specify the

address of the OS_MUTEX object that will be used for the mutex. Chapter 13,

“Resource Management” on page 209 provides additional information about

mutual exclusion semaphores.

You can assign an ASCII name to the mutex, which is useful when debugging.

L3-5(2) Create the message queue by calling OSQCreate() and specifying the address

of the OS_Q object. Chapter 15, “Message Passing” on page 289 provides

additional information about message queues.

Assign an ASCII name to the message queue.

Specify how many messages the message queue is allowed to receive. This

value must be greater than zero. If the sender sends messages faster than they

can be consumed by the receiving task, messages will be lost. This can be

corrected by either increasing the size of the message queue, or increasing the

priority of the receiving task.

L3-5(3) The first application task is created. 

Listing 3-6 shows how to create other tasks once multitasking as started.
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Listing 3-6 APP.C (3rd Part)

static  void  AppTaskStart (void *p_arg)

{

    OS_ERR  err;

    

    

    p_arg = p_arg;

    BSP_Init();                                                 

    CPU_Init();                                                 

    BSP_Cfg_Tick();                                             

    OSTaskCreate((OS_TCB     *)&AppTask1_TCB,                                     (1)

                 (CPU_CHAR   *)�App Task 1�,                                    

                 (OS_TASK_PTR )AppTask1,                                        

                 (void       *)0,                                                   

                 (OS_PRIO     )5,                                 

                 (CPU_STK    *)&AppTask1_Stk[0],                                 

                 (CPU_STK_SIZE)0,      

                 (CPU_STK_SIZE)128,                            

                 (OS_MSG_QTY  )0,                                                  

                 (OS_TICK     )0,

                 (void       *)0,

                 (OS_OPT      )(OS_OPT_TASK_STK_CHK | OS_OPT_TASK_STK_CLR),        

                 (OS_ERR     *)&err);                                              

    OSTaskCreate((OS_TCB     *)&AppTask2_TCB,                                     (2)

                 (CPU_CHAR   *)�App Task 2�,                                    

                 (OS_TASK_PTR )AppTask2,                                        

                 (void       *)0,                                                   

                 (OS_PRIO     )6,                                 

                 (CPU_STK    *)&AppTask2_Stk[0],                                 

                 (CPU_STK_SIZE)0,      

                 (CPU_STK_SIZE)128,                            

                 (OS_MSG_QTY  )0,

                 (OS_TICK     )0,

                 (void       *)0,

                 (OS_OPT      )(OS_OPT_TASK_STK_CHK | OS_OPT_TASK_STK_CLR),

                 (OS_ERR     *)&err);

    BSP_LED_Off(0);

    while (1) {                                                

        BSP_LED_Toggle(0);                                     

        OSTimeDlyHMSM((CPU_INT16U)  0,                         

                      (CPU_INT16U)  0, 

                      (CPU_INT16U)  0, 

                      (CPU_INT32U)100, 

                      (OS_OPT    )OS_OPT_TIME_HMSM_STRICT,

                      (OS_ERR   *)&err);

    }

}
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L3-6(1) Create Task #1 by calling OSTaskCreate(). If this task happens to have a

higher priority than the task that creates it, μC/OS-III will immediately start

Task #1. If the created task has a lower priority, OSTaskCreate() will return to

AppTaskStart() and continue execution.

L3-6(2) Task #2 is created and if it has a higher priority than AppTaskStart(),

μC/OS-III will immediately switch to that task.

Listing 3-7 APP.C (4th Part)

L3-7(1) The task starts by waiting for one tick to expire before it does anything useful.

If the μC/OS-III tick rate is configured for 1000 Hz, the task will execute every

millisecond.

static  void  AppTask1 (void *p_arg) 

{

    OS_ERR  err;

    CPU_TS  ts;

    p_arg = p_arg;

    while (1) {                                                

        OSTimeDly ((OS_TICK     )1,                                  (1)

                   (OS_OPT      )OS_OPT_TIME_DLY,

                   (OS_ERR     *)&err);

        OSQPost    ((OS_Q      *)&AppQ,                              (2)

                    (void      *)1;

                    (OS_MSG_SIZE)sizeof(void *),

                    (OS_OPT     )OS_OPT_POST_FIFO,

                    (OS_ERR    *)&err);

        OSMutexPend((OS_MUTEX  *)&AppMutex,                          (3)

                    (OS_TICK    )0,

                    (OS_OPT     )OS_OPT_PEND_BLOCKING;

                    (CPU_TS    *)&ts,

                    (OS_ERR    *)&err);

        /* Access shared resource */                                 (4)

        OSMutexPost((OS_MUTEX  *)&AppMutex,                          (5)

                    (OS_OPT     )OS_OPT_POST_NONE,

                    (OS_ERR    *)&err);

    }

}
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L3-7(2) The task then sends a message to another task using the message queue AppQ.

In this case, the example shows a fixed message “1,” but the message could

have consisted of the address of a buffer, the address of a function, or whatever

would need to be sent.

L3-7(3) The task then waits on the mutual exclusion semaphore since it needs to access

a shared resource with another task. If the resource is already owned by

another task, AppTask1() will wait forever for the mutex to be released by its

current owner. The forever wait is specified by passing 0 as the second

argument of the call.

L3-7(4) When OSMutexPend() returns, the task owns the resource and can therefore

access the shared resource. The shared resource may be a variable, an array, a

data structure, an I/O device, etc.

L3-7(5) When the task is done with the shared resource, it must call OSMutexPost() to

release the mutex.

Listing 3-8 APP.C (5th Part)

static  void  AppTask2 (void *p_arg)                        

{

    OS_ERR       err;

    void        *p_msg;

    OS_MSG_SIZE  msg_size;

    CPU_TS       ts;

    CPU_TS       ts_delta;

    

    

    p_arg = p_arg;

    while (1) {                                                

        p_msg = OSQPend((OS_Q        *)&AppQ,                              (1)

                        (OS_MSG_SIZE *)&msg_size,

                        (OS_TICK      )0,

                        (OS_OPT       )OS_OPT_PEND_BLOCKING,

                        (CPU_TS      *)&ts,

                        (OS_ERR      *)&err);

        ts_delta = OS_TS_GET() � ts;                                       (2)

        /* Process message received */                                     (3)

    }

}
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L3-8(1) Task #2 starts by waiting for messages to be sent through the message queue

AppQ. The task waits forever for a message to be received because the third

argument specifies an infinite timeout. 

When the message is received p_msg will contain the message (i.e., a pointer

to “something”). Both the sender and receiver must agree as to the meaning

of the message. The size of the message received is saved in “msg_size”.

Note that “p_msg” could point to a buffer and “msg_size” would indicate the

size of this buffer.

Also, when the message is received, “ts” will contain the timestamp of when the

message was sent. A timestamp is the value read from a fairly fast free-running

timer. The timestamp is typically an unsigned 32-bit (or more) value. 

L3-8(2) Knowing when the message was sent allows the user to determine how long it

took this task to get the message. Reading the current timestamp and

subtracting the timestamp of when the message was sent allows users to know

how long it took for the message to be received. Note that the receiving task

may not get the message immediately since ISRs or other higher-priority tasks

might execute before the receiver gets to run.

L3-8(3) Proceed with processing the received message.
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4
Critical Sections

A critical section of code, also called a critical region, is code that needs to be treated

indivisibly. There are many critical sections of code contained in μC/OS-III. If a critical

section is accessible by an Interrupt Service Routine (ISR) and a task, then disabling

interrupts is necessary to protect the critical region. If the critical section is only accessible

by task level code, the critical section may be protected through the use of a preemption

lock.

Within μC/OS-III, the critical section access method depends on which ISR post method

is used by interrupts (see Chapter 9, “Interrupt Management” on page 157). If

OS_CFG_ISR_POST_DEFERRED_EN is set to 0 (see OS_CFG.H) then μC/OS-III will disable

interrupts when accessing internal critical sections. If OS_CFG_ISR_POST_DEFERRED_EN is

set to 1 then μC/OS-III will lock the scheduler when accessing most of its internal critical

sections.

Chapter 9, “Interrupt Management” on page 157 discusses how to select the method to use.

μC/OS-III defines one macro for entering a critical section and two macros for leaving:

OS_CRITICAL_ENTER(), 

OS_CRITICAL_EXIT() and 

OS_CRITICAL_EXIT_NO_SCHED()

These macros are internal to μC/OS-III and must not be invoked by the application code.

However, if you need to access critical sections in your application code, consult

Chapter 13, “Resource Management” on page 209.
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4-1  DISABLING INTERRUPTS

When setting OS_CFG_ISR_POST_DEFERRED_EN to 0, μC/OS-III will disable interrupts before

entering a critical section and re-enable them when leaving the critical section.

OS_CRITICAL_ENTER() invokes the μC/CPU macro CPU_CRITICAL_ENTER() that, in turn,

calls CPU_SR_Save(). CPU_SR_Save() is a function typically written in assembly language

that saves the current interrupt disable status and then disables interrupts. The saved

interrupt disable status is returned to the caller and in fact, it is stored onto the caller’s stack

in a variable called “cpu_sr”.

OS_CRITICAL_EXIT() and OS_CRITICAL_EXIT_NO_SCHED() both invoke the μC/CPU

macro CPU_CRITICAL_EXIT(), which maps to CPU_SR_Restore(). CPU_SR_Restore() is

passed the value of the saved “cpu_sr” variable to re-establish interrupts the way they were

prior to calling OS_CRITICAL_ENTER().

The typical code for the macros is shown in Listing 4-1.

Listing 4-1 Critical section code – Disabling interrupts

4-1-1  MEASURING INTERRUPT DISABLE TIME

μC/CPU provides facilities to measure the amount of time interrupts are disabled. This is

done by setting the configuration constant CPU_CFG_TIME_MEAS_INT_DIS_EN to 1 in

CPU_CFG.H. 

The measurement is started each time interrupts are disabled and ends when interrupts are

re-enabled. The measurement keeps track of two values: a global interrupt disable time, and

an interrupt disable time for each task. Therefore, it is possible to know how long a task

disables interrupts, enabling the user to better optimize their code.

The per-task interrupt disable time is saved in the task’s OS_TCB during a context switch (see

OSTaskSwHook() in OS_CPU_C.C and described in Chapter 8, “Context Switching” on

page 147).

#define  OS_CRITICAL_ENTER()          { CPU_CRITICAL_ENTER(); }

#define  OS_CRITICAL_EXIT()           { CPU_CRITICAL_EXIT();  }

#define  OS_CRITICAL_EXIT_NO_SCHED()  { CPU_CRITICAL_EXIT();  }
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The unit of measure for the measured time is in CPU_TS (timestamp) units. It is necessary to

find out the resolution of the timer used to measure these timestamps. For example, if the

timer used for the timestamp is incremented at 1 MHz then the resolution of CPU_TS is

1 microsecond.

Measuring the interrupt disable time obviously adds measurement artifacts and thus

increases the amount of time the interrupts are disabled. However, as far as the

measurement is concerned, measurement overhead is accounted for and the measured

value represents the actual interrupt disable time as if the measurement was not present.

Interrupt disable time is obviously greatly affected by the speed at which the processor

accesses instructions and thus, the memory access speed. In this case, the hardware

designer might have introduced wait states to memory accesses, which affects overall

performance of the system. This may show up as unusually long interrupt disable times.

4-2  LOCKING THE SCHEDULER

When setting OS_CFG_ISR_POST_DEFERRED_EN to 1, μC/OS-III locks the scheduler before

entering a critical section and unlocks the scheduler when leaving the critical section. 

OS_CRITICAL_ENTER() simply increments OSSchedLockNestingCtr to lock the scheduler.

This is the variable the scheduler uses to determine whether or not the scheduler is locked.

It is locked when the value is non-zero.

OS_CRITICAL_EXIT() decrements OSSchedLockNestingCtr and when the value reaches

zero, invokes the scheduler.

OS_CRITICAL_EXIT_NO_SCHED() also decrements OSSchedLockNestingCtr, but does not

invoke the scheduler when the value reaches zero.

The code for the macros is shown in Listing 4-2.
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Listing 4-2 Critical section code – Locking the Scheduler

4-2-1  MEASURING SCHEDULER LOCK TIME

μC/OS-III provides facilities to measure the amount of time the scheduler is locked. This is done

by setting the configuration constant OS_CFG_SCHED_LOCK_TIME_MEAS_EN to 1 in OS_CFG.H.

The measurement is started each time the scheduler is locked and ends when the scheduler

is unlocked. The measurement keeps track of two values: a global scheduler lock time, and

a per-task scheduler lock time. It is therefore possible to know how long each task locks the

scheduler allowing the user to better optimize code.

The per-task scheduler lock time is saved in the task’s OS_TCB during a context switch (see

OSTaskSwHook() in OS_CPU_C.C and described in Chapter 8, “Context Switching” on

page 147).

The unit of measure for the measured time is in CPU_TS (timestamp) units so it is necessary to

find the resolution of the timer used to measure the timestamps. For example, if the timer used

for the timestamp is incremented at 1 MHz then the resolution of CPU_TS is 1 microsecond.

#define  OS_CRITICAL_ENTER()          {                                                      \

                                          CPU_CRITICAL_ENTER();                              \

                                          OSSchedLockNestingCtr++;                           \

                                          CPU_CRITICAL_EXIT();                               \

                                      }

#define  OS_CRITICAL_EXIT()           { 

                                          CPU_CRITICAL_ENTER();                              \

                                          OSSchedLockNestingCtr--;                           \

                                          if (OSSchedLockNestingCtr == (OS_NESTING_CTR)0) {  \

                                              CPU_CRITICAL_EXIT();                           \

                                              OSSched();                                     \

                                          } else {                                           \

                                              CPU_CRITICAL_EXIT();                           \

                                          }                                                  \

                                      }

#define  OS_CRITICAL_EXIT_NO_SCHED()  { 

                                          CPU_CRITICAL_ENTER();                              \

                                          OSSchedLockNestingCtr--;                           \

                                          CPU_CRITICAL_EXIT();                               \

                                      }
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Measuring the scheduler lock time adds measurement artifacts and thus increases the

amount of time the scheduler is actually locked. However, measurement overhead is

accounted for and the measured value represents the actual scheduler lock time as if the

measurement was not present.

4-3  µC/OS-III FEATURES WITH LONGER CRITICAL SECTIONS

Table 4-1 shows several μC/OS-III features that have potentially longer critical sections.

Knowledge of these will help the user decide whether to direct μC/OS-III to use one critical

section over another.

Table 4-1 Disabling interrupts or locking the Scheduler

Feature Reason

Multiple tasks at the same priority Although this is an important feature of µC/OS-III, multiple 

tasks at the same priority create longer critical sections. 

However, if there are only a few tasks at the same priority,  

interrupt latency would be relatively small.

If multiple tasks are not created at the same priority, use the 

interrupt disable method.

Event Flags

Chapter 14, “Synchronization” on page 251

If multiple tasks are waiting on different events, going through 

all of the tasks waiting for events requires a fair amount of 

processing time, which means longer critical sections.

If only a few tasks (approximately one to five) are waiting on 

an event flag group, the critical section would be short 

enough to use the interrupt disable method.

Pend on multiple objects 

Chapter 16, “Pending On Multiple Objects” on 

page 313

Pending on multiple objects is probably the most complex 

feature provided by µC/OS-III, requiring interrupts to be 

disabled for fairly long periods of time should the interrupt 

disable method be selected. If pending on multiple objects, it 

is highly recommended that the user select the 

scheduler-lock method. 

If the application does not use this feature, the interrupt 

disable method is an alternative.

Broadcast on Post calls

See OSSemPost() and OSQPost() descriptions in 

Appendix A, “µC/OS-III API Reference Manual” on 

page 375.

µC/OS-III disables interrupts while processing a post to 

multiple tasks in a broadcast.

When not using the broadcast option, you can use the 

interrupt disable method. 
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4-4  SUMMARY

μC/OS-III needs to access critical sections of code, which it protects by either disabling

interrupts (OS_CFG_ISR_POST_DEFERRED_EN set to 0 in OS_CFG.H), or locking the scheduler

(OS_CFG_ISR_POST_DEFERRED_EN set to 1 in OS_CFG.H). 

The application code must not use:

OS_CRITICAL_ENTER()

OS_CRITICAL_EXIT()

OS_CRITICAL_EXIT_NO_SCHED()

When setting CPU_CFG_TIME_MEAS_INT_DIS_EN in CPU_CFG.H, μC/CPU measures the

maximum interrupt disable time. There are two values available, one for the global

maximum and one for each task.

When setting OS_CFG_SCHED_LOCK_TIME_MEAS_EN to 1 in OS_CFG.H, μC/OS-III will

measure the maximum scheduler lock time. 
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5
Task Management

The design process of a real-time application generally involves splitting the work to be

completed into tasks, each responsible for a portion of the problem. μC/OS-III makes it

easy for an application programmer to adopt this paradigm. A task (also called a thread) is

a simple program that thinks it has the Central Processing Unit (CPU) all to itself. On a

single CPU, only one task can execute at any given time.

μC/OS-III supports multitasking and allows the application to have any number of tasks. The

maximum number of task is actually only limited by the amount of memory (both code and

data space) available to the processor. Multitasking is the process of scheduling and switching

the CPU between several tasks (this will be expanded upon later). The CPU switches its

attention between several sequential tasks. Multitasking provides the illusion of having multiple

CPUs and, actually maximizes the use of the CPU. Multitasking also helps in the creation of

modular applications. One of the most important aspects of multitasking is that it allows the

application programmer to manage the complexity inherent in real-time applications.

Application programs are typically easier to design and maintain when multitasking is used.

Tasks are used for such chores as monitoring inputs, updating outputs, performing

computations, control loops, update one or more displays, reading buttons and keyboards,

communicating with other systems, and more. One application may contain a handful of

tasks while another application may require hundreds. The number of tasks does not

establish how good or effective a design may be, it really depends on what the application

(or product) needs to do. The amount of work a task performs also depends on the

application. One task may have a few microseconds worth of work to perform while

another task may require tens of milliseconds.

Tasks look like just any other C function except for a few small differences. There are two

types of tasks: run-to-completion (Listing 5-1) and infinite loop (Listing 5-2). In most

embedded systems, tasks typically take the form of an infinite loop. Also, no task is allowed

to return as other C functions can. Given that a task is a regular C function, it can declare

local variables.
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When a μC/OS-III task begins executing, it is passed an argument, p_arg. This argument is a

pointer to a void. The pointer is a universal vehicle used to pass your task the address of a

variable, a structure, or even the address of a function, if necessary. With this pointer, it is

possible to create many identical tasks, that all use the same code (or task body), but, with

different run-time characteristics. For example, one may have four asynchronous serial ports

that are each managed by their own task. However, the task code is actually identical. Instead

of copying the code four times, create the code for a “generic” task that receives a pointer to a

data structure, which contains the serial port’s parameters (baud rate, I/O port addresses,

interrupt vector number, etc.) as an argument. In other words, instantiate the same task code

four times and pass it different data for each serial port that each instance will manage.

A run-to-completion task must delete itself by calling OSTaskDel(). The task starts,

performs its function, and terminates. There would typically not be too many such tasks in

the embedded system because of the overhead associated with “creating” and “deleting”

tasks at run-time. In the task body, one can call most of μC/OS-III’s functions to help

perform the desired operation of the task.

Listing 5-1 Run-To-Completion task

With μC/OS-III, call either C or assembly language functions from a task. In fact, it is

possible to call the same C function from different tasks as long as the functions are

reentrant. A reentrant function is a function that does not use static or otherwise global

variables unless they are protected (μC/OS-III provides mechanisms for this) from multiple

access. If shared C functions only use local variables, they are generally reentrant (assuming

that the compiler generates reentrant code). An example of a non-reentrant function is the

famous strtok() provided by most C compilers as part of the standard library. This function

is used to parse an ASCII string for “tokens.” The first time you call this function, you specify

void MyTask (void *p_arg)

{

    OS_ERR  err;

    /* Local variables                                                 */

    /* Do something with �p_arg�                                       */

    /* Task initialization                                             */

    /* Task body ... do work!                                          */

    OSTaskDel((OS_TCB *)0, &err);

}
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the ASCII string to parse and what constitute tokens. As soon as the function finds the first

token, it returns. The function “remembers” where it was last so when called again, it can

extract additional tokens, which is clearly non-reentrant. 

The use of an infinite loop is more common in embedded systems because of the repetitive

work needed in such systems (reading inputs, updating displays, performing control

operations, etc.). This is one aspect that makes a task different than a regular C function.

Note that one could use a “while (1)” or “for (;;)” to implement the infinite loop, since

both behave the same. The one used is simply a matter of personal preference. At Micrium,

we like to use “while (DEF_ON)”. The infinite loop must call a μC/OS-III service (i.e.,

function) that will cause the task to wait for an event to occur. It is important that each task

wait for an event to occur, otherwise the task would be a true infinite loop and there would

be no easy way for other tasks to execute. This concept will become clear as more is

understood regarding μC/OS-III.

Listing 5-2 Infinite Loop task

void MyTask (void *p_arg)

{

    /* Local variables                                                 */

    /* Do something with �p_arg�                                       */

    /* Task initialization                                             */

    while (DEF_ON) {      /* Task body, as an infinite loop.           */

        :

        /* Task body ... do work!                                      */

        :

        /* Must call one of the following services:                    */

        /*    OSFlagPend()                                             */

        /*    OSMutexPend()                                            */

        /*    OSPendMulti()                                            */

        /*    OSQPend()                                                */

        /*    OSSemPend()                                              */

        /*    OSTimeDly()                                              */

        /*    OSTimeDlyHMSM()                                          */

        /*    OSTaskQPend()                                            */

        /*    OSTaskSemPend()                                          */

        /*    OSTaskSuspend()     (Suspend self)                       */

        /*    OSTaskDel()         (Delete  self)                       */

        :

        /* Task body ... do work!                                      */

        :

    }

}
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The event the task is waiting for may simply be the passage of time (when OSTimeDly() or

OSTimeDlyHMSM() is called). For example, a design may need to scan a keyboard every 100

milliseconds. In this case, simply delay the task for 100 milliseconds then see if a key was

pressed on the keyboard and, possibly perform some action based on which key was

pressed. Typically, however, a keyboard scanning task should just buffer an “identifier”

unique to the key pressed and use another task to decide what to do with the key(s) pressed.

Similarly, the event the task is waiting for could be the arrival of a packet from an Ethernet

controller. In this case, the task would call one of the OS???Pend() calls (pend is

synonymous with wait). The task will have nothing to do until the packet is received. Once

the packet is received, the task processes the contents of the packet, and possibly moves

the packet along a network stack. 

It’s important to note that when a task waits for an event, it does not consume CPU time.

Tasks must be created in order for μC/OS-III to know about tasks. Create a task by simply

calling OSTaskCreate(). The function prototype for OSTaskCreate() is shown below:

A complete description of OSTaskCreate() and its arguments is provided in Appendix A,

“μC/OS-III API Reference Manual” on page 375. However, it is important to understand that

a task needs to be assigned a Task Control Block (i.e., TCB), a stack, a priority and a few

other parameters which are initialized by OSTaskCreate(), as shown in Figure 5-1.

void  OSTaskCreate (OS_TCB        *p_tcb,

                    OS_CHAR       *p_name,

                    OS_TASK_PTR    p_task,

                    void          *p_arg,

                    OS_PRIO        prio,

                    CPU_STK       *p_stk_base,

                    CPU_STK_SIZE   stk_limit,

                    CPU_STK_SIZE   stk_size,

                    OS_MSG_QTY     q_size,

                    OS_TICK        time_slice,

                    void          *p_ext,

                    OS_OPT         opt,

                    OS_ERR        *p_err)
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Figure 5-1 OSTaskCreate() initializes the task’s TCB and stack

F5-1(1) When calling OSTaskCreate(), one passes the base address of the stack

(p_stk_base) that will be used by the task, the watermark limit for stack

growth (stk_limit) which is expressed in number of CPU_STK entries before

the stack is empty, and the size of that stack (stk_size), also in number of

CPU_STK elements.

F5-1(2) When specifying OS_OPT_TASK_STK_CHK + OS_OPT_TASK_STK_CLR in the opt

argument of OSTaskCreate(), μC/OS-III initializes the task’s stack with all zeros.
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F5-1(3) μC/OS-III then initializes the top of the task’s stack with a copy of the CPU

registers in the same stacking order as if they were all saved at the beginning of

an ISR. This makes it easy to perform context switches as we will see when

discussing the context switching process. For illustration purposes, the

assumption is that the stack grows from high memory to low memory, but the

same concept applies for CPUs that use the stack in the reverse order.

F5-1(4) The new value of the stack pointer (SP) is saved in the TCB. Note that this is

also called the top-of-stack. 

F5-1(5) The remaining fields of the TCB are initialized: task priority, task name, task

state, internal message queue, internal semaphore, and many others.

Next, a call is made to a function that is defined in the CPU port, OSTaskCreateHook()

(see OS_CPU_C.C). OSTaskCreateHook() is passed the pointer to the new TCB and this

function allows you (or the port designer) to extend the functionality of OSTaskCreate().

For example, one could printout the contents of the fields of the newly created TCB onto a

terminal for debugging purposes. 

The task is then placed in the ready-list (see Chapter 6, “The Ready List” on page 123) and

finally, if multitasking has started, μC/OS-III will invoke the scheduler to see if the created

task is now the highest priority task and, if so, will context switch to this new task.

The body of the task can invoke other services provided by μC/OS-III. Specifically, a task

can create another task (i.e., call OSTaskCreate()), suspend and resume other tasks (i.e.,

call OSTaskSuspend() and OSTaskResume() respectively), post signals or messages to

other tasks (i.e., call OS??Post()), share resources with other tasks, and more. In other

words, tasks are not limited to only make “wait for an event” function calls.

Figure 5-2 shows the resources with which a task typically interacts.
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Figure 5-2 Tasks interact with resources

F5-2(1) An important aspect of a task is its code. As previously mentioned, the code

looks like any other C function, except that it is typically implemented as an

infinite loop. Also, a task is not allowed to return. 

F5-2(2) Each task is assigned a priority based on its importance in the application.

μC/OS-III’s job is to decide which task will run on the CPU. The general rule is

that μC/OS-III will run the most important ready-to-run task (highest priority). 

With μC/OS-III, a low priority number indicates a high priority. In other words,

a task at priority 1 is more important than a task at priority 10.

μC/OS-III supports a compile-time user configurable number of different

priorities (see OS_PRIO_MAX in OS_CFG.H). Thus, μC/OS-III allows the user to

determine the number of different priority levels the application is allowed to

use. Also, μC/OS-III supports an unlimited number of tasks at the same priority.

For example, μC/OS-III can be configured to have 64 different priority levels

and one can assign dozens of tasks at each priority level.

See section 5-1 “Assigning Task Priorities” on page 84.

Task Stack
(RAM)

Priority
(2)

Task Code
(1)

void MyTask (void *p_arg)

{

    /* Local variables     */

    /* Task Initialization */

for (;;) {

Wait for event to occur;

Process event;

}
}

CPU
Registers

I/O
Device(s)

Variables
(RAM)

(3)

(4)

(5)

(6)
(Optional)

(Optional)

CPU_STK MyTaskStk[???]
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F5-2(3) A task has its own set of CPU registers. As far as a task is concerned, the task

thinks it has the actual CPU all to itself.

F5-2(4) Because μC/OS-III is a preemptive kernel, each task must have its own stack

area. The stack always resides in RAM and is used to keep track of local

variables, function calls, and possibly ISR (Interrupt Service Routine) nesting. 

Stack space can be allocated either statically (at compile-time) or dynamically

(at run-time). A static stack declaration is shown below. This declaration is

made outside of a function. 

or,

Note that “???” indicates that the size of the stack (and thus the array) depends

on the task stack requirements. Stack space may be allocated dynamically by

using the C compiler’s heap management function (i.e., malloc()) as shown

below. However, care must be taken with fragmentation. If creating and

deleting tasks, the process of allocating memory might not be able to provide a

stack for the task(s) because the heap will eventually become fragmented. For

this reason, allocating stack space dynamically in an embedded system is

typically allowed but, once allocated, stacks should not be deallocated. Said

another way, it’s fine to create a task’s stack from the heap as long as you don’t

free the stack space back to the heap.

static  CPU_STK MyTaskStk[???];

CPU_STK MyTaskStk[???];
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See section 5-2 “Determining the Size of a Stack” on page 86.

F5-2(5) A task can also have access to global variables. However, because μC/OS-III is

a preemptive kernel care must be taken with code when accessing such

variables as they may be shared between multiple tasks. Fortunately, μC/OS-III

provides mechanisms to help with the management of such shared resources

(semaphores, mutexes and more).

F5-2(6) A task may also have access to one or more Input/Output (I/O) devices (also

known as peripherals). In fact, it is common practice to assign tasks to manage

I/O devices.

void SomeCode (void)

{

    CPU_STK *p_stk;

    :

    :

    p_stk = (CPU_STK *)malloc(stk_size);

    if (p_stk != (CPU_STK *)0) {

        Create the task and pass it �p_stk� as the base address of the stack;

    }

    :

    :

}
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5-1  ASSIGNING TASK PRIORITIES

Sometimes task priorities are both obvious and intuitive. For example, if the most important

aspect of the embedded system is to perform some type of control and it is known that the

control algorithm must be responsive then it is best to assign the control task(s) a high

priority while display and operator interface tasks are assigned low priority. However, most

of the time, assigning task priorities is not so cut and dry because of the complex nature of

real-time systems. In most systems, not all tasks are considered critical, and non-critical

tasks should obviously be given low priorities. 

An interesting technique called rate monotonic scheduling (RMS) assigns task priorities

based on how often tasks execute. Simply put, tasks with the highest rate of execution are

given the highest priority. However, RMS makes a number of assumptions, including: 

■ All tasks are periodic (they occur at regular intervals). 

■ Tasks do not synchronize with one another, share resources, or exchange data. 

■ The CPU must always execute the highest priority task that is ready to run. In other

words, preemptive scheduling must be used. 

Given a set of n tasks that are assigned RMS priorities, the basic RMS theorem states that all

task hard real-time deadlines are always met if the following inequality holds true:

Where Ei corresponds to the maximum execution time of task i, and Ti corresponds to the

execution period of task i. In other words, Ei/Ti corresponds to the fraction of CPU time

required to execute task i.

Table 5-1 shows the value for size n(21/n � 1) based on the number of tasks. The upper

bound for an infinite number of tasks is given by ln(2), or 0.693, which means that

meeting all hard real-time deadlines based on RMS, CPU use of all time-critical tasks should

be less than 70 percent! 
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Note that one can still have (and generally does) non time-critical tasks in a system and thus

use close to 100 percent of the CPU’s time. However, using 100 percent of your CPU’s time

is not a desirable goal as it does not allow for code changes and added features. As a rule of

thumb, always design a system to use less than 60 to 70 percent of the CPU. 

RMS says that the highest rate task has the highest priority. In some cases, the highest rate

task might not be the most important task. The application dictates how to assign priorities.

However, RMS is an interesting starting point. 

Table 5-1 Allowable CPU usage based on number of tasks

Number of Tasks n(21/n-1)

1 1.00

2 0.828

3 0.779

4 0.756

5 0.743

: :

: :

: :

Infinite 0.693
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5-2  DETERMINING THE SIZE OF A STACK

The size of the stack required by the task is application specific. When sizing the stack,

however, one must account for the nesting of all the functions called by the task, the

number of local variables to be allocated by all functions called by the task, and the stack

requirements for all nested interrupt service routines. In addition, the stack must be able to

store all CPU registers and possibly Floating-Point Unit (FPU) registers if the processor has a

FPU. As a general rule in embedded systems, avoid writing recursive code.

It is possible to manually figure out the stack space needed by adding all the memory

required by all function call nesting (1 pointer each function call for the return address),

plus all the memory required by all the arguments passed in those function calls, plus

storage for a full CPU context (depends on the CPU), plus another full CPU context for each

nested ISRs (if the CPU doesn’t have a separate stack to handle ISRs), plus whatever stack

space is needed by those ISRs. Adding all this up is a tedious chore and the resulting

number is a minimum requirement. Most likely one would not make the stack size that

precise in order to account for “surprises.” The number arrived at should probably be

multiplied by some safety factor, possibly 1.5 to 2.0. This calculation assumes that the exact

path of the code is known at all times, which is not always possible. Specifically, when

calling a function such as printf() or some other library function, it might be difficult or

nearly impossible to even guess just how much stack space printf() will require. In this

case, start with a fairly large stack space and monitor the stack usage at run-time to see just

how much stack space is actually used after the application runs for a while.

There are really cool and clever compilers/linkers that provide this information in a link

map. For each function, the link map indicates the worst-case stack usage. This feature

clearly enables one to better evaluate stack usage for each task. It is still necessary to add

the stack space for a full CPU context plus, another full CPU context for each nested ISR

(if the CPU does not have a separate stack to handle ISRs), plus whatever stack space is

needed by those ISRs. Again, allow for a safety net and multiply this value by some factor.

Always monitor stack usage at run-time while developing and testing the product as stack

overflows occur often and can lead to some curious behaviors. In fact, whenever someone

mentions that his or her application behaves “strangely,” insufficient stack size is the first

thing that comes to mind.
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5-3  DETECTING TASK STACK OVERFLOWS

1) Using an MMU or MPU

Stack overflows are easily detected if the processor has a Memory Management Unit (MMU)

or a Memory Protection Unit (MPU). Basically, MMUs and MPUs are special hardware

devices integrated alongside the CPU that can be configured to detect when a task attempts

to access invalid memory locations, whether code, data, or stack. Setting up an MMU or

MPU is well beyond the scope of this book. 

2) Using a CPU with stack overflow detection

Some processors, however, do have simple stack pointer overflow detection registers. When

the CPU’s stack pointer goes below (or above depending on stack growth) the value set in

this register, an exception is generated and the exception handler ensures that the offending

code does not do further damage (possibly issue a warning about the faulty code). The

.StkLimitPtr field in the OS_TCB (see Task Control Blocks) is provided for this purpose as

shown in Figure 5-3. Note that the position of the stack limit is typically set at a valid

location in the task’s stack with sufficient room left on the stack to handle the exception

itself (assuming the CPU does not have a separate exception stack). In most cases, the

position can be fairly close to &MyTaskStk[0].

Figure 5-3 Hardware detection of stack overflows
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As a reminder, the location of the .StkLimitPtr is determined by the “stk_limit”

argument passed to OSTaskCreate(), when the task is created as shown below:

Of course, the value of .StkLimitPtr used by the CPU’s stack overflow detection hardware

needs to be changed whenever μC/OS-III performs a context switch. This can be tricky

because the value of this register may need to be changed so that it first points to NULL,

then change the CPU’s stack pointer, and finally set the value of the stack checking register

to the value saved in the TCB’s .StkLimitPtr. Why? Because if the sequence is not

followed, the exception could be generated as soon as the stack pointer or the stack

overflow detection register is changed. One can avoid this problem by first changing the

stack overflow detection register to point to a location that ensures the stack pointer is

never invalid (thus the NULL as described above). Note that I assumed here that the stack

grows from high memory to low memory but the concept works in a similar fashion if the

stack grows in the opposite direction.

3) Software-based stack overflow detection

Whenever μC/OS-III switches from one task to another, it calls a “hook” function

(OSTaskSwHook()), which allows the μC/OS-III port programmer to extend the capabilities

of the context switch function. So, if the processor doesn’t have hardware stack pointer

overflow detection, it’s still possible to “simulate” this feature by adding code in the context

switch hook function and, perform the overflow detection in software. Specifically, before a

task is switched in, the code should ensure that the stack pointer to load into the CPU does

not exceed the “limit” placed in .StkLimitPtr. Because the software implementation

OS_TCB  MtTaskTCB;

CPU_STK MyTaskStk[1000];

OSTaskCreate(&MyTaskTCB,

             �MyTaskName�,

              MyTask,

             &MyTaskArg,

              MyPrio,

             &MyTaskStk[0],   /* Stack base address                                         */

               100,           /* Set .StkLimitPtr to trigger exception at stack usage > 90% */

              1000,           /* Total stack size (in CPU_STK elements)                     */

              MyTaskQSize,

              MyTaskTimeQuanta,

              (void *)0,

              MY_TASK_OPT,

             &err);
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cannot detect the stack overflow “as soon” as the stack pointer exceeds the value of

.StkLimitPtr, it is important to position the value of .StkLimitPtr in the stack fairly far from

&MyTaskStk[0], as shown in Figure 5-4. A software implementation such as this is not as

reliable as a hardware-based detection mechanism but still prevents a possible stack

overflow. Of course, the .StkLimitPtr field would be set using OSTaskCreate() as shown

above but this time, with a location further away from &MyTaskStk[0].

Figure 5-4 Software detection of stack overflows, monitoring .StkLimitPtr

4) Counting the amount of free stack space

Another way to check for stack overflows is to allocate more stack space than is anticipated

to be used for the stack, then, monitor and possibly display actual maximum stack usage at

run-time. This is fairly easy to do. First, the task stack needs to be cleared (i.e., filled with

zeros) when the task is created. Next, a low priority task walks the stack of each task

created, from the bottom (&MyTaskStk[0]) towards the top, counting the number of zero

entries. When the task finds a non-zero value, the process is stopped and the usage of the

stack can be computed (in number of bytes used or as a percentage). Then, adjust the size

of the stacks (by recompiling the code) to allocate a more reasonable value (either increase

or decrease the amount of stack space for each task). For this to be effective, however, run
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the application long enough for the stack to grow to its highest value. This is illustrated in

Figure 5-5. μC/OS-III provides a function that performs this calculation at run-time,

OSTaskStkChk() and in fact, this function is called by OS_StatTask() to compute stack

usage for every task created in the application (to be described later).

Figure 5-5 Software detection of stack overflows, walking the stack
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5-4  TASK MANAGEMENT SERVICES

μC/OS-III provides a number of task-related services to call from the application. These

services are found in OS_TASK.C and they all start with OSTask???(). The type of service

they perform groups task-related services:

Table 5-2 Task Management Services

A complete description of all μC/OS-III task related services is provided in Appendix A,

“μC/OS-III API Reference Manual” on page 375.

Group Functions

General OSTaskCreate()

OSTaskDel()

OSTaskChangePrio()

OSTaskRegSet()

OSTaskRegGet()

OSTaskSuspend()

OSTaskResume()

OSTaskTimeQuantaSet()

Signaling a Task 

(See also Chapter 14, “Synchronization” on page 251)

OSTaskSemPend()

OSTaskSemPost()

OSTaskSemPendAbort()

Sending Messages to a Task

(See also Chapter 15, “Message Passing” on page 289)

OSTaskQPend()

OSTaskQPost()

OSTaskQPendAbort()

OSTaskQFlush()
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5-5  TASK MANAGEMENT INTERNALS

5-5-1  TASK STATES

From a μC/OS-III user point of view, a task can be in any one of five states as shown in

Figure 5-6. Internally, μC/OS-III does not need to keep track of the dormant state and the

other states are tracked slightly differently. This will be discussed after a discussion on task

states from the user’s point of view. Figure 5-6 also shows which μC/OS-III functions are

used to move from one state to another. The diagram is actually simplified as state

transitions are a bit more complicated than this.

Figure 5-6 Five basic states of a task
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F5-6(1) The Dormant state corresponds to a task that resides in memory but has not

been made available to μC/OS-III. 

A task is made available to μC/OS-III by calling a function to create the task,

OSTaskCreate(). The task code actually resides in code space but μC/OS-III

needs to be informed about it.

When it is no longer necessary for μC/OS-III to manage a task, call the task

delete function, OSTaskDel(). OSTaskDel() does not actually delete the code

of the task, it is simply not eligible to access the CPU.

F5-6(2) The Ready state corresponds to a ready-to-run task, but is not the most

important task ready. There can be any number of tasks ready and μC/OS-III

keeps track of all ready tasks in a ready list (discussed later). This list is

sorted by priority. 

F5-6(3) The most important ready-to-run task is placed in the Running state. On a

single CPU, only one task can be running at any given time.

The task selected to run on the CPU is switched in by μC/OS-III from the ready

state when the application code calls OSStart(), or when μC/OS-III calls

either OSIntExit() or OS_TASK_SW(). 

As previously discussed, tasks must wait for an event to occur. A task waits for

an event by calling one of the functions that brings the task to the pending

state if the event has not occurred.

F5-6(4) Tasks in the Pending state are placed in a special list called a pend-list (or wait

list) associated with the event the task is waiting for. When waiting for the

event to occur, the task does not consume CPU time. When the event occurs,

the task is placed back into the ready list and μC/OS-III decides whether the

newly readied task is the most important ready-to-run task. If this is the case,

the currently running task will be preempted (placed back in the ready list) and

the newly readied task is given control of the CPU. In other words, the newly

readied task will run immediately if it is the most important task.
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Note that the OSTaskSuspend() function unconditionally blocks a task and this

task will not actually wait for an event to occur but in fact, waits until another

task calls OSTaskResume() to make the task ready to run.

F5-6(5) Assuming that CPU interrupts are enabled, an interrupting device will suspend

execution of a task and execute an Interrupt Service Routine (ISR). ISRs are

typically events that tasks wait for. Generally speaking, an ISR should simply

notify a task that an event occurred and let the task process the event. ISRs

should be as short as possible and most of the work of handling the

interrupting devices should be done at the task level where it can be managed

by μC/OS-III. ISRs are only allowed to make “Post” calls (i.e., OSFlagPost(),

OSQPost(), OSSemPost(), OSTaskQPost() and OSTaskSemPost()). The only

post call not allowed to be made from an ISR is OSMutexPost() since mutexes,

as will be addressed later, are assumed to be services that are only accessible at

the task level.

As the state diagram indicates, an interrupt can interrupt another interrupt. This

is called interrupt nesting and most processors allow this. However,

interrupt nesting easily leads to stack overflow if not managed properly.

Internally, μC/OS-III keeps track of task states using the state machine shown in Figure 5-7.

The task state is actually maintained in a variable that is part of a data structure associated

with each task, the task’s TCB. The task state diagram was referenced throughout the design

of μC/OS-III when implementing most of μC/OS-III’s services. The number in parentheses is

the state number of the task and thus, a task can be in any one of eight (8) states (see OS.H,

OS_TASK_STATE_???). 

Note that the diagram does not keep track of a dormant task, as a dormant task is not

known to μC/OS-III. Also, interrupts and interrupt nesting is tracked differently as will be

explained further in the text. 

This state diagram should be quite useful to understand how to use several functions and

their impact on the state of tasks. In fact, I’d highly recommend that the reader bookmark

the page of the diagram.
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Figure 5-7 µC/OS-III’s internal task state machine

F5-7(1) State 0 occurs when a task is ready to run. Every task “wants” to be ready to

run as that is the only way it gets to perform their duties.

F5-7(2) A task can decide to wait for time to expire by calling either OSTimeDly() or

OSTimeDlyHMSM(). When the time expires or the delay is cancelled (by calling

OSTimeDlyResume()), the task returns to the ready state.

F5-7(3) A task can wait for an event to occur by calling one of the pend (i.e., wait)

functions (OSFlagPend(), OSMutexPend(), OSQPend(), OSSemPend(),

OSTaskQPend(), or OSTaskSemPend()), and specify to wait forever for the

event to occur. The pend terminates when the event occurs (i.e., a task or an

ISR performs a “post”), the awaited object is deleted or, another task decides to

abort the pend.
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F5-7(4) A task can wait for an event to occur as indicated, but specify that it is willing

to wait a certain amount of time for the event to occur. If the event is not

posted within that time, the task is readied, then the task is notified that a

timeout occurred. Again, the pend terminates when the event occurs (i.e., a

task or an ISR performs a “post”), the object awaited is deleted or, another task

decides to abort the pend. 

F5-7(5) A task can suspend itself or another task by calling OSTaskSuspend(). The

only way the task is allowed to resume execution is by calling

OSTaskResume(). Suspending a task means that a task will not be able to run

on the CPU until it is resumed by another task.

F5-7(6) A delayed task can also be suspended by another task. In this case, the effect is

additive. In other words, the delay must complete (or be resumed by

OSTimeDlyResume()) and the suspension must be removed (by another task

which would call OSTaskResume()) in order for the task to be able to run. 

F5-7(7) A task waiting on an event to occur may be suspended by another task. Again,

the effect is additive. The event must occur and the suspension removed (by

another task) in order for the task to be able to run. Of course, if the object that

the task is pending on is deleted or, the pend is aborted by another task, then

one of the above two condition is removed. The suspension , however, must be

explicitly removed.

F5-7(8) A task can wait for an event, but only for a certain amount of time, and the

task could also be suspended by another task. As one might expect, the

suspension must be removed by another task (or the same task that

suspended it in the first place), and the event needs to either occur or timeout

while waiting for the event.
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5-5-2  TASK CONTROL BLOCKS (TCBs)

A task control block (TCB) is a data structure used by kernels to maintain information about

a task. Each task requires its own TCB and, for μC/OS-III, the user assigns the TCB in user

memory space (RAM). The address of the task’s TCB is provided to μC/OS-III when calling

task-related services (i.e., OSTask???() functions). The task control block data structure is

declared in OS.H as shown in Listing 5-3. Note that the fields are actually commented in

OS.H, and some of the fields are conditionally compiled based on whether or not certain

features are desired. Both are not shown here for clarity.

Also, it is important to note that even when the user understands what the different fields of

the OS_TCB do, the application code must never directly access these (especially change

them). In other words, OS_TCB fields must only be accessed by μC/OS-III and not the code.

struct os_tcb {

    CPU_STK             *StkPtr;

    void                *ExtPtr;

    CPU_STK             *StkLimitPtr; 

    OS_TCB              *NextPtr;

    OS_TCB              *PrevPtr;

    OS_TCB              *TickNextPtr;

    OS_TCB              *TickPrevPtr;                     

    OS_TICK_SPOKE       *TickSpokePtr;

    OS_CHAR             *NamePtr;

    CPU_STK             *StkBasePtr;

    OS_TASK_PTR          TaskEntryAddr;

    void                *TaskEntryArg;

    OS_PEND_DATA        *PendDataTblPtr;

    OS_OBJ_QTY           PendDataEntries;

    CPU_TS               TS;

    void                *MsgPtr;

    OS_MSG_SIZE          MsgSize;

    OS_MSG_Q             MsgQ;

    CPU_TS               MsgQPendTime;

    CPU_TS               MsgQPendTimeMax;

    OS_FLAGS             FlagsPend;

    OS_OPT               FlagsOpt;

    OS_FLAGS             FlagsRdy;
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Listing 5-3 OS_TCB Data Structure

.StkPtr

This field contains a pointer to the current top-of-stack for the task. μC/OS-III allows each

task to have its own stack and each stack can be any size. .StkPtr should be the only field

in the OS_TCB data structure accessed from assembly language code (for the

context-switching code). This field is therefore placed as the first entry in the structure

making access easier from assembly language code (it will be at offset zero in the data

structure).

.ExtPtr

This field contains a pointer to a user-definable pointer to extend the TCB as needed. This

pointer is easily accessible from assembly language. 

    OS_REG               RegTbl[OS_TASK_REG_TBL_SIZE];

    OS_SEM_CTR           SemCtr;

    CPU_TS               SemPendTime;

    CPU_TS               SemPendTimeMax;

    OS_NESTING_CTR       SuspendCtr;

    CPU_STK_SIZE         StkSize;

    CPU_STK_SIZE         StkUsed;

    CPU_STK_SIZE         StkFree;

    OS_OPT               Opt;

    OS_TICK              TickCtrPrev;

    OS_TICK              TickCtrMatch;

    OS_TICK              TickRemain;

    OS_TICK              TimeQuanta;

    OS_TICK              TimeQuantaCtr;

    OS_CPU_USAGE         CPUUsage;

    OS_CTX_SW_CTR        CtxSwCtr;

    CPU_TS               CyclesDelta;

    CPU_TS               CyclesStart;

    OS_CYCLES            CyclesTotal;

    CPU_TS               IntDisTimeMax;

    CPU                  SchedLockTimeMax;

    OS_STATE             PendOn;

    OS_STATUS            PendStatus;

    OS_STATE             TaskState;

    OS_PRIO              Prio;

    OS_TCB               DbgNextPtr;

    OS_TCB               DbgPrevPtr;

    CPU_CHAR             DbgNamePtr;

};
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.StkLimitPtr

The field contains a pointer to a location in the task’s stack to set a watermark limit for

stack growth and is determined from the value of the “stk_limit” argument passed to

OSTaskCreate(). Some processors have special registers that automatically check the

value of the stack pointer at run-time to ensure that the stack does not overflow.

.StkLimitPtr may be used to set this register during a context switch. Alternatively, if the

processor does not have such a register, this can be “simulated” in software. However, it is

not as reliable as a hardware solution. If this feature is not used then the value of

“stk_limit” can be set to 0 when calling OSTaskCreate(). See also section 5-3

“Detecting Task Stack Overflows” on page 87).

.NextPtr and .PrevPtr

These pointers are used to doubly link OS_TCBs in the ready list. A doubly linked list allows

OS_TCBs to be quickly inserted and removed from the list.

.TickNextPtr and .TickPrevPtr

These pointers are used to doubly link OS_TCBs in the list of tasks waiting for time to expire

or to timeout from pend calls. Again, a doubly linked list allows OS_TCBs to be quickly

inserted and removed from the list.
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.TickSpokePtr

This pointer is used to know which spoke in the “tick wheel” the task is linked to. The tick

wheel will be described in “Chapter 9, “Interrupt Management” on page 157.”

.NamePtr

This pointer allows a name (an ASCII string) to be assigned to each task. Having a name is

useful when debugging, since it is user friendly compared to displaying the address of the

OS_TCB. Storage for the ASCII string is assumed to be in user space in code memory (ASCII

string declared as a const) or in RAM.

.StkBasePtr

This field points to the base address of the task’s stack. The stack base is typically the lowest

address in memory where the stack for the task resides. A task stack is declared as follows:

CPU_STK MyTaskStk[???];

CPU_STK is the data type you must use to declare task stacks and ??? is the size of the stack

associated with the task. The base address is always &MyTaskStk[0].

.TaskEntryAddr

This field contains the entry address of the task. As previously mentioned, a task is declared

as shown below and this field contains the address of MyTask.

void  MyTask (void *p_arg);

.TaskEntryArg

This field contains the value of the argument that is passed to the task when the task starts.

As previously mentioned, a task is declared as shown below and this field contains the

value of p_arg.

void  MyTask (void *p_arg);

.PendDataTblPtr

μC/OS-III allows the task to pend on any number of semaphores or message queues

simultaneously. This pointer points to a table containing information about the pended

objects.
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.PendDataEntries

This field works with the .PendDataTblPtr, indicating the number of objects a task is

pending on at the same time.

.TS

This field is used to store a “time stamp” of when an event that the task was waiting on

occurred. When the task resumes execution, this time stamp is returned to the caller.

.MsgPtr

When a message is sent to a task, this field contains the message received. This field only

exists in a TCB if message queue services (OS_CFG_Q_EN is set to 1 in OS_CFG.H), or task

message queue services, are enabled (OS_CFG_TASK_Q_EN is set to 1 in OS_CFG.H) at

compile time.

.MsgSize

When a message is sent to a task, this field contains the size (in number of bytes) of the

message received. This field only exists in a TCB if message queue services (OS_CFG_Q_EN

is set to 1 in OS_CFG.H), or task message queue services, (OS_CFG_TASK_Q_EN is set to 1 in

OS_CFG.H) are enabled at compile time.

.MsgQ

μC/OS-III allows tasks or ISRs to send messages directly to tasks. Because of this, a message

queue is actually built into each TCB. This field only exists in a TCB if task message queue

services are enabled at compile time (OS_CFG_TASK_Q_EN is set to 1 in OS_CFG.H). .MsgQ is

used by the OSTaskQ???() services. 

.MsgQPendTime

This field contains the amount of time for a message to arrive. When OSTaskQPost() is

called, the current time stamp is read and stored in the message. When OSTaskQPend()

returns, the current time stamp is read again and the difference between the two times is

stored in this variable. A debugger or μC/Probe can be used to indicate the time taken for a

message to arrive by displaying this field. 

This field is only available if setting OS_CFG_TASK_PROFILE_EN to 1 in OS_CFG.H.
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.MsgQPendTimeMax

This field contains the maximum amount of time it takes for a message to arrive. It is a peak

detector of the value of .MsgQPendTime. The peak can be reset by calling OSStatReset().

This field is only available if setting OS_CFG_TASK_PROFILE_EN to 1 in OS_CFG.H.

.FlagsPend

When a task pends on event flags, this field contains the event flags (i.e., bits) that the task

is pending on. This field only exists in a TCB if event flags services are enabled at compile

time (OS_CFG_FLAG_EN is set to 1 in OS_CFG.H).

.FlagsOpt

When a task pends on event flags, this field contains the type of pend (pend on any event

flag bit specified in .FlagsPend or all event flag bits specified in .FlagsPend). This field

only exists in a TCB if event flags services are enabled at compile time (OS_CFG_FLAG_EN is

set to 1 in OS_CFG.H).

.FlagsRdy

This field contains the event flags that were posted and that the task was waiting on. In

other words, it allows a task to know which event flags made the task ready to run. This

field only exists in a TCB if event flags services are enabled at compile time

(OS_CFG_FLAG_EN is set to 1 in OS_CFG.H).

.RegTbl[]

This field contains a table of “registers” that are task-specific. These registers are different than

CPU registers. Task registers allow for the storage of such task-specific information as task ID,

“errno” common in some software components, and more. Task registers may also store

task-related data that needs to be associated with the task at run time. Note that the data type for

elements of this array is OS_REG, which can be declared at compile time to be nearly anything.

However, all registers must be of this data type. This field only exists in a TCB if task registers

are enabled at compile time (OS_CFG_TASK_REG_TBL_SIZE is greater than 0 in OS_CFG.H).

.SemCtr

This field contains a semaphore counter associated with the task. Each task has its own semaphore

built-in. An ISR or another task can signal a task using this semaphore. .SemCtr is therefore used to

keep track of how many times the task is signaled. .SemCtr is used by OSTaskSem???() services.
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.SemPendTime

This field contains the amount of time taken for the semaphore to be signaled. When

OSTaskSemPost() is called, the current time stamp is read and stored in the OS_TCB

(see .TS). When OSTaskSemPend() returns, the current time stamp is read again and the

difference between the two times is stored in this variable. This field can be displayed by a

debugger or μC/Probe to indicate how much time it took for the task to be signaled.

This field is only available when setting OS_CFG_TASK_PROFILE_EN to 1 in OS_CFG.H.

.SemPendTimeMax

This field contains the maximum amount of time it took for the task to be signaled. It is a peak

detector of the value of .SemPendTime. The peak can be reset by calling OSStatReset().

This field is only available if setting OS_CFG_TASK_PROFILE_EN to 1 in OS_CFG.H.

.SuspendCtr

This field is used by OSTaskSuspend() and OSTaskResume() to keep track of how many

times a task is suspended. Task suspension can be nested. When .SuspendCtr is 0, all

suspensions are removed. This field only exists in a TCB if task suspension is enabled at

compile time (OS_CFG_TASK_SUSPEND_EN is set to 1 in OS_CFG.H).

.StkSize

This field contains the size (in number of CPU_STK elements) of the stack associated with

the task. Recall that a task stack is declared as follows:

CPU_STK MyTaskStk[???];

.StkSize is the value of ??? in the above array.

.StkUsed and .StkFree

μC/OS-III is able to compute (at run time) the amount of stack space a task actually uses

and how much stack space remains. This is accomplished by a function called

OSTaskStkChk(). Stack usage computation assumes that the task’s stack is “cleared” when

the task is created. In other words, when calling OSTaskCreate(), it is expected that the

following options be specified: OS_TASK_OPT_STK_CLR and OS_TASK_OPT_STK_CHK.

OSTaskCreate() will then clear all the RAM used for the task’s stack.
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μC/OS-III provides an internal task called OS_StatTask() that checks the stack of each of

the tasks at run-time. OS_StatTask() typically runs at a low priority so that it does not

interfere with the application code. OS_StatTask() saves the value computed for each task

in the TCB of each task in these fields, which represents the maximum number of stack

bytes used and the amount of stack space still unused by the task. These fields only exist in

a TCB if the statistic task is enabled at compile time (OS_CFG_STAT_TASK_STK_CHK_EN is set

to 1 in OS_CFG.H).

.Opt

This field saves the “options” passed to OSTaskCreate() when the task is created (see

OS_TASK_OPT_??? in OS.H). Note that task options are additive.

.TickCtrPrev

This field stores the previous value of OSTickCtr when OSTimeDly() is called with the

OS_OPT_TIME_PERIODIC option.

.TickCtrMatch

When a task is waiting for time to expire, or pending on an object with a timeout, the task

is placed in a special list of tasks waiting for time to expire. When in this list, the task waits

for .TickCtrMatch to match the value of the “tick counter” (OSTickCtr). When a match

occurs, the task is removed from that list.

.TickRemain

This field is computed at run time by OS_TickTask() to compute the amount of time

(expressed in “ticks”) left before a delay or timeout expires. This field is useful for

debuggers or run-time monitors for display purposes. 

.TimeQuanta and .TimeQuantaCtr

These fields are used for time slicing. When multiple tasks are ready to run at the same

priority, .TimeQuanta determines how much time (in ticks) the task will execute until it is

preempted by μC/OS-III so that the next task at the same priority gets a chance to execute.

.TimeQuantaCtr keeps track of the remaining number of ticks for this to happen and is

loaded with .TimeQuanta at the beginning of the task’s time slice.

.CPUUsage

This field is computed by OS_StatTask() if OS_CFG_TASK_PROFILE_EN is set to 1 in

OS_CFG.H. .CPUUsage contains the CPU usage of a task in percent (0 to 100%).
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.CtxSwCtr

This field keeps track of how often the task has executed (not how long it has executed).

This field is generally used by debuggers or run-time monitors to see if a task is executing

(the value of this field would be non-zero and would be incrementing). The field is enabled

at compile time when OS_CFG_TASK_PROFILE_EN is set to 1.

.CyclesDelta

.CyclesDelta is computed during a context switch and contains the value of the current

time stamp (obtained by calling OS_TS_GET()) minus the value of .CyclesStart. This field

is generally used by debuggers or a run-time monitor to see how long a task takes to

execute. The field is enabled at compile time when OS_CFG_TASK_PROFILE_EN is set to 1.

.CyclesStart

This field is used to measure the execution time of a task. .CyclesStart is updated when

μC/OS-III performs a context switch. .CyclesStart contains the value of the current time

stamp (it calls OS_TS_GET()) when a task switch occurs. This field is generally used by

debuggers or a run-time monitor to see how long a task takes to execute. The field is

enabled at compile time when OS_CFG_TASK_PROFILE_EN is set to 1.

.CyclesTotal

This field accumulates the value of .CyclesDelta, so it contains the total execution time of

a task. This is typically a 64-bit value because of the accumulation of cycles over time. Using

a 64-bit value ensures that we can accumulate CPU cycles for almost 600 years even if the

CPU is running at 1 GHz! Of course, it’s assumed that the compiler supports 64-bit data

types.

.IntDisTimeMax

This field keeps track of the maximum interrupt disable time of the task. The field is

updated only if μC/CPU supports interrupt disable time measurements. This field is

available only if setting OS_CFG_TASK_PROFILE_EN to 1 in OS_CFG.H and μC/CPU’s

CPU_CFG_TIME_MEAS_INT_DIS_EN is defined in DCPU_CFG.H.

.SchedLockTimeMax

The field keeps track of the maximum scheduler lock time of the task. 

This field is available only if you set OS_CFG_TASK_PROFILE_EN to 1 and

OS_CFG_SCHED_LOCK_TIME_MEAS_EN is set to 1 in OS_CFG.H.
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.PendOn

This field indicates upon what the task is pending and contains OS_TASK_PEND_ON_???

(see OS.H). 

.PendStatus

This field indicates the outcome of a pend and contains OS_STATUS_PEND_??? (see OS.H). 

.TaskState

This field indicates the current state of a task and contains one of the eight (8) task states

that a task can be in, see OS_TASK_STATE_??? (see OS.H). 

.Prio

This field contains the current priority of a task. .Prio is a value between 0 and

OS_CFG_PRIO_MAX-1. In fact, the idle task is the only task at priority OS_CFG_PRIO_MAX-1.

.DbgNextPtr

This field contains a pointer to the next OS_TCB in a doubly linked list of OS_TCBs. OS_TCBs

are placed in this list by OSTaskCreate(). This field is only present if OS_CFG_DBG_EN is set

to 1 in OS_CFG.H. the current priority of a task.

.DbgPrevPtr

This field contains a pointer to the previous OS_TCB in a doubly linked list of OS_TCBs. 

OS_TCBs are placed in this list by OSTaskCreate(). This field is only present if 

OS_CFG_DBG_EN is set to 1 in OS_CFG.H.

.DbgNamePtr

This field contains a pointer to the name of the object that the task is pending on when the

task is pending on an event flag group, a semaphore, a mutual exclusion semaphore or a

message queue. This information is quite useful during debugging and thus, this field is

only present if OS_CFG_DBG_EN is set to 1 in OS_CFG.H.

5-6  INTERNAL TASKS

During initialization, μC/OS-III creates a minimum of two (2) internal tasks (OS_IdleTask()

and OS_TickTask()) and, three (3) optional tasks (OS_StatTask(), OS_TmrTask() and

OS_IntQTask()). The optional tasks are created based on the value of compile-time

#defines found in OS_CFG.H.
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5-6-1  THE IDLE TASK (OS_IdleTask()) 

OS_IdleTask() is the very first task created by μC/OS-III and always exists in a μC/OS-III-

based application. The priority of the idle task is always set to OS_CFG_PRIO_MAX-1. In fact,

OS_IdleTask() is the only task that is ever allowed to be at this priority and, as a

safeguard, when other tasks are created, OSTaskCreate() ensures that there are no other

tasks created at the same priority as the idle task. The idle task runs whenever there are no

other tasks that are ready to run. The important portions of the code for the idle task are

shown below (refer to OS_CORE.C for the complete code).

Listing 5-4 Idle Task

L5-4(1) The idle task is a “true” infinite loop that never calls functions to “wait for an

event”. This is because, on most processors, when there is “nothing to do,” the

processor still executes instructions. When μC/OS-III determines that there is

no other higher-priority task to run, μC/OS-III “parks” the CPU in the idle task.

Instead of having an empty “for loop” doing nothing, this “idle” time is used to

do something useful.

L5-4(2) Two counters are incremented whenever the idle task runs. 

OSIdleTaskCtr is typically defined as a 32-bit unsigned integer (see OS.H).

OSIdleTaskCtr is reset once when μC/OS-III is initialized. OSIdleTaskCtr is

used to indicate “activity” in the idle task. In other words, if one monitors and

displays OSIdleTaskCtr, one should expect to see a value between

0x00000000 and 0xFFFFFFFF. The rate at which OSIdleTaskCtr increments

depend on how busy the CPU is at running the application code. The faster the

increment, the less work the CPU has to do in application tasks.

void  OS_IdleTask (void *p_arg)

{

    while (DEF_ON) {                    (1) 

        OS_CRITICAL_ENTER();

        OSIdleTaskCtr++;                (2)   

        OSTaskStatCtr++;

        OS_CRITICAL_EXIT();

        OSIdleTaskHook();               (3) 

    }

}
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OSStatTaskCtr is also typically defined as a 32-bit unsigned integer (see OS.H)

and is used by the statistic task (described later) to get a sense of CPU

utilization at run time.

L5-4(3) Every time through the loop, OS_IdleTask() calls OSIdleTaskHook(), which

is a function that is declared in the μC/OS-III port for the processor used.

OSIdleTaskHook() allows the implementer of the μC/OS-III port to perform

additional processing during idle time. It is very important for this code to not

make calls that would cause the idle task to “wait for an event”. This is

generally not a problem as most programmers developing μC/OS-III ports

know to follow this simple rule.

OSIdleTaskHook() may be used to place the CPU in low-power mode for

battery-powered applications or to simply not waste energy as shown in the

pseudo-code below. However, doing this means that OSStatTaskCtr cannot

be used to measure CPU utilization (described later).

Typically, most processors exit low-power mode when an interrupt occurs.

Depending on the processor, however, the Interrupt Service Routine (ISR) may

have to write to “special” registers to return the CPU to its full or desired speed.

If the ISR wakes up a high-priority task (every task is higher in priority than the

idle task) then the ISR will not immediately return to the interrupted idle task,

but instead switch to the higher-priority task. When the higher-priority task

completes its work and waits for its event to occur, μC/OS-III causes a context

switch to return to OSIdleTaskHook() just “after” the instruction that caused

the CPU to enter low-power mode. In turn, OSIdleTaskHook() returns to

OS_IdleTask() and causes another iteration through the “for loop.” 

void  OSIdleTaskHook (void)

{

    /* Place the CPU in low power mode */

}
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5-6-2  THE TICK TASK (OS_TickTask())

Nearly every RTOS requires a periodic time source called a Clock Tick or System Tick to

keep track of time delays and timeouts. μC/OS-III’s clock tick handling is encapsulated in

the file OS_TICK.C.

OS_TickTask() is a task created by μC/OS-III and its priority is configurable by the user

through μC/OS-III’s configuration file OS_CFG_APP.H (see OS_CFG_TICK_TASK_PRIO).

Typically OS_TickTask() is set to a relatively high priority. In fact, the priority of this task is

set slightly lower than the most important tasks.

OS_TickTask() is used by μC/OS-III to keep track of tasks waiting for time to expire or, for

tasks that are pending on kernel objects with a timeout. OS_TickTask() is a periodic task

and it waits for signals from the tick ISR (described in Chapter 9, “Interrupt Management”

on page 157) as shown in Figure 5-8. 

Figure 5-8 Tick ISR and Tick Task relationship

F5-8(1) A hardware timer is generally used and configured to generate an interrupt at a

rate between 10 and 1000 Hz (see OS_CFG_TICK_RATE in OS_CFG_APP.H). This

timer is generally called the Tick Timer. The actual rate to use depends on such

factors as: processor speed, desired time resolution, and amount of allowable

overhead to handle the tick timer, etc. 

The tick interrupt does not have to be generated by a timer and, in fact, it can

come from other regular time sources such as the power-line frequency (50 or

60 Hz), which are known to be fairly accurate over long periods of time.
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F5-8(2) Assuming CPU interrupts are enabled, the CPU accepts the tick interrupt,

preempts the current task, and vectors to the tick ISR. The tick ISR must call

OSTimeTick() (see OS_TIME.C), which accomplishes most of the work needed

by μC/OS-III. The tick ISR then clears the timer interrupt (and possibly reloads

the timer for the next interrupt). However, some timers may need to be taken

care of prior to calling OSTimeTick() instead of after as shown below.

or,

OSTimeTick() calls OSTimeTickHook() at the very beginning of

OSTimeTick() to give the opportunity to the μC/OS-III port developer to react

as soon as possible upon servicing the tick interrupt.

F5-8(3) OSTimeTick() calls a service provided by μC/OS-III to signal the tick task and

make that task ready to run. The tick task executes as soon as it becomes the

most important task. The reason the tick task might not run immediately is that

the tick interrupt could have interrupted a task higher in priority than the tick

task and, upon completion of the tick ISR, μC/OS-III will resume the

interrupted task.

F5-8(4) When the tick task executes, it goes through a list of all tasks that are waiting

for time to expire or are waiting on a kernel object with a timeout. From this

point forward, this will be called the tick list. The tick task will make ready to

run all of the tasks in the tick list for which time or timeout has expired. The

process is explained below.

void  TickISR (void)

{

    OSTimeTick();

    /* Clear tick interrupt source             */

    /* Reload the timer for the next interrupt */

}

void  TickISR (void)

{

    /* Clear tick interrupt source             */

    /* Reload the timer for the next interrupt */

    OSTimeTick();

}
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μC/OS-III may need to place literally hundreds of tasks (if an application has that many tasks)

in the tick list. The tick list is implemented in such a way that it does not take much CPU time

to determine if time has expired for those tasks placed in the tick list and, possibly makes

those tasks ready to run. The tick list is implemented as shown in Figure 5-9. 

Figure 5-9 Empty Tick List

F5-9(1) The tick list consists of a table (OSCfg_TickWheel[]) and a counter

(OSTickCtr). 

F5-9(2) The table contains up to OS_CFG_TICK_WHEEL_SIZE entries, which is a compile

time configuration value (see OS_CFG_APP.H). The number of entries depends

on the amount of memory (RAM) available to the processor and the maximum

number of tasks in the application. A good starting point for

OS_CFG_TICK_WHEEL_SIZE may be: #Tasks / 4. It is recommended not to

make OS_CFG_TICK_WHEEL_SIZE an even multiple of the tick rate. If the tick

rate is 1000 Hz and one has 50 tasks in the application, avoid setting

OS_CFG_TICK_WHEEL_SIZE to 10 or 20 (use 11 or 23 instead). Actually, prime

numbers are good choices. Although it is not really possible to plan at compile

time what will happen at run time, ideally, the number of tasks waiting in each

entry of the table will be distributed uniformly. 
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F5-9(3) Each entry in the table contains three fields: .NbrEntriesMax, .NbrEntries

and .FirstPtr. 

.NbrEntries indicates the number of tasks linked to this table entry. 

.NbrEntriesMax keeps track of the highest number of entries in the table. This

value is reset when the application code calls OSStatReset().

.FirstPtr contains a pointer to a doubly linked list of tasks (through the tasks

OS_TCB) belonging to the list, at that table position. 

The counter is incremented by OS_TickTask() each time the task is signaled by the tick ISR. 

Tasks are automatically inserted in the tick list when the application programmer calls a

OSTimeDly???() function, or when an OS???Pend() call is made with a non-zero timeout value.

Example 5-1 

Using an example to illustrate the process of inserting a task in the tick list, let’s assume that

the tick list is completely empty, OS_CFG_TICK_WHEEL_SIZE is configured to 12, and the

current value of OSTickCtr is 10 as shown in Figure 5-10. A task is placed in the tick list

when OSTimeDly() is called and assume OSTimeDly() is called as follows:

Referring to the μC/OS-III reference manual in Appendix A, notice that this action indicates

to μC/OS-III to delay the current task for 1 tick. Since OSTickCtr has a value of 10, the task

will be put to sleep until OSTickCtr reaches 11 or at the very next clock tick interrupt.

Tasks are inserted in the OSCfg_TickWheel[] table using the following equation:

MatchValue                   = OSTickCtr + dly

Index into OSCfg_TickWheel[] = MatchValue % OS_CFG_TICK_WHEEL_SIZE

Where “dly” is the value passed in the first argument of OSTimeDly() or, 1 in this example.

We therefore obtain the following:

    :    

    OSTimeDly(1, OS_OPT_TIME_DLY, &err);

    :
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MatchValue                   =  10 + 1

Index into OSCfg_TickWheel[] = (10 + 1) % 12

or,

MatchValue                   = 11

Index into OSCfg_TickWheel[] = 11

Because of the “circular” nature of the table (a modulo operation using the size of the

table), the table is referred to as a tick wheel and each entry is a spoke in the wheel. 

The OS_TCB of the task being delayed is entered at index 11 in OSCfg_TickWheel[] (i.e.,

spoke 11 using the wheel analogy). The OS_TCB of the task is inserted in the first entry of

the list (i.e., pointed to by OSCfg_TickWheel[11].FirstPtr), and the number of entries at

spoke 11 is incremented (i.e., OSCfg_TickWheel[11].NbrEntries will be 1). Notice that

the OS_TCB also links back to &OSCfg_TickWheel[11] and the “MatchValue” are placed in

the OS_TCB field .TickCtrMatch. Since this is the first task inserted in the tick list at spoke

11, the .TickNextPtr and .TickPrevPtr both point to NULL.

Figure 5-10 Inserting a task in the tick list
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OSTimeDly() takes care of a few other details. Specifically, the task is removed from

μC/OS-III’s ready list (described in Chapter 6, “The Ready List” on page 123) since the task

is no longer eligible to run (because it is waiting for time to expire). Also, the scheduler is

called because μC/OS-III will need to run the next most important ready-to-run task.

If the next task to run also happens to call OSTimeDly() “before” the next tick arrives and

calls OSTimeDly() as follows:

μC/OS-III will calculate the match value and spoke as follows:

MatchValue                     =  10 + 13

OSCfg_TickWheel[] spoke number = (10 + 13) % 12

or,

MatchValue                     =  23

OSCfg_TickWheel[] spoke number =  11

The “second task” will be inserted at the same table entry as shown in Figure 5-11. Tasks

sharing the same spoke are sorted in ascending order such that the task with the least

amount of time remaining is placed at the head of the list.

    :    

    OSTimeDly(13, OS_OPT_TIME_DLY, &err);

    :
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Figure 5-11 Inserting a second task in the tick list

When the tick task executes (see OS_TickTask() and also OS_TickListUpdate() in

OS_TICK.C), it starts incrementing OSTickCtr and determines which table entry (i.e., which

spoke) needs to be processed. Then, if there are tasks in the list at this entry (i.e.,

.FirstPtr is not NULL), each OS_TCB is examined to determine whether the

.TickCtrMatch value “matches” OSTickCtr and, if so, we remove the OS_TCB from the list.

If the task is only waiting for time to expire, it will be placed in the ready list (described

later). If the task is pending on an object, not only will the task be removed from the tick

list, but it will also be removed from the list of tasks waiting on that object. The search

through the list terminates as soon as OSTickCtr does not match the task’s .TickCtrMatch

value; since there is no point in looking any further in the list.

Note that OS_TickTask() does most of its work in a critical section when the tick list is

updated. However, because the list is sorted, the critical section has a chance to be fairly short. 
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5-6-3  THE STATISTIC TASK (OS_StatTask())

μC/OS-III contains an internal task that provides such run-time statistics as overall CPU

utilization (0 to 100%), per-task CPU utilization (0-100%), and per-task stack usage. 

The statistic task is optional in a μC/OS-III application and its presence is controlled by a

compile-time configuration constant OS_CFG_STAT_TASK_EN defined in OS_CFG.H.

Specifically, the code is included in the build when OS_CFG_STAT_TASK_EN is set to 1.

Also, the priority of this task and the location and size of the statistic task’s stack is

configurable via OS_CFG_APP.H (OS_CFG_STAT_TASK_PRIO).

If the application uses the statistic task, it should call OSStatTaskCPUUsageInit() from the

first, and only the application task created in the main() function as shown in Listing 5-5.

The startup code should create only one task before calling OSStart(). The single task

created is, of course, allowed to create other tasks, but only after calling

OSStatTaskCPUUsageInit().
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Listing 5-5 Proper startup for computing CPU utilization

L5-5(1) The C compiler should start up the CPU and bring it to main() as is typical in

most C applications.

L5-5(2) main() calls OSInit() to initialize μC/OS-III. It is assumed that the statistics

task is enabled by setting OS_CFG_STAT_TASK_EN to 1 in OS_CFG_APP.H.

Always examine μC/OS-III’s returned error code to make sure the call was

done properly. Refer to OS.H for a list of possible errors, OS_ERR_???.

L5-5(3) As the comment indicates, creates a single task called AppTaskStart() in the

example (its name is left to the creator’s discretion). When creating this task,

give it a fairly high priority (do not use priority 0 since it’s reserved for

μC/OS-III). 

void main (void)                      (1) 

{

    OS_ERR  err;

    :

    OSInit(&err);                     (2) 

    if (err != OS_ERR_NONE) {

        /* Something wasn�t configured properly, μC/OS-III not properly initialized  */
    }

    /* (3) Create ONE task (we�ll call it AppTaskStart() for sake of discussion)     */

    :

    OSStart(&err);                    (4) 

}

void AppTaskStart (void *p_arg)

{

    OS_ERR  err;

    :

    /* (5) Initialize the tick interrupt                                             */

#if OS_CFG_STAT_TASK_EN > 0

    OSStatTaskCPUUsageInit(&err);     (6) 

#endif

    :

    /* (7) Create other tasks                                                        */

    while (DEF_ON) {

        /* AppTaskStart() body                                                       */

    }

}
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Normally, μC/OS-III allows the user to create as many tasks as are necessary

prior to calling OSStart(). However, when the statistic task is used to compute

overall CPU utilization, it is necessary to create only one task.

L5-5(4) Call OSStart() to let μC/OS-III start the highest-priority task which,

should be AppTaskStart(). At this point, there should be either four or five

tasks created (the timer task is optional): μC/OS-III creates up to four tasks

(OS_IdleTask(), OS_TickTask(), OS_StatTask() and OS_TaskTmr()), and

now AppTaskStart().

L5-5(5) The start task should then configure and enable tick interrupts. This most likely

requires that the user initialize the hardware timer used for the clock tick and

have it interrupt at the rate specified by OS_CFG_STAT_TASK_RATE (see

OS_CFG_APP.H). Additionally, Micriμm provides sample projects that include a

basic board-support package (BSP). The BSP initializes many aspects of the

CPU as well as the periodic time source required by μC/OS-III. If available, the

user may utilize BSP services by calling BSP_Init() from the startup task. After

this point, no further time source initialization is required by the user.

L5-5(6) Call OSStatTaskCPUUsageInit(). This function determines the maximum

value that OSStatTaskCtr (see OS_IdleTask()) can count up to for

1/OS_CFG_STAT_TASK_RATE second when there are no other tasks running in

the system (apart for the other μC/OS-III tasks). For example, if the system

does not contain an application task and OSStatTaskCtr counts from 0 to

10,000,000 for 1/OS_CFG_STAT_TASK_RATE second, when adding tasks, and the

test is redone every 1/OS_CFG_STAT_TASK_RATE second, the OSStatTaskCtr

will not reach 10,000,000 and actual CPU utilization is determined as follows:

For example, if when redoing the test, OSStatTaskCtr reaches 7,500,000 the

CPU is busy 25% of its time running application tasks:
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L5-5(7) AppTaskStart() can then create other application tasks as needed.

As previously described, μC/OS-III stores run-time statistics for a task in each

task’s OS_TCB.

OS_StatTask() also computes stack usage of all created tasks by calling

OSTaskStkChk() and stores the return values of this function (free and used

stack space) in the .StkFree and .StkUsed field of the task’s OS_TCB,

respectively.

5-6-4  THE TIMER TASK (OS_TmrTask())

μC/OS-III provides timer services to the application programmer. Code to handle timers is

found in OS_TMR.C. 

The timer task is optional in a μC/OS-III application and its presence is controlled by the

compile-time configuration constant OS_CFG_TMR_EN defined in OS_CFG.H. Specifically, the

code is included in the build when OS_CFG_TMR_EN is set to 1.

Timers are countdown counters that perform an action when the counter reaches zero. The

action is provided by the user through a callback function. A callback function is a function

that the user declares and that will be called when the timer expires. The callback can thus

be used to turn on or off a light, a motor, or perform whatever action needed. It is

important to note that the callback function is called from the context of the timer task. The

application programmer may create an unlimited number of timers (limited only by the

amount of available RAM). Timer management is fully described in Chapter 12, “Timer

Management” on page 193 and the timer services available to the application programmer

are described in Appendix A, “μC/OS-III API Reference Manual” on page 375.

OS_TmrTask() is a task created by μC/OS-III (this assumes setting OS_CFG_TMR_EN to 1 in

OS_CFG.H) and its priority is configurable by the user through μC/OS-III’s configuration

file OS_CFG_APP.H (see OS_CFG_TMR_TASK_PRIO). OS_TmrTask() is typically set to a

medium priority.
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OS_TmrTask() is a periodic task using the same interrupt source that was used to generate

clock ticks. However, timers are generally updated at a slower rate (i.e., typically 10 Hz) and

the timer tick rate is divided down in software. In other words, if the tick rate is 1000 Hz

and the desired timer rate is 10 Hz, the timer task will be signaled every 100th tick interrupt

as shown in Figure 5-12.

Figure 5-12 Tick ISR and Timer Task relationship

5-6-5  THE ISR HANDLER TASK (OS_IntQTask())

When setting the compile-time configuration constant OS_CFG_ISR_POST_DEFERRED_EN in

OS_CFG.H to 1, μC/OS-III creates a task (called OS_IntQTask()) responsible for “deferring”

the action of OS service post calls from ISRs. 

As described in Chapter 4, “Critical Sections” on page 69, μC/OS-III manages critical

sections either by disabling/enabling interrupts, or by locking/unlocking the scheduler. If

selecting the latter method (i.e., setting OS_CFG_ISR_POST_DEFERRED_EN to 1), μC/OS-III

“post” functions called from interrupts are not allowed to manipulate such internal data

structures as the ready list, pend lists, and others. 

When an ISR calls one of the “post” functions provided by μC/OS-III, a copy of the data

posted and the desired destination is placed in a special “holding” queue. When all nested

ISRs complete, μC/OS-III context switches to the ISR handler task (OS_IntQTask()), which

“re-posts” the information placed in the holding queue to the appropriate task(s). This extra

step is performed to reduce the amount of interrupt disable time that would otherwise be

necessary to remove tasks from wait lists, insert them in the ready list, and perform other

time-consuming operations.
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Figure 5-13 ISR Handler Task

OS_IntQTask() is created by μC/OS-III and always runs at priority 0 (i.e., the highest

priority). If OS_CFG_ISR_POST_DEFERRED_EN is set to 1, no other task will be allowed to use

priority 0.

5-7  SUMMARY

A task is a simple program that thinks it has the CPU all to itself. On a single CPU, only one

task executes at any given time. μC/OS-III supports multitasking and allows the application

to have any number of tasks. The maximum number of tasks is actually only limited by the

amount of memory (both code and data space) available to the processor.

A task can be implemented as a run-to-completion task in which the task deletes itself when

it is finished or more typically as an infinite loop, waiting for events to occur and processing

those events. 

A task needs to be created. When creating a task, it is necessary to specify the address of an

OS_TCB to be used by the task, the priority of the task, and an area in RAM for the task’s

stack. A task can also perform computations (CPU bound task), or manage one or more I/O

(Input/Output) devices.

μC/OS-III creates up to five internal tasks: the idle task, tick task, ISR handler task, statistics

task, and timer task. The idle and tick tasks are always created while statistics and timer

tasks are optional.
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6
The Ready List

Tasks that are ready to execute are placed in the Ready List. The ready list consists of two

parts: a bitmap containing the priority levels that are ready and a table containing pointers

to all the tasks ready.
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6-1  PRIORITY LEVELS

Figures 5-1 to 5-3 show the bitmap of priorities that are ready. The “width” of the table

depends on the data type CPU_DATA (see CPU.H), which can either be 8-, 16- or 32-bits. The

width depends on the processor used. 

μC/OS-III allows up to OS_CFG_PRIO_MAX different priority levels (see OS_CFG.H). In

μC/OS-III, a low-priority number corresponds to a high-priority level. Priority level zero (0)

is thus the highest priority level. Priority OS_CFG_PRIO_MAX-1 is the lowest priority level.

μC/OS-III uniquely assigns the lowest priority to the idle task. No other tasks are allowed at

this priority level. If there are tasks that are ready-to-run at a given a priority level, then its

corresponding bit is set (i.e., 1) in the bitmap table. Notice in Figures 5-1 to 5-3 that “priority

levels” are numbered from left to right and, the priority level increases (moves toward lower

priority) with an increase in table index. The order was chosen to be able to use a special

instruction called Count Leading Zeros (CLZ), which is found on many modern processors.

This instruction greatly accelerates the process of determining the highest priority level.

Figure 6-1 CPU_DATA declared as a CPU_INT08U
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Figure 6-2 CPU_DATA declared as a CPU_INT16U

Figure 6-3 CPU_DATA declared as a CPU_INT32U
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OS_PRIO.C contains the code to set, clear, and search the bitmap table. These functions are

internal to μC/OS-III and are placed in OS_PRIO.C to allow them to be optimized in

assembly language by replacing OS_PRIO.C with an assembly language equivalent

OS_PRIO.ASM, when necessary.

Table 6-1 Priority Level access functions

To determine the highest priority level that contains ready-to-run tasks, the bitmap table is

scanned until the first bit set in the lowest bit position is found using OS_PrioGetHighest().

The code for this function is shown in Listing 6-1. 

Listing 6-1 Finding the highest priority level

L6-1(1) OS_PrioGetHighest() scans the table from OSPrioTbl[] until a non-zero

entry is found. The loop will always terminate because there will always be a

non-zero entry in the table because of the idle task. 

Function Description

OS_PrioGetHighest() Find the highest priority level

OS_PrioInsert() Set bit corresponding to priority level in the bitmap table

OS_PrioRemove() Clear bit corresponding to priority level in the bitmap table

OS_PRIO  OS_PrioGetHighest (void)

{

    CPU_DATA  *p_tbl;

    OS_PRIO    prio;

    

    

    prio  = (OS_PRIO)0;

    p_tbl = &OSPrioTbl[0];

    while (*p_tbl == (CPU_DATA)0) {               (1) 

        prio += sizeof(CPU_DATA) * 8u;            (2) 

        p_tbl++;

    }

    prio += (OS_PRIO)CPU_CntLeadZeros(*p_tbl);    (3) 

    return (prio);

}
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L6-1(2) Each time a zero entry is found, we move to the next table entry and increment

“prio” by the width (in number of bits) of each entry. If each entry is 32-bits

wide, “prio” is incremented by 32.

L6-1(3) Once the first non-zero entry is found, the number of “leading zeros” of that

entry is simply added and return the priority level back to the caller. Counting

the number of zeros is a CPU-specific function so that if a particular CPU has a

built-in CLZ instruction, it is up to the implementer of the CPU port to take

advantage of this feature. If the CPU used does not provide that instruction, the

functionality must be implemented in C.

The function CPU_CntLeadZeros() simply counts how many zeros there are in a CPU_DATA

entry starting from the left (i.e., most significant bit). For example, assuming 32 bits,

0xF0001234 results in 0 leading zeros and 0x00F01234 results in 8 leading zeros.

At first view, the linear path through the table might seem inefficient. However, if the number

of priority levels is kept low, the search is quite fast. In fact, there are several optimizations to

streamline the search. For example, if using a 32-bit processor and you are satisfied with

limiting the number of different priority levels to 64, the above code can be optimized as

shown in Listing 6-2. In fact, some processors have built-in “Count Leading Zeros” instructions

and thus, the code can be written with just a few lines of assembly language. Remember that

with μC/OS-III, 64 priority levels does not mean that the user is limited to 64 tasks since with

μC/OS-III, any number of tasks are possible at a given priority level.

Listing 6-2 Finding the highest priority level within 64 levels

OS_PRIO  OS_PrioGetHighest (void)

{

    OS_PRIO  prio;

    

    if (OSPrioTbl[0] != (OS_PRIO_BITMAP)0) {

        prio = OS_CntLeadingZeros(OSPrioTbl[0]);

    } else {

        prio = OS_CntLeadingZeros(OSPrioTbl[1]) + 32;

    }

    return (prio);

}
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6-2  THE READY LIST

Tasks that are ready to run are placed in the Ready List. As shown in Figure 6-1, the ready

list is an array (OSRdyList[]) containing OS_CFG_PRIO_MAX entries, with each entry defined

by the data type OS_RDY_LIST (see OS.H). An OS_RDY_LIST entry consists of three fields:

.Entries, .TailPtr and .HeadPtr.

.Entries contains the number of ready-to-run tasks at the priority level corresponding to

the entry in the ready list. .Entries is set to zero (0) if there are no tasks ready to run at a

given priority level.

.TailPtr and .HeadPtr are used to create a doubly linked list of all the tasks that are

ready at a specific priority. .HeadPtr points to the head of the list and .TailPtr points to

its tail.

The “index” into the array is the priority level associated with a task. For example, if a task

is created at priority level 5 then it will be inserted in the table at OSRdyList[5] if that task

is ready to run.

Table 6-2 shows the functions that μC/OS-III uses to manipulate entries in the ready list.

These functions are internal to μC/OS-III and the application code must never call them.

Table 6-2 Ready List access functions

Function Description

OS_RdyListInit() Initialize the ready list to “empty” (see Figure 6-4)

OS_RdyListInsert() Insert a TCB into the ready list

OS_RdyListInsertHead() Insert a TCB at the head of the list

OS_RdyListInsertTail() Insert a TCB at the tail of the list

OS_RdyListMoveHeadToTail() Move a TCB from the head to the tail of the list

OS_RdyListRemove() Remove a TCB from the ready list
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Figure 6-4 Empty Ready List

Assuming all internal μC/OS-III’s tasks are enabled, Figure 6-5 shows the state of the ready

list after calling OSInit() (i.e., μC/OS-III’s initialization). It is assumed that each μC/OS-III

task had a unique priority. With μC/OS-III, this does not have to be the case. 

F6-4(1) There is only one entry in OSRdyList[OS_CFG_PRIO_MAX-1], the idle task.

F6-4(2) The list points to OS_TCBs. Only relevant fields of the TCB are shown. The

.PrevPtr and .NextPtr are used to form a doubly linked list of OS_TCBs

associated to tasks at the same priority. For the idle task, these fields always

point to NULL.

F6-4(3) Priority 0 is reserved to the ISR handler task when OS_CFG_ISR_DEFERRED_EN

is set to 1 in OS_CFG.H. In this case, this is the only task that can run at priority 0.
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Figure 6-5 Ready List after calling OSInit()

F6-5(1) The tick task and the other two optional tasks have their own priority level, as

shown. μC/OS-III enables the user to have multiple tasks at the same priority

and thus, the tasks could be set up as shown. Typically, one would set the

priority of the tick task higher than the timer task and, the timer task higher in

priority than the statistic task.

F6-5(2) Both the tail and head pointers point to the same TCB when there is only one

TCB at a given priority level.
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6-3  ADDING TASKS TO THE READY LIST

Tasks are added to the ready list by a number of μC/OS-III services. The most obvious service

is OSTaskCreate(), which always creates a task in the ready-to-run state and adds the task to

the ready list. As shown in Figure 6-6, when creating a task, and specifying a priority level

where tasks already exist (two in this example) in the ready list at that priority level,

OSTaskCreate() will insert the new task at the end of the list of tasks at that priority level.

Figure 6-6 Inserting a newly created task in the ready list

F6-6(1) Before calling OSTaskCreate() (in this example), two tasks were in the ready

list at priority “prio”.

F6-6(2) A new TCB is passed to OSTaskCreate() and, μC/OS-III initialized the contents

of that TCB.
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F6-6(3) OSTaskCreate() calls OS_RdyListInsertTail(), which links the new TCB to

the ready list by setting up four pointers and also incrementing the .Entries field

of OSRdyList[prio]. Not shown in Figure 6-6 is that OSTaskCreate() also

calls OS_PrioInsert() to set the bit in the bitmap table. Of course, this operation

is not necessary as there are already entries in the list at this priority. However,

OS_PrioInsert() is a very fast call and thus it should not affect performance. 

The reason the new TCB is added to the end of the list is that the current head

of the list could be the task creator and, at the same priority, there is no reason

to make the new task the next task to run. In fact, a task being made ready will

be inserted at the tail of the list if the current task is at the same priority.

However, if a task is being made ready at a different priority than the current

task, it will be inserted at the head of the list.

6-4  SUMMARY

μC/OS-III supports any number of different priority levels. However, 256 different priority

levels should be sufficient for the most complex applications and most systems will not

require more than 64 levels.

The ready list consist of two data structures: a bitmap table that keeps track of which

priority level is ready, and a table containing a list of all the tasks ready at each priority

level.

Processors having “count leading zeros” instructions can accelerate the table lookup process

used in determining the highest priority task.
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7
Scheduling

The scheduler, also called the dispatcher, is a part of μC/OS-III responsible for determining

which task runs next. μC/OS-III is a preemptive, priority-based kernel. Each task is assigned

a priority based on its importance. The priority for each task depends on the application,

and μC/OS-III supports multiple tasks at the same priority level. 

The word preemptive means that when an event occurs, and that event makes a more

important task ready to run, then μC/OS-III will immediately give control of the CPU to that

task. Thus, when a task signals or sends a message to a higher-priority task, the current task

is suspended and the higher-priority task is given control of the CPU. Similarly, if an

Interrupt Service Routine (ISR) signals or sends a message to a higher priority task, when

the message is completed, the interrupted task remains suspended, and the new higher

priority task resumes. 
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7-1  PREEMPTIVE SCHEDULING

μC/OS-III handles event posting from interrupts using two different methods: Direct and

Deferred Post. These will be discussed in greater detail in Chapter 9, “Interrupt

Management” on page 157. From a scheduling point of view, the end result of the two

methods is the same; the highest priority and ready task will receive the CPU as shown in

Figures 6-1 and 6-2.

Figure 7-1  Preemptive scheduling – Direct Method

F7-1(1) A low priority task is executing, and an interrupt occurs.

F7-1(2) If interrupts are enabled, the CPU vectors (i.e., jumps) to the ISR that is

responsible for servicing the interrupting device.

F7-1(3) The ISR services the device and signals or sends a message to a higher-priority

task waiting to service this device. This task is thus ready to run.

F7-1(4) When the ISR completes its work it makes a service call to μC/OS-III.

F7-1(5)

F7-1(6) Since there is a more important ready-to-run task, μC/OS-III decides to not

return to the interrupted task but switches to the more important task. See

Chapter 8, “Context Switching” on page 147 for details on how this works.
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F7-1(7)

F7-1(8) The higher priority task services the interrupting device and, when finished,

calls μC/OS-III asking it to wait for another interrupt from the device.

F7-1(9)

F7-1(10) μC/OS-III blocks the high-priority task until the next device interrupts. Since

the device has not interrupted a second time, μC/OS-III switches back to the

original task (the one that was interrupted).

F7-1(11) The interrupted task resumes execution, exactly at the point where it was

interrupted.

Figure 7-2 shows that μC/OS-III performs a few extra steps when it is configured for the

Deferred Post method. Notice that the end results is the same; the high-priority task

preempts the low-priority one.

Figure 7-2 Preemptive scheduling – Deferred Post Method
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F7-2(1) The ISR services the device and, instead of signaling or sending the message to

the task, μC/OS-III (through the POST call) places the post call into a special

queue and makes a very high-priority task (actually the highest-possible

priority) ready to run. This task is called the ISR Handler Task.

F7-2(2) When the ISR completes its work, it makes a service call to μC/OS-III.

F7-2(3)

F7-2(4) Since the ISR made the ISR Handler Task ready to run, μC/OS-III switches to

that task.

F7-2(5)

F7-2(6) The ISR Handler Task then removes the post call from the message queue and

reissues the post. This time, however, it does it at the task level instead of the

ISR level. The reason this extra step is performed is to keep interrupt disable

time as small as possible. See Chapter 9, “Interrupt Management” on page 157

to find out more on the subject. When the queue is emptied, μC/OS-III

removes the ISR Handler Task from the ready list and switches to the task that

was signaled or sent a message.

7-2  SCHEDULING POINTS

Scheduling occurs at scheduling points and nothing special must be done in the application

code since scheduling occurs automatically based on the conditions described below.

A task signals or sends a message to another task:

This occurs when the task signaling or sending the message calls one of the post services,

OS???Post(). Scheduling occurs towards the end of the OS???Post() call. Note that

scheduling does not occur if one specifies (as part of the post call) to not invoke the

scheduler (i.e., set the option argument to OS_OPT_POST_NO_SCHED).

A task calls OSTimeDly() or OSTimeDlyHMSM():

If the delay is non-zero, scheduling always occurs since the calling task is placed in a list

waiting for time to expire. Scheduling occurs as soon as the task is inserted in the wait list. 
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A task waits for an event to occur and the event has not yet occurred:

This occurs when one of the OS???Pend() functions are called. The task is placed in the

wait list for the event and, if a non-zero timeout is specified, then the task is also inserted in

the list of tasks waiting to timeout. The scheduler is then called to select the next most

important task to run. 

If a task aborts a pend:

A task is able to abort the wait (i.e., pend) of another task by calling OS???PendAbort().

Scheduling occurs when the task is removed from the wait list for the specified kernel

object.

If a task is created:

The newly created task may have a higher priority than the task’s creator. In this case, the

scheduler is called.

If a task is deleted:

When terminating a task, the scheduler is called if the current task is deleted.

If a kernel object is deleted:

If you delete an event flag group, a semaphore, a message queue, or a mutual exclusion

semaphore, if tasks are waiting on the kernel object, those tasks will be made ready to run

and the scheduler will be called to determine if any of the tasks have a higher priority than

the task that deleted the kernel object.

A task changes the priority of itself or another task:

The scheduler is called when a task changes the priority of another task (or itself) and the

new priority of that task is higher than the task that changed the priority. 

A task suspends itself by calling OSTaskSuspend():

The scheduler is called since the task that called OSTaskSuspend() is no longer able to

execute, and must be resumed by another task.

A task resumes another task that was suspended by OSTaskSuspend():

The scheduler is called if the resumed task has a higher priority than the task that calls

OSTaskResume().
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At the end of all nested ISRs:

The scheduler is called at the end of all nested ISRs to determine whether a more important

task is made ready to run by one of the ISRs. The scheduling is actually performed by

OSIntExit() instead of OSSched().

The scheduler is unlocked by calling OSSchedUnlock():

The scheduler is unlocked after being locked. Lock the scheduler by calling

OSSchedLock(). Note that locking the scheduler can be nested and the scheduler must be

unlocked a number of times equal to the number of locks.

A task gives up its time quanta by calling OSSchedRoundRobinYield():

This assumes that the task is running alongside with other tasks at the same priority and the

currently running task decides that it can give up its time quanta and let another task run. 

The user calls OSSched():

The application code can call OSSched() to run the scheduler. This only makes sense if

calling OS???Post() functions and specifying OS_OPT_POST_NO_SCHED so that multiple

posts can be accomplished without running the scheduler on every post. Of course, in the

above situation, the last post can be a post without the OS_OPT_POST_NO_SCHED option. 

7-3  ROUND-ROBIN SCHEDULING

When two or more tasks have the same priority, μC/OS-III allows one task to run for a

predetermined amount of time (called a Time Quanta) before selecting another task. This

process is called Round-Robin Scheduling or Time Slicing. If a task does not need to use its

full time quanta it can voluntarily give up the CPU so that the next task can execute. This is

called Yielding. μC/OS-III allows the user to enable or disable round robin scheduling at

run time.
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Figure 7-3 shows a timing diagram with tasks running at the same priority. There are three

tasks that are ready to run at priority “X”. For sake of illustration, the time quanta occurs

every 4th clock tick. This is shown as a darker tick mark.

Figure 7-3 Round Robin Scheduling

F7-3(1) Task #3 is executing. During that time, tick interrupts occur but the time quanta

have not expired yet for Task #3.

F7-3(2) On the 4th tick interrupt, the time quanta for Task #3 expire.

F7-3(3) μC/OS-III resumes Task #1 since it was the next task in the list of tasks at

priority “X” that was ready to run.

F7-3(4) Task #1 executes until its time quanta expires (i.e., after four ticks).
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F7-3(5)

F7-3(6)

F7-3(7) Here Task #3 executes but decides to give up its time quanta by calling the

μC/OS-III function OSSchedRoundRobinYield(), which causes the next task in

the list of tasks ready at priority “X” to execute. An interesting thing occurred

when μC/OS-III scheduled Task #1. It reset the time quanta for that task to four

ticks so that the next time quanta will expire four ticks from this point.

F7-3(8) Task #1 executes for its full time quanta.

μC/OS-III allows the user to change the time quanta at run time through the

OSSchedRoundRobinCfg() function (see Appendix A, “μC/OS-III API Reference Manual” on

page 375). This function also allows round robin scheduling to be enabled/disabled, and

the ability to change the default time quanta.

μC/OS-III also enables the user to specify the time quanta on a per-task basis. One task

could have a time quanta of 1 tick, another 12, another 3, and yet another 7, etc. The time

quanta of a task is specified when the task is created. The time quanta of a task may also be

changed at run time through the function OSTaskTimeQuantaSet().
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7-4  SCHEDULING INTERNALS

Scheduling is performed by two functions: OSSched() and OSIntExit(). OSSched() is

called by task level code while OSIntExit() is called by ISRs. Both functions are found in

OS_CORE.C.

Figure 7-1 illustrates the two sets of data structures that the scheduler uses; the priority

ready bitmap and the ready list as described in Chapter 6, “The Ready List” on page 123.

Figure 7-4 Priority ready bitmap and Ready list

OSPrioTbl[ ] OSRdyList []

[OS_CFG_PRIO_MAX-2]

[OS_CFG_PRIO_MAX-1]

Idle Task

OS_TCBs

[0]

[1]

[2]

[3]

[4]
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7-4-1  OSSched()

The pseudo code for the task level scheduler, OSSched() is shown in Listing 7-1.

Listing 7-1 OSSched() pseudocode

L7-1(1) OSSched() starts by making sure it is not called from an ISR as OSSched() is

the task level scheduler. Instead, an ISR must call OSIntExit(). If OSSched() is

called by an ISR, OSSched() simply returns.

L7-1(2) The next step is to make sure the scheduler is not locked. If the code calls

OSSchedLock() the user does not want to run the scheduler and the function

just returns.

L7-1(3) OSSched() determines the priority of the highest priority task ready by

scanning the bitmap OSPrioTbl[] as described in Chapter 6, “The Ready List”

on page 123.

L7-1(4) Once it is known which priority is ready, index into the OSRdyList[] and extract the

OS_TCB at the head of the list (i.e., OSRdyList[highest priority].HeadPtr).

At this point, it is known which OS_TCB to switch to and which OS_TCB to save

to as this was the task that called OSSched(). Specifically, OSTCBCurPtr points

to the current task’s OS_TCB and OSTCBHighRdyPtr points to the new OS_TCB

to switch to.

void  OSSched (void)

{

    Disable interrupts;

    if (OSIntNestingCtr > 0) {                                    (1)

        return;

    }

    if (OSSchedLockNestingCtr > 0) {                           (2)

        return;

    }

    Get highest priority ready;                                (3)

    Get pointer to OS_TCB of next highest priority task;       (4)

    if (OSTCBNHighRdyPtr != OSTCBCurPtr) {                     (5)

        Perform task level context switch;                         

    }

    Enable interrupts;

}
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L7-1(5) If the user is not attempting to switch to the same task that is currently running,

OSSched() calls the code that will perform the context switch (see Chapter 8,

“Context Switching” on page 147). As the code indicates, however, the task

level scheduler calls a task-level function to perform the context switch.

Notice that the scheduler and the context switch runs with interrupts disabled. This is

necessary because this process needs to be atomic.

7-4-2  OSIntExit()

The pseudo code for the ISR level scheduler, OSIntExit() is shown in Listing 7-2. Note

that interrupts are assumed to be disabled when OSIntExit() is called. 

Listing 7-2 OSIntExit() pseudocode

L7-2(1) OSIntExit() starts by making sure that the call to OSIntExit() will not cause

OSIntNestingCtr to wrap around. This would be extremely and unlikely

occurrence, but not worth taking a chance that it might.

L7-2(2) OSIntExit() decrements the nesting counter as OSIntExit() is called at the

end of an ISR. If all ISRs have not nested, the code simply returns. There is no

need to run the scheduler since there are still interrupts to return to.

void  OSIntExit (void)

{

    if (OSIntNestingCtr == 0) {                                (1)

        return;

    }

    OSIntNestingCtr--;

    if (OSIntNestingCtr > 0) {                                 (2)

        return;

    }

    if (OSSchedLockNestingCtr > 0) {                           (3)

        return;

    }

    Get highest priority ready;                                (4)

    Get pointer to OS_TCB of next highest priority task;       (5)

    if (OSTCBHighRdyPtr != OSTCBCurPtr) {                      (6)

        Perform ISR level context switch;                         

    }

}
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L7-2(3) OSIntExit() checks to see that the scheduler is not locked. If it is,

OSIntExit() does not run the scheduler and simply returns to the interrupted

task that locked the scheduler.

L7-2(4) Finally, this is the last nested ISR (we are returning to task-level code) and the

scheduler is not locked. Therefore, we need to find the highest priority task

that needs to run.

L7-2(5) Again, we extract the highest priority OS_TCB from OSRdyList[].

L7-2(6) If the highest-priority task is not the current task μC/OS-III performs an ISR

level context switch. The ISR level context switch is different as it is assumed

that the interrupted task’s context was saved at the beginning of the ISR and it

is only left to restore the context of the new task to run. This is described in

Chapter 8, “Context Switching” on page 147.

7-4-3  OS_SchedRoundRobin()

When the time quanta for a task expires and there are multiple tasks at the same

priority, μC/OS-III will select and run the next task that is ready to run at the current

priority. OS_SchedRoundRobin() is the code used to perform this operation.

OS_SchedRoundRobin() is either called by OSTimeTick() or OS_IntQTask().

OS_SchedRoundRobin() is found in OS_CORE.C.

OS_SchedRoundRobin() is called by OSTimeTick() when you selected the Direct Method

of posting (see Chapter 9, “Interrupt Management” on page 157). OS_SchedRoundRobin()

is called by OS_IntQTask() when selecting the Deferred Post Method of posting, described

in Chapter 8.

The pseudo code for the round-robin scheduler is shown in Listing 7-3. 
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Listing 7-3  OS_SchedRoundRobin() pseudocode

L7-3(1) OS_SchedRoundRobin() starts by making sure that round robin scheduling is

enabled. Recall that to enable round robin scheduling, one must call

OSSchedRoundRobinCfg().

L7-3(2) The time quanta counter, which resides inside the OS_TCB of the running task, is

decremented. If the value is still non-zero then OS_SchedRoundRobin() returns.

L7-3(3) Once the time quanta counter reaches zero, check to see that there are other

ready-to-run tasks at the current priority. If there are none, return. Round robin

scheduling only applies when there are multiple tasks at the same priority and

the task doesn’t completes its work within its time quanta.

L7-3(4) OS_SchedRoundRobin() also returns if the scheduler is locked. 

L7-3(5) Next, OS_SchedRoundRobin() move the OS_TCB of the current task from the

head of the ready list to the end.

void  OS_SchedRoundRobin (void)

{

    if (OSSchedRoundRobinEn != TRUE) {                         (1)

        return;

    }

    if (Time quanta counter > 0) {                             (2)

       Decrement time quanta counter;

    }

    if (Time quanta counter > 0) {                             

        return;

    }

    if (Number of OS_TCB at current priority level < 2) {      (3)

        return;

    }

    if (OSSchedLockNestingCtr > 0) {                           (4)

        return;

    }

    Move OS_TCB from head of list to tail of list;             (5)

    Reload time quanta for current task;                       (6)

}
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L7-3(6) The time quanta for the task at the head of the list are loaded. Each task may specify

its own time quanta when the task is created or through OSTaskTimeQuantaSet().

If specifying 0, μC/OS-III assumes the default time quanta, which corresponds

to the value in the variable OSSchedRoundRobinDfltTimeQuanta. 

7-5  SUMMARY

μC/OS-III is a preemptive scheduler so it will always execute the highest priority task that is

ready to run. 

μC/OS-III allows for multiple tasks at the same priority. If there are multiple ready-to-run

tasks, μC/OS-III will round robin between these tasks.

Scheduling occurs at specific scheduling points, when the application calls μC/OS-III

functions.

μC/OS-III has two schedulers: OSSched(), which is called by task-level code, and

OSIntExit() called at the end of each ISR.
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8
Context Switching

When μC/OS-III decides to run a different task (see Chapter 7, “Scheduling” on page 133), it

saves the current task’s context, which typically consists of the CPU registers, onto the

current task’s stack and restores the context of the new task and resumes execution of that

task. This process is called a Context Switch.

Context switching adds overhead. The more registers a CPU has, the higher the overhead.

The time required to perform a context switch is generally determined by how many

registers must be saved and restored by the CPU. 

The context switch code is generally part of a processor’s port of μC/OS-III. A port is the

code needed to adapt μC/OS-III to the desired processor. This code is placed in special C

and assembly language files: OS_CPU.H, OS_CPU_C.C and OS_CPU_A.ASM. Chapter 18,

“Porting μC/OS-III” on page 335, Porting μC/OS-III provides more details on the steps

needed to port μC/OS-III to different CPU architectures.

In this chapter, we will discuss the context switching process in generic terms using a fictitious

CPU as shown in Figure 8-1. Our fictitious CPU contains 16 integer registers (R0 to R15), a

separate ISR stack pointer, and a separate status register (SR). Every register is 32 bits wide and

each of the 16 integer registers can hold either data or an address. The program counter (or

instruction pointer) is R15 and there are two separate stack pointers labeled R14 and R14”. R14

represents a task stack pointer (TSP), and R14” represents an ISR stack pointer (ISP). The CPU

automatically switches to the ISR stack when servicing an exception or interrupt. The task stack

is accessible from an ISR (i.e., we can push and pop elements onto the task stack when in an

ISR), and the interrupt stack is also accessible from a task.
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Figure 8-1 Fictitious CPU

In μC/OS-III, the stack frame for a ready task is always setup to look as if an interrupt has

just occurred and all processor registers were saved onto it. Tasks enter the ready state upon

creation and thus their stack frames are pre-initialized by software in a similar manner.

Using our fictitious CPU, we’ll assume that a stack frame for a task that is ready to be

restored is shown in Figure 8-2.

The task stack pointer points to the last register saved onto the task’s stack. The program

counter and status registers are the first registers saved onto the stack. In fact, these are

saved automatically by the CPU when an exception or interrupt occurs (assuming interrupts

are enabled) while the other registers are pushed onto the stack by software in the

exception handler. The stack pointer (R14) is not actually saved on the stack but instead is

saved in the task’s OS_TCB.
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The interrupt stack pointer points to the current top-of-stack for the interrupt stack, which is

a different memory area. When an ISR executes, the processor uses R14” as the stack

pointer for function calls and local arguments.

Figure 8-2 CPU register stacking order of ready task

There are two types of context switches: one performed from a task and another from an

ISR. The task level context switch is implemented by the code in OSCtxSw(), which is

actually invoked by the macro OS_TASK_SW(). A macro is used as there are many ways to

invoke OSCtxSw() such as software interrupts, trap instructions, or simply calling the

function. 

The ISR context switch is implemented by OSIntCtxSw(). The code for both functions is

typically written in assembly language and is found in a file called OS_CPU_A.ASM. 
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8-1  OSCtxSw()

OSCtxSw() is called when the task level scheduler (OSSched()) determines that a new high

priority task needs to execute. Figure 8-3 shows the state of several μC/OS-III variables and

data structures just prior to calling OSCtxSw().

Figure 8-3 Variables and data structures prior to calling OSCtxSw()

F8-3(1) OSTCBCurPtr points to the OS_TCB of the task that is currently running and that

called OSSched(). 

F8-3(2) OSSched() finds the new task to run by having OSTCBHighRdyPtr point to its

OS_TCB. 
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F8-3(3) OSTCBHighRdyPtr->StkPtr points to the top of stack of the new task to run. 

F8-3(4) When μC/OS-III creates or suspends a task, it always leaves the stack frame to

look as if an interrupt just occurred and all the registers saved onto it. This

represents the expected state of the task so it can be resumed. 

F8-3(5) The CPU’s stack pointer points within the stack area (i.e., RAM) of the task that

called OSSched(). Depending on how OSCtxSw() is invoked, the stack pointer

may be pointing at the return address of OSCtxSw().

Figure 8-4 shows the steps involved in performing the context switch as implemented by

OSCtxSw().

Figure 8-4 Operations performed by OSCtxSw()
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F8-4(1) OSCtxSw() begins by saving the status register and program counter of the

current task onto the current task’s stack. The saving order of register depends

on how the CPU expects the registers on the stack frame when an interrupt

occurs. In this case, it is assumed that the SR is stacked first. The remaining

registers are then saved onto the stack.

F8-4(2) OSCtxSw() saves the contents of the CPU’s stack pointer into the OS_TCB of the

task being suspended. In other words, OSTCBCurPtr->StkPtr = R14.

F8-4(3) OSCtxSw() then loads the CPU stack pointer with the saved top-of-stack from

the new task’s OS_TCB. In other words, R14 = OSTCBHighRdyPtr->StkPtr.

F8-4(4) Finally, OSCtxSw() retrieves the CPU register contents from the new stack. The

program counter and status registers are generally retrieved at the same time by

executing a return from interrupt instruction.
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8-2  OSIntCtxSw()

OSIntCtxSw() is called when the ISR level scheduler (OSIntExit()) determines that a new

high priority task is ready to execute. Figure 8-5 shows the state of several μC/OS-III

variables and data structures just prior to calling OSIntCtxSw().

Figure 8-5 Variables and data structures prior to calling OSIntCtxSw()

μC/OS-III assumes that CPU registers are saved onto the task’s stack at the beginning of an

ISR (see Chapter 9, “Interrupt Management” on page 157). Because of this, notice that

OSTCBCurPtr->StkPtr contains a pointer to the top-of-stack pointer of the task being

suspended (the one on the left). OSIntCtxSw() does not have to worry about saving the

CPU registers of the suspended task since that is already finished.
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Figure 8-6 shows the operations performed by OSIntCtxSw() to complete the second half

of the context switch. This is exactly the same process as the second half of OSCtxSw().

Figure 8-6  Operations performed by OSIntCtxSw()

F8-6(1) OSIntCtxSw() loads the CPU stack pointer with the saved top-of-stack from

the new task’s OS_TCB. R14 = OSTCBHighRdyPtr->StkPtr.

F8-6(2) OSIntCtxSw() then retrieves the CPU register contents from the new stack.

The program counter and status registers are generally retrieved at the same

time by executing a return from interrupt instruction.

B�

B$

B4

B5

B6

B=

B>

B?

B@

BA

B$�

B$$

B$4

B$5

B$= 8��9

�B

 !��

������

D((��

���

������

D((��

%������

B�

B$

B4

B5

B6

B=

B>

B?

B@

BA

B$�

B$$

B$4

B$5

B$6 8���9

B$= 8��9

�B

���

B�

B$

B4

B5

B6

B=

B>

B?

B@

BA

B$�

B$$

B$4

B$5

B$= 8��9

�B

 !��

������

D((��

���

������

D((��

%������/���-������ /���- !��B(����

BD�BD�

8$9

849



155

Context Switching

8-3  SUMMARY

A context switch consists of saving the context (i.e., CPU registers) associated with one task

and restoring the context of a new, higher-priority task.

The new task to be switched to is determined by OSSched() when a context switch is

initiated by task level code, and OSIntExit() when initiated by an ISR.

OSCtxSw() performs the context switch for OSSched() and OSIntCtxSw() performs the

context switch for OSIntExit(). However, OSIntCtxSw() only needs to perform the

second half of the context switch because it is assumed that the ISR saved CPU registers

upon entry to the ISR.
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9
Interrupt Management

An interrupt is a hardware mechanism used to inform the CPU that an asynchronous event

occurred. When an interrupt is recognized, the CPU saves part (or all) of its context (i.e.,

registers) and jumps to a special subroutine called an Interrupt Service Routine (ISR). The

ISR processes the event, and – upon completion of the ISR – the program either returns to

the interrupted task, or the highest priority task, if the ISR made a higher priority task ready

to run.

Interrupts allow a microprocessor to process events when they occur (i.e., asynchronously),

which prevents the microprocessor from continuously polling (looking at) an event to see if

it occurred. Task level response to events is typically better using interrupt mode as

opposed to polling mode, however at the possible cost of increased interrupt latency.

Microprocessors allow interrupts to be ignored or recognized through the use of two special

instructions: disable interrupts and enable interrupts, respectively. 

In a real-time environment, interrupts should be disabled as little as possible. Disabling

interrupts affects interrupt latency possibly causing interrupts to be missed. 

Processors generally allow interrupts to be nested, which means that while servicing an

interrupt, the processor recognizes and services other (more important) interrupts. 

One of the most important specifications of a real-time kernel is the maximum amount of time

that interrupts are disabled. This is called interrupt disable time. All real-time systems disable

interrupts to manipulate critical sections of code and re-enable interrupts when critical sections

are completed. The longer interrupts are disabled, the higher the interrupt latency. 

Interrupt response is defined as the time between the reception of the interrupt and the start

of the user code that handles the interrupt. Interrupt response time accounts for the entire

overhead involved in handling an interrupt. Typically, the processor’s context (CPU

registers) is saved on the stack before the user code is executed. 
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Interrupt recovery is defined as the time required for the processor to return to the

interrupted code or to a higher priority task if the ISR made such a task ready to run.

Task latency is defined as the time it takes from the time the interrupt occurs to the time task

level code resumes.

9-1  HANDLING CPU INTERRUPTS

There are many popular CPU architectures on the market today, and most processors typically

handle interrupts from a multitude of sources. For example, a UART receives a character, an

Ethernet controller receives a packet, a DMA controller completes a data transfer, an

Analog-to-Digital Converter (ADC) completes an analog conversion, a timer expires, etc.

In most cases, an interrupt controller captures all of the different interrupts presented to the

processor as shown in Figure 9-1 (note that the “CPU Interrupt Enable/Disable” is typically

part of the CPU, but is shown here separately for sake of the illustration). 

Interrupting devices signal the interrupt controller, which then prioritizes the interrupts and

presents the highest-priority interrupt to the CPU.

Figure 9-1 Interrupt controllers

Modern interrupt controllers have built-in intelligence that enable the user to prioritize

interrupts, remember which interrupts are still pending and, in many cases, have the interrupt

controller provide the address of the ISR (also called the vector address) directly to the CPU. 
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If “global” interrupts (i.e., the switch in Figure 9-1) are disabled, the CPU will ignore

requests from the interrupt controller, but they will be held pending by the interrupt

controller until the CPU re-enables interrupts.

CPUs deal with interrupts using one of two models:

1 All interrupts vector to a single interrupt handler.

2 Each interrupt vectors directly to an interrupt handler.

Before discussing these two methods, it is important to understand how μC/OS-III handles

CPU interrupts.

9-2  TYPICAL µC/OS-III INTERRUPT SERVICE ROUTINE (ISR)

μC/OS-III requires that an interrupt service routine be written in assembly language.

However, if a C compiler supports in-line assembly language, the ISR code can be placed

directly into a C source file. The pseudo-code for a typical ISR when using μC/OS-III is

shown in Listing 9-1. 

Listing 9-1 ISRs under µC/OS-III (assembly language)

MyISR:                                                            (1) 

    Disable all interrupts;                                       (2) 

    Save the CPU registers;                                       (3) 

    OSIntNestingCtr++;                                            (4) 

    if (OSIntNestingCtr == 1) {                                   (5) 

        OSTCBCurPtr->StkPtr = Current task�s CPU stack pointer register value;

    }

    Clear interrupting device;                                    (6) 

    Re-enable interrupts (optional);                              (7) 

    Call user ISR;                                                (8) 

    OSIntExit();                                                  (9) 

    Restore the CPU registers;                                   (10) 

    Return from interrupt;                                       (11) 
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L9-1(1) As mentioned above, an ISR is typically written in assembly language. MyISR

corresponds to the name of the handler that will handle the interrupting device.

L9-1(2) It is important that all interrupts are disabled before going any further. Some

processors have interrupts disabled whenever an interrupt handler starts.

Others require the user to explicitly disable interrupts as shown here. This step

may be tricky if a processor supports different interrupt priority levels.

However, there is always a way to solve the problem.

L9-1(3) The first thing the interrupt handler must do is save the context of the CPU

onto the interrupted task’s stack. On some processors, this occurs

automatically. However, on most processors it is important to know how to

save the CPU registers onto the task’s stack. Save the full “context” of the CPU,

which may also include Floating-Point Unit (FPU) registers if the CPU used is

equipped with an FPU.

Certain CPUs also automatically switch to a special stack just to process

interrupts (i.e., an interrupt stack). This is generally beneficial as it avoids using

up valuable task stack space. However, for μC/OS-III, the context of the

interrupted task needs to be saved onto that task’s stack.

If the processor does not have a dedicated stack pointer to handle ISRs then it

is possible to implement one in software. Specifically, upon entering the ISR,

simply save the current task stack, switch to a dedicated ISR stack, and when

done with the ISR switch back to the task stack. Of course, this means that

there is additional code to write, however the benefits are enormous since it is

not necessary to allocate extra space on the task stacks to accommodate for

worst case interrupt stack usage including interrupt nesting.

L9-1(4) Next, either call OSIntEnter(), or simply increment the variable

OSIntNestingCtr in assembly language. This is generally quite easy to do and

is more efficient than calling OSIntEnter(). As its name implies,

OSIntNestingCtr keeps track of the interrupt nesting level. 

L9-1(5) If this is the first nested interrupt, save the current value of the stack pointer of

the interrupted task into its OS_TCB. The global pointer OSTCBCurPtr

conveniently points to the interrupted task’s OS_TCB. The very first field in
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OS_TCB is where the stack pointer needs to be saved. In other words,

OSTCBCurPtr->StkPtr happens to be at offset 0 in the OS_TCB (this greatly

simplifies assembly language).

L9-1(6) At this point, clear the interrupting device so that it does not generate another

interrupt until it is ready to do so. The user does not want the device to

generate the same interrupt if re-enabling interrupts (refer to the next step).

However, most people defer the clearing of the source and prefer to perform

the action within the user ISR handler in “C.” 

L9-1(7) At this point, it is safe to re-enable interrupts if the developer wants to support

nested interrupts. This step is optional.

L9-1(8) At this point, further processing can be deferred to a C function called from

assembly language. This is especially useful if there is a large amount of

processing to do in the ISR handler. However, as a general rule, keep the ISRs

as short as possible. In fact, it is best to simply signal or send a message to a

task and let the task handle the details of servicing the interrupting device. 

The ISR must call one of the following functions: OSSemPost(),

OSTaskSemPost(), OSFlagPost(), OSQPost() or OSTaskQPost(). This is

necessary since the ISR will notify a task, which will service the interrupting

device. These are the only functions able to be called from an ISR and they are

used to signal or send a message to a task. However, if the ISR does not need

to call one of these functions, consider writing the ISR as a “Short Interrupt

Service Routine,” as described in the next section.

L9-1(9) When completing the ISR, the user must call OSIntExit() to tell μC/OS-III that

the ISR has completed. OSIntExit() simply decrements OSIntNestingCtr

and, if OSIntNestingCtr goes to 0, this indicates that the ISR will return to

task-level code (instead of a previously interrupted ISR). μC/OS-III will need to

determine whether there is a higher priority task that needs to run because of

one of the nested ISRs. In other words, the ISR might have signaled or sent a

message to a higher- priority task waiting for this signal or message. In this

case, μC/OS-III will context switch to this higher priority task instead of

returning to the interrupted task. In this latter case, OSIntExit() does not

actually return, but takes a different path.
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L9-1(10) If the ISR signaled or sent a message to a lower-priority task than the

interrupted task, OSIntExit() returns. This means that the interrupted task is

still the highest-priority task to run and it is important to restore the previously

saved registers.

L9-1(11) The ISR performs a return from interrupts and so resumes the interrupted task.

NOTE: From this point on, (1) to (6) will be referred to as the ISR Prologue and (9) to (11)

as the ISR Epilogue.

9-3  SHORT INTERRUPT SERVICE ROUTINE (ISR)

The above sequence assumes that the ISR signals or sends a message to a task. However, in

many cases, the ISR may not need to notify a task and can simply perform all of its work

within the ISR (assuming it can be done quickly). In this case, the ISR will appear as shown

in Listing 9-2.

Listing 9-2 Short ISRs with µC/OS-III

L9-2(1) As mentioned above, an ISR is typically written in assembly language.

MyShortISR corresponds to the name of the handler that will handle the

interrupting device.

L9-2(2) Here, save sufficient registers as required to handle the ISR.

L9-2(3) The user may want to clear the interrupting device to prevent it from

generating the same interrupt once the ISR returns. 

MyShortISR:                                                      (1) 

    Save enough registers as needed by the ISR;                  (2) 

    Clear interrupting device;                                   (3) 

    DO NOT re-enable interrupts;                                 (4) 

    Call user ISR;                                               (5) 

    Restore the saved CPU registers;                             (6) 

    Return from interrupt;                                       (7) 
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L9-2(4) Do not re-enable interrupts at this point since another interrupt could make

μC/OS-III calls, forcing a context switch to a higher-priority task. This means

that the above ISR would complete, but at a much later time. 

L9-2(5) Now take care of the interrupting device in assembly language or call a C

function, if necessary.

L9-2(6) Once finished, simply restore the saved CPU registers.

L9-2(7) Perform a return from interrupt to resume the interrupted task.

Short ISRs, as described above, should be the exception and not the rule since μC/OS-III

has no way of knowing when these ISRs occur.

9-4  ALL INTERRUPTS VECTOR TO A COMMON LOCATION

Even though an interrupt controller is present in most designs, some CPUs still vector to a

common interrupt handler, and an ISR queries the interrupt controller to determine the

source of the interrupt. At first glance, this might seem silly since most interrupt controllers

are able to force the CPU to jump directly to the proper interrupt handler. It turns out,

however, that for μC/OS-III, it is easier to have the interrupt controller vector to a single ISR

handler than to vector to a unique ISR handler for each source. Listing 9-3 describes the

sequence of events to be performed when the interrupt controller forces the CPU to vector

to a single location.

Listing 9-3 Single interrupt vector for all interrupts

An interrupt occurs;                                       (1)

The CPU vectors to a common location;                      (2)

The ISR code performs the �ISR prologue�                   (3)

The C handler performs the following:                      (4)

    while (there are still interrupts to process) {        (5)

        Get vector address from interrupt controller;      

        Call interrupt handler;                            

    }

The �ISR epilogue� is executed;                            (6)
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L9-3(1) An interrupt occurs from any device. The interrupt controller activates the

interrupt pin on the CPU. If there are other interrupts that occur after the first

one, the interrupt controller will latch them and properly prioritize the interrupts.

L9-3(2) The CPU vectors to a single interrupt handler address. In other words, all

interrupts are to be handled by this one interrupt handler.

L9-3(3) Execute the “ISR prologue” code needed by μC/OS-III. as previously described.

This ensures that all ISRs will be able to make μC/OS-III “post” calls.

L9-3(4) Call a μC/OS-III C handler, which will continue processing the ISR. This makes

the code easier to write (and read). Notice that interrupts are not re-enabled.

L9-3(5) The μC/OS-III C handler then interrogates the interrupt controller and asks it:

“Who caused the interrupt?” The interrupt controller will either respond with a

number (1 to N) or with the address of the interrupt handler for the

interrupting device. Of course, the μC/OS-III C handler will know how to

handle the specific interrupt controller since the C handler is written

specifically for that controller.

If the interrupt controller provides a number between 1 and N, the C handler

simply uses this number as an index into a table (in ROM or RAM) containing

the address of the interrupt service routine servicing the interrupting device. A

RAM table is handy to change interrupt handlers at run-time. For many

embedded systems, however, the table may also reside in ROM.

If the interrupt controller responds with the address of the interrupt service

routine, the C handler only needs to call this function.

In both of the above cases, all interrupt handlers need to be declared as follows:

void MyISRHandler (void);

There is one such handler for each possible interrupt source (obviously, each

having a unique name).

The “while” loop terminates when there are no other interrupting devices to

service.
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L9-3(6) The μC/OS-III “ISR epilogue” is executed to see if it is necessary to return to

the interrupted task, or switch to a more important one.

A couple of interesting points to notice:

■ If another device caused an interrupt before the C handler had a chance to query the

interrupt controller, most likely the interrupt controller will capture that interrupt. In

fact, if that second device happens to be a higher-priority interrupting device, it will

most likely be serviced first, as the interrupt controller will prioritize the interrupts.

■ The loop will not terminate until all pending interrupts are serviced. This is similar to

allowing nested interrupts, but better, since it is not necessary to redo the ISR prologue

and epilogue.

The disadvantage of this method is that a high priority interrupt that occurs after the

servicing of another interrupt that has already started must wait for that interrupt to

complete before it will be serviced. So, the latency of any interrupt, regardless of priority,

can be as long as it takes to process the longest interrrupt.

9-5  EVERY INTERRUPT VECTORS TO A UNIQUE LOCATION

If the interrupt controller vectors directly to the appropriate interrupt handler, each of the

ISRs must be written in assembly language as described in section 9-2 “Typical μC/OS-III

Interrupt Service Routine (ISR)” on page 159. This, of course, slightly complicates the

design. However, copy and paste the majority of the code from one handler to the other

and just change what is specific to the actual device. 

If the interrupt controller allows the user to query it for the source of the interrupt, it may be

possible to simulate the mode in which all interrupts vector to the same location by simply

setting all vectors to point to the same location. Most interrupt controllers that vector to a

unique location, however, do not allow users to query it for the source of the interrupt since,

by definition, having a unique vector for all interrupting devices should not be necessary.
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9-6  DIRECT AND DEFERRED POST METHODS

μC/OS-III handles event posting from interrupts using two different methods: Direct and

Deferred Post. The method used in the application is selected by changing the value of

OS_CFG_ISR_POST_DEFERRED_EN in OS_CFG.H (this assumes you have access to μC/OS-III’s

source code). When set to 0, μC/OS-III uses the Direct Post Method and when set to 1,

μC/OS-III uses the Deferred Post Method. 

As far as application code and ISRs are concerned, these two methods are completely

transparent. It is not necessary to change anything except the configuration value

OS_CFG_ISR_POST_DEFERRED_EN to switch between the two methods. Of course, changing

the configuration constant will require recompiling the product and μC/OS-III.

Before explaining why to use one versus the other, let us review their differences.

9-6-1  DIRECT POST METHOD

The Direct Post Method is used by μC/OS-II and is replicated in μC/OS-III. Figure 9-2 shows

a task diagram of what takes place in a Direct Post.

Figure 9-2 Direct Post Method
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F9-2(1) A device generates an interrupt.

F9-2(2) The Interrupt Service Routine (ISR) responsible to handle the device executes

(assuming interrupts are enabled). The device interrupt is generally the event a

task is waiting for. The task waiting for this interrupt to occur either has a

higher priority than the interrupted task, or lower (or equal) in priority.

F9-2(3) If the ISR made a lower (or equal) priority task ready to run then upon

completion of the ISR, μC/OS-III returns to the interrupted task exactly at the

point the interrupt occurred.

F9-2(4) If the ISR made a higher priority task ready to run, μC/OS-III will context

switch to the new higher-priority task since the more important task was

waiting for this device interrupt.

F9-2(5) In the Direct Post Method, μC/OS-III must protect critical sections by disabling

interrupts as some of these critical sections can be accessed by ISRs.

The above discussion assumed that interrupts were enabled and that the ISR could respond

quickly to the interrupting device. However, if the application code makes μC/OS-III service

calls (and it will at some point), it is possible that interrupts would be disabled. When

OS_CFG_ISR_POST_DEFERRED_EN is set to 0, μC/OS-III disables interrupts while accessing

critical sections. Thus, interrupts will not be responded to until μC/OS-III re-enables

interrupts. Of course, attempts were made to keep interrupt disable times as short as

possible, but there are complex features of μC/OS-III that disable interrupts for a longer

period than the user would like. 

The key factor in determining whether to use the Direct Post Method is generally the

μC/OS-III interrupt disable time. This is fairly easy to determine since the μC/CPU files

provided with the μC/OS-III port for the processor used includes code to measure

maximum interrupt disable time. This code can be enabled (assumes you have the source

code) for testing purposes and removed when ready to deploy the product. The user would

typically not want to leave measurement code in production code to avoid introducing

measurement artifacts. Once instrumented, let the application run for sufficiently long and

read the variable CPU_IntDisMeasMaxRaw_cnts. The resolution (in time) of this variable

depends on the timer used during the measurement.
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Determine the interrupt latency, interrupt response, interrupt recovery, and task latency by

adding the execution times of the code involved for each, as shown below.

Interrupt Latency = Maximum interrupt disable time;

Interrupt Response = Interrupt latency

+ Vectoring to the interrupt handler

+ ISR prologue;

Interrupt Recovery = Handling of the interrupting device

+ Posting a signal or a message to a task

+ OSIntExit()

+ OSIntCtxSw();

Task Latency = Interrupt response

+ Interrupt recovery

+ Time scheduler is locked;

The execution times of the μC/OS-III ISR prologue, ISR epilogue, OSIntExit(), and

OSIntCtxSw(), can be measured independently and should be fairly constant.

It should also be easy to measure the execution time of a post call by using OS_TS_GET().

In the Direct Post Method, the scheduler is locked only when handling timers and therefore,

task latency should be fast if there are not too many timers with short callbacks expiring at

the same time. See Chapter 12, “Timer Management” on page 193. μC/OS-III is also able to

measure the amount of time the scheduler is locked, providing task latency.
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9-6-2  DEFERRED POST METHOD

In the Deferred Post Method (OS_CFG_ISR_POST_DEFERRED_EN is set to 1), instead of

disabling interrupts to access critical sections, μC/OS-III locks the scheduler. This avoids

having other tasks access critical sections while allowing interrupts to be recognized and

serviced. In the Deferred Post Method, interrupts‘ are almost never disabled. The Deferred

Post Method is, however, a bit more complex as shown in Figure 9-3.

Figure 9-3 Deferred Post Method block diagram

F9-3(1) A device generates an interrupt.

F9-3(2) The ISR responsible for handling the device executes (assuming interrupts are

enabled). The device interrupt is the event that a task was waiting for. The task

waiting for this interrupt to occur is either higher in priority than the

interrupted task, lower, or equal in priority.

F9-3(3) The ISR calls one of the post services to signal or send a message to a task.

However, instead of performing the post operation, the ISR queues the actual

post call along with arguments in a special queue called the Interrupt Queue.

The ISR then makes the Interrupt Queue Handler Task ready to run. This task is

internal to μC/OS-III and is always the highest priority task (i.e., Priority 0).

"��

 !��

��!��!��

�	�

F�C/�#111

��
�

���

�
��(�)��

1��G

�	�

1������;�

G����

F�C/�#111

I!	7)�

1������;�

I�<!
� 1�B1������;�

1������;��(

�	�

8>9

8=9

8$9

849

859 869



170

Chapter 9

F9-3(4) At the end of the ISR, μC/OS-III always context switches to the interrupt

queue handler task, which then extracts the post command from the queue.

We disable interrupts to prevent another interrupt from accessing the

interrupt queue while the queue is being emptied. The task then re-enables

interrupts, locks the scheduler, and performs the post call as if the post was

performed at the task level all along. This effectively manipulates critical

sections at the task level. 

F9-3(5) When the interrupt queue handler task empties the interrupt queue, it makes

itself not ready to run and then calls the scheduler to determine which task

must run next. If the original interrupted task is still the highest priority task,

μC/OS-III will resume that task. 

F9-3(6) If, however, a more important task was made ready to run because of the post,

μC/OS-III will context switch to that task.

All the extra processing is performed to avoid disabling interrupts during critical sections of

code. The extra processing time only consist of copying the post call and arguments into

the queue, extracting it back out of the queue, and performing an extra context switch. 

Similar to the Direct Post Method, it is easy to determine interrupt latency, interrupt

response, interrupt recovery, and task latency, by adding execution times of the pieces of

code involved for each as shown below.

Interrupt Latency = Maximum interrupt disable time;

Interrupt Response = Interrupt latency

+ Vectoring to the interrupt handler

+ ISR prologue;

Interrupt Recovery = Handling of the interrupting device

+ Posting a signal or a message to the Interrupt Queue

+ OSIntExit()

+ OSIntCtxSw() to Interrupt Queue Handler Task;
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Task Latency = Interrupt response

+ Interrupt recovery

+ Re-issue the post to the object or task

+ Context switch to task

+ Time scheduler is locked;

The execution times of the μC/OS-III ISR prologue, ISR epilogue, OSIntExit(), and

OSIntCtxSw(), can be measured independently and should be constant.

It should also be easy to measure the execution time of a post call by using OS_TS_GET().

In fact, the post calls should be short in the Deferred Post Method because it only involves

copying the post call and its arguments into the interrupt queue.

The difference is that in the Deferred Post Method, interrupts are disabled for a very short

amount of time and thus, the first three metrics should be fast. However, task latency is

higher as μC/OS-III locks the scheduler to access critical sections.
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9-7  DIRECT VS. DEFERRED POST METHOD

In the Direct Post Method, μC/OS-III disables interrupts to access critical sections. In

comparison, while in the Deferred Post Method, μC/OS-III locks the scheduler to access the

same critical sections. 

In the Deferred Post Method, μC/OS-III must still disable interrupts to access the interrupt

queue. However, the interrupt disable time is very short and fairly constant. 

Figure 9-4 Direct vs. Deferred Post Methods

If interrupt disable time is critical in the application because there are very fast interrupt

sources and the interrupt disable time of μC/OS-III is not acceptable using the Direct Post

Method, use the Deferred Post Method.

However, if you are planning on using the features listed in Table 9-1, consider using the

Deferred Post Method, described in the next section.
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Table 9-1 µC/OS-III features to avoid when using the Direct Post Method

9-8  THE CLOCK TICK (OR SYSTEM TICK)

μC/OS-III-based systems generally require the presence of a periodic time source called the

clock tick or system tick. 

A hardware timer configured to generate an interrupt at a rate between 10 and 1000 Hz

provides the clock tick. A tick source may also be obtained by generating an interrupt from

an AC power line (typically 50 or 60 Hz). In fact, one can easily derive 100 or 120 Hz by

detecting zero crossings of the power line. 

Feature Reason

Multiple tasks at the same priority Although this is an important feature of µC/OS-III, multiple tasks at the 

same priority create longer critical sections. However, if there are only a 

few tasks at the same priority, interrupt latency will be relatively small.

If the user does not create multiple tasks at the same priority, the Direct 

Post Method is recommended.

Event Flags

Chapter 14, “Synchronization” on 

page 251

If multiple tasks are waiting on different events, going through all of the 

tasks waiting for events requires a fair amount of processing time, which 

means longer critical sections.

If only a few tasks (approximately one to five) are waiting on an event flag 

group, the critical section will be short enough to use the Direct Post 

Method.

Pend on multiple objects

Chapter 16, “Pending On Multiple 

Objects” on page 313

Pending on multiple objects is probably the most complex feature 

provided by µC/OS-III and requires interrupts to be disabled for fairly long 

periods of time when using the Direct Post Method.

If pending on multiple objects, the Deferred Post Method is highly 

recommended.

If the application does not use this feature, the user may select the Direct 

Post Method.

Broadcast on Post calls 

See OSSemPost() and OSQPost() 

descriptions.

µC/OS-III disables interrupts while processing a post to multiple tasks in a 

broadcast.

If not using the broadcast option, use the Direct Post Method.

Note that broadcasts only apply to semaphores and message queues.
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The clock tick interrupt can be viewed as the system’s heartbeat. The rate is application

specific and depends on the desired resolution of this time source. However, the faster the

tick rate, the higher the overhead imposed on the system. 

The clock tick interrupt allows μC/OS-III to delay tasks for an integral number of clock ticks

and provide timeouts when tasks are waiting for events to occur. 

The clock tick interrupt must call OSTimeTick(). The pseudocode for OSTimeTick() is

shown in Listing 9-4.

Listing 9-4 OSTimeTick() pseudocode

L9-4(1) The time tick ISR starts by calling a hook function, OSTimeTickHook(). The

hook function allows the implementer of the μC/OS-III port to perform

additional processing when a tick interrupt occurs. In turn, the tick hook

can call a user-defined tick hook if its corresponding pointer,

OS_AppTimeTickHookPtr, is non-NULL. The reason the hook is called first is to

give the application immediate access to this periodic time source. This can be

useful to read sensors at a regular interval (not as subject to jitter), update Pulse

Width Modulation (PWM) registers, and more.

L9-4(2) If μC/OS-III is configured for the Deferred Post Method, μC/OS-III reads the

current timestamp and defers the call to signal the tick task by placing an

appropriate entry in the interrupt queue. The tick task will thus be signaled by

the Interrupt Queue Handler Task.

void  OSTimeTick (void)

{

    OSTimeTickHook();                                       (1)

#if OS_CFG_ISR_POST_DEFERRED_EN > 0u

    Get timestamp;                                          (2)

    Post �time tick� to the Interrupt Queue;

#else

    Signal the Tick Task;                                   (3)

    Run the round-robin scheduling algorithm;               (4)

    Signal the timer task;                                  (5)

#endif

}
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L9-4(3) If μC/OS-III is configured for the Direct Post Method, μC/OS-III signals the tick

task so that it can process the time delays and timeouts. 

L9-4(4) μC/OS-III runs the round-robin scheduling algorithm to determine whether the

time slot for the current task has expired.

L9-4(5) The tick task is also used as the time base for the timers (see Chapter 13,

“Resource Management” on page 209).

A common misconception is that a system tick is always needed with μC/OS-III. In fact,

many low-power applications may not implement the system tick because of the power

required to maintain the tick list. In other words, it is not reasonable to continuously power

down and power up the product just to maintain the system tick. Since μC/OS-III is a

preemptive kernel, an event other than a tick interrupt can wake up a system placed in low

power mode by either a keystroke from a keypad or other means. Not having a system tick

means that the user is not allowed to use time delays and timeouts on system calls. This is a

decision required to be made by the designer of the low-power product.

9-9  SUMMARY

μC/OS-III provides services to manage interrupts. An ISR should be short in length, and signal

or send a message to a task, which is responsible for servicing the interrupting device.

ISRs that are short and do not need to signal or send a message to a task, are not required

to do so.

μC/OS-III supports processors that vector to a single ISR for all interrupting devices, or to a

unique ISR for each device.

μC/OS-III supports two methods: Direct and Deferred Post. The Direct Post Method

assumes that μC/OS-III critical sections are protected by disabling interrupts. The Deferred

Post Method locks the scheduler when μC/OS-III accesses critical sections of code.

μC/OS-III assumes the presence of a periodic time source for applications requiring time

delays and timeouts on certain services.
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10
Pend Lists (or Wait Lists)

A task is placed in a Pend List (also called a Wait List) when it is waiting on a semaphore to

be signaled, a mutual exclusion semaphore to be released, an event flag group to be

posted, or a message queue to be posted.

Table 10-1 Kernel objects that have Pend Lists

A pend list is similar to the Ready List, except that instead of keeping track of tasks that are

ready-to-run, the pend list keeps track of tasks waiting for an object to be posted. In

addition, the pend list is sorted by priority; the highest priority task waiting on the object is

placed at the head of the list, and the lowest priority task waiting on the object is placed at

the end of the list.

A pend list is a data structure of type OS_PEND_LIST, which consists of three fields as shown

in Figure 10-1. 

Figure 10-1 Pend List

See … For … Kernel Object

Chapter 13, “Resource Management” on page 209 Semaphores

Mutual Exclusion

Semaphores

OS_SEM

OS_MUTEX

Chapter 14, “Synchronization” on page 251 Semaphores

Event Flags

OS_SEM

OS_FLAG_GRP

Chapter 15, “Message Passing” on page 289 Message Queues OS_Q
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.NbrEntries Contains the current number of entries in the pend list. Each entry

in the pend list points to a task that is waiting for the kernel object

to be posted.

.TailPtr Is a pointer to the last task in the list (i.e., the lowest priority task).

.HeadPtr Is a pointer to the first task in the list (i.e., the highest priority task).

Figure 10-2 indicates that each kernel object using a pend list contains the same three fields

at the beginning of the kernel object that we called an OS_PEND_OBJ. Notice that the first

field is always a “Type” which allows μC/OS-III to know if the kernel object is a semaphore,

a mutual exclusion semaphore, an event flag group, or a message queue object. 

Figure 10-2 OS_PEND_OBJ at the beginning of certain kernel objects

Table 10-2 shows that the “Type” field of each of the above objects is initialized to contain

four ASCII characters when the respective object is created. This allows the user to identify

these objects when performing a memory dump using a debugger.

Table 10-2 Kernel objects with initialized “Type” field

Kernel Object Type 

Semaphore �S� �E� �M� �A�

Mutual Exclusion Semaphore �M� �U� �T� �X�

Event Flag Group �F� �L� �A� �G�

Message Queue �Q� �U� �E� �U� 
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A pend list does not actually point to a task’s OS_TCB, but instead points to OS_PEND_DATA

objects as shown in Figure 10-3. Also, an OS_PEND_DATA structure is allocated dynamically

on the current task’s stack when a task is placed on a pend list. This implies that a task stack

needs to be able to allocate storage for this data structure.

Figure 10-3 Pend Data

.PrevPtr Is a pointer to an OS_PEND_DATA entry in the pend list. This

pointer points to a higher or equal priority task waiting on the

kernel object.

.NextPtr Is a pointer to an OS_PEND_DATA entry in the pend list. This

pointer points to a lower or equal priority task waiting on the

kernel object.

.TCBPtr Is a pointer to the OS_TCB of the task waiting on the pend list.

.PendObjPtr Is a pointer to the kernel object that the task is pending on. In

other words, this pointer can point to an OS_SEM, OS_MUTEX,

OS_FLAG_GRP or OS_Q by using an OS_PEND_OBJ as the common

data structure.

.RdyObjPtr Is a pointer to the kernel object that is ready if the task actually

waits for multiple kernel objects. See Chapter 16, “Pending On

Multiple Objects” on page 313 for more on this.
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.RdyMsgPtr Is a pointer to the message posted through OSQPost() if the task

is pending on multiple kernel objects. Again, see Chapter 16,

“Pending On Multiple Objects” on page 313.

.RdyTS Is a timestamp of when the kernel object was posted. This is used

when a task pends on multiple kernel objects as described in

Chapter 16, “Pending On Multiple Objects” on page 313.

Figure 10-4 exhibits how all data structures connect to each other when tasks are inserted in

a pend list. This drawing assumes that there are two tasks waiting on a semaphore.

Figure 10-4 Pend Data
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F10-4(1) The OS_SEM data type contains an OS_PEND_OBJ, which in turn contains an

OS_PEND_LIST. The .NbrEntries field in the pend list indicates that there are

two tasks waiting on the semaphore. 

F10-4(2) The .HeadPtr field of the pend list points to the OS_PEND_DATA structure

associated with the highest priority task waiting on the semaphore.

F10-4(3) The .TailPtr field of the pend list points to the OS_PEND_DATA structure

associated with the lowest priority task waiting on the semaphore.

F10-4(4) Both OS_PEND_DATA structures in turn point back to the OS_SEM data structure.

The pointers think they are pointing to an OS_PEND_OBJ. We know that the

OS_PEND_OBJ is a semaphore by examining the .Type field of the

OS_PEND_OBJ.

F10-4(5) Each OS_PEND_DATA structure points to its respective OS_TCB. In other words,

we know which task is pending on the semaphore.

F10-4(6) Each task points back to the OS_PEND_DATA structure. 

F10-4(7) Finally, the OS_PEND_DATA structure forms a doubly linked list so that the

μC/OS-III can easily add or remove entries in this list.

Although this may seem complex, the reasoning will become apparent in Chapter 16,

“Pending On Multiple Objects” on page 313. For now, assume all of the links are necessary.

Table 10-3 shows the functions that μC/OS-III uses to manipulate entries in a pend list.

These functions are internal to μC/OS-III and the application code must never call them.

The code is found in OS_CORE.C. 
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Table 10-3 Pend List access functions

10-1  SUMMARY

μC/OS-III keeps track of tasks waiting for semaphores, mutual exclusion semaphores, event

flag groups and message queues using pend lists. 

A pend list consists of a data structure of type OS_PEND_LIST. The pend list is further

encapsulated into another data type called an OS_PEND_OBJ.

Tasks are not directly linked to the pend list but instead are linked through an intermediate

data structure called an OS_PEND_DATA which is allocated on the stack of the task waiting

on the kernel object.

Application code must not access pend lists, since these are internal to μC/OS-III.

Function Description

OS_PendListChangePrio() Change the priority of a task in a pend list

OS_PendListInit() Initialize a pend list

OS_PendListInsertHead() Insert an OS_PEND_DATA at the head of the pend list

OS_PendListInsertPrio() Insert an OS_PEND_DATA in priority order in the pend list

OS_PendListRemove() Remove multiple OS_PEND_DATA from the pend list

OS_PendListRemove1() Remove single OS_PEND_DATA from the pend list
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11
Time Management

μC/OS-III provides time-related services to the application programmer. 

In Chapter 9, “Interrupt Management” on page 157, it was established that μC/OS-III

generally requires (as do most kernels) that the user provide a periodic interrupt to keep

track of time delays and timeouts. This periodic time source is called a clock tick and should

occur between 10 and 1000 times per second, or Hertz (see OS_CFG_TICK_RATE_HZ in

OS_CFG_APP.H). The actual frequency of the clock tick depends on the desired tick resolution

of the application. However, the higher the frequency of the ticker, the higher the overhead.

μC/OS-III provides a number of services to manage time as summarized in Table 11-1, and

the code is found in OS_TIME.C.

Table 11-1 Time Services API summary

The application programmer should refer to Appendix A, “μC/OS-III API Reference Manual”

on page 375 for a detailed description of these services. 

Function Name Operation

OSTimeDly() Delay execution of a task for “n” ticks

OSTimeDlyHMSM() Delay a task for a user specified time in HH:MM:SS.mmm

OSTimeDlyResume() Resume a delayed task

OSTimeGet() Obtain the current value of the tick counter

OSTimeSet() Set the tick counter to a new value

OSTimeTick() Signal the occurrence of a clock tick
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11-1  OSTimeDly()

A task calls this function to suspend execution until some time expires. The calling function

will not execute until the specified time expires. This function allows three modes: relative,

periodic and absolute.

Listing 11-1 shows how to use OSTimeDly() in relative mode.

Listing 11-1 OSTimeDly() - Relative

L11-1(1) The first argument specifies the amount of time delay (in number of ticks) from

when the function is called. For example if the tick rate

(OS_CFG_TICK_RATE_HZ in OS_CFG_APP.H) is set to 1000 Hz, the user is asking

to suspend the current task for approximately 2 milliseconds. However, the

value is not accurate since the count starts from the next tick which could

occur almost immediately. This will be explained shortly.

L11-1(2) Specifying OS_OPT_TIME_DLY indicates that the user wants to use “relative”

mode.

L11-1(3) As with most μC/OS-III services an error return value will be returned. The

example should return OS_ERR_NONE as the arguments are all valid. Refer to

Chapter 11, “Time Management” on page 183 for a list of possible error codes.

void  MyTask (void *p_arg)

{

    OS_ERR  err;

    :

    :

    while (DEF_ON) {

        :

        :

        OSTimeDly(2,                               (1) 

                  OS_OPT_TIME_DLY,                 (2) 

                  &err);                           (3) 

        /* Check �err� */                          (4) 

        :

        :

    }

}
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L11-1(4) Always check the error code returned by μC/OS-III. If “err” does not contain

OS_ERR_NONE, OSTimeDly() did not perform the intended work. For example,

another task could remove the time delay suspension by calling

OSTimeDlyResume() and when MyTask() returns, it would not have returned

because the time had expired. 

As mentioned above, the delay is not accurate. Refer to Figure 11-1 and its

description below to understand why.

Figure 11-1 OSTimeDly() - Relative

F11-1(1) We get a tick interrupt and μC/OS-III services the ISR. 

F11-1(2) At the end of the ISR, all Higher Priority Tasks (HPTs) execute. The execution

time of HPTs is unknown and can vary. 

F11-1(3) Once all HPTs have executed, μC/OS-III runs the task that has called

OSTimeDly() as shown above. For the sake of discussion, it is assumed that

this task is a lower priority task (LPT). 
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F11-1(4) The task calls OSTimeDly() and specifies to delay for two ticks in “relative”

mode. At this point, μC/OS-III places the current task in the tick list where it

will wait for two ticks to expire. The delayed task consumes zero CPU time

while waiting for the time to expire.

F11-1(5) The next tick occurs. If there are HPTs waiting for this particular tick, μC/OS-III

will schedule them to run at the end of the ISR.

F11-1(6) The HPTs execute.

F11-1(7) The next tick interrupt occurs. This is the tick that the LPT was waiting for and

will now be made ready to run by μC/OS-III. 

F11-1(8) Since there are no HPTs to execute on this tick, μC/OS-III switches to the LPT.

F11-1(9) Given the execution time of the HPTs, the time delay is not exactly two ticks, as

requested. In fact, it is virtually impossible to obtain a delay of exactly the

desired number of ticks. One might ask for a delay of two ticks, but the very

next tick could occur almost immediately after calling OSTimeDly()! Just

imagine what might happen if all HPTs took longer to execute and pushed (3)

and (4) further to the right. In this case, the delay would actually appear as one

tick instead of two.

OSTimeDly() can also be called with the OS_OPT_TIME_PERIODIC option as shown in

Listing 11-2. This option allows delaying the task until the tick counter reaches a certain periodic

match value and thus ensures that the spacing in time is always the same as it is not subject to CPU

load variations.

μC/OS-III determines the “match value” of OSTickCtr to determine when the task will need

to wake up based on the desired period. This is shown in Figure 11-2. μC/OS-III checks to

ensure that if the match is computed such that it represents a value that has already gone by

then, the delay will be zero.
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Figure 11-2 OSTimeDly() - Periodic

Listing 11-2 OSTimeDly() - Periodic

L11-2(1) The first argument specifies the period for the task to execute, specifically every

four ticks. Of course, if the task is a low-priority task, μC/OS-III only schedules

and runs the task based on its priority relative to what else needs to be

executed.

L11-2(2) Specifying OS_OPT_TIME_PERIODIC indicates that the task is to be ready to run

when the tick counter reaches the desired period from the previous call.

L11-2(3) You should always check the error code returned by μC/OS-III.

void  MyTask (void *p_arg)

{

    OS_ERR   err;

    :

    :

    while (DEF_ON) {

        OSTimeDly(4,                               (1) 

                  OS_OPT_TIME_PERIODIC,            (2) 

                  &err);

        /* Check �err� */                          (3) 

        :

        :

    }

}

Time

Tick

Task

4 ticks
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Relative and Periodic modes might not look different, but they are. In Relative mode, it is

possible to miss one of the ticks when the system is heavily loaded, missing a tick or more

on occasion. In Periodic mode, the task may still execute later, but it will always be

synchronized to the desired number of ticks. In fact, Periodic mode is the preferred mode to

use to implement a time-of-day clock.

Finally, you can use the absolute mode to perform a specific action at a fixed time after

power up. For example, turn off a light 10 seconds after the product powers up. In this

case, you would specify OS_OPT_TIME_MATCH while “dly” actually corresponds to the

desired value of OSTickCtr you want to reach.

To summarize, the task will wake up when OSTickCtr reaches the following value:

Value of �opt� Task wakes up when

OS_OPT_TIME_DLY OSTickCtr + dly

OS_OPT_TIME_PERIODIC OSTCBCurPtr->TickCtrPrev + dly

OS_OPT_TIME_MATCH dly
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11-2  OSTimeDlyHMSM() 

A task may call this function to suspend execution until some time expires by specifying the

length of time in a more user-friendly way. Specifically, specify the delay in hours, minutes,

seconds, and milliseconds (thus the HMSM). This function only works in “Relative” mode.

Listing 11-3 indicates how to use OSTimeDlyHMSM().

Listing 11-3 OSTimeDlyHMSM()

L11-3(1) The first four arguments specify the amount of time delay (in hours, minutes,

seconds, and milliseconds) from this point in time. In the above example, the

task should delay by 1 second. The resolution greatly depends on the tick rate.

For example, if the tick rate (OS_CFG_TICK_RATE_HZ in OS_CFG_APP.H) is set to

1000 Hz there is technically a resolution of 1 millisecond. If the tick rate is 100

Hz then the delay of the current task is in increments of 10 milliseconds. Again,

given the relative nature of this call, the actual delay may not be accurate.

L11-3(2) Specifying OS_OPT_TIME_HMSM_STRICT verifies that the user strictly passes

valid values for hours, minutes, seconds and milliseconds. Valid hours are 0 to

99, valid minutes are 0 to 59, valid seconds are 0 to 59, and valid milliseconds

are 0 to 999.

void  MyTask (void *p_arg)

{

    OS_ERR  err;

    :

    :

    while (DEF_ON) {

        :

        :

        OSTimeDlyHMSM(0,                             (1) 

                      0,

                      1,

                      0,

                      OS_OPT_TIME_HMSM_STRICT,       (2) 

                      &err);                         (3) 

        /* Check �err� */

        :

        :

    }

}
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If specifying OS_OPT_TIME_HMSM_NON_STRICT, the function will accept nearly

any value for hours (between 0 to 999), minutes (from 0 to 9999), seconds (any

value, up to 65,535), and milliseconds (any value, up to 4,294,967,295).

OSTimeDlyHMSM(203, 101, 69, 10000) may be accepted. Whether or not

this makes sense is a different story.

The reason hours is limited to 999 is that time delays typically use 32-bit values

to keep track of ticks. If the tick rate is set at 1000 Hz then, it is possible to only

track 4,294,967 seconds, which corresponds to 1,193 hours, and therefore 999

is a reasonable limit.

L11-3(3) As with most μC/OS-III services the user will receive an error return value. The

example should return OS_ERR_NONE since the arguments are all valid. Refer to

Appendix A, “μC/OS-III API Reference Manual” on page 375 for a list of

possible error codes.

Even though μC/OS-III allows for very long delays for tasks, it is actually not recommended

to delay tasks for a long time. There is no indication that the task is actually “alive” unless it

is possible to monitor the amount of time remaining for the delay. It is better to have the

task wake up approximately every minute or so, and have it “tell you” that it is still ok.

OSTimeDly() and OSTimeDlyHMSM() are often used to create periodic tasks (tasks that

execute periodically). For example, it is possible to have a task that scans a keyboard every

50 milliseconds and another task that reads analog inputs every 10 milliseconds, etc.
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11-3  OSTimeDlyResume() 

A task can resume another task that called OSTimeDly() or OSTimeDlyHMSM() by calling

OSTimeDlyResume(). Listing 11-4 shows how to use OSTimeDlyResume(). The task that

delayed itself will not know that it was resumed, but will think that the delay expired.

Because of this, use this function with great care.

Listing 11-4 OSTimeDlyResume()

OS_TCB  MyTaskTCB;

void  MyTask (void *p_arg)

{

    OS_ERR  err;

    :

    :

    while (1) {

        :

        :

        OSTimeDly(10,                            

                  OS_OPT_TIME_DLY,      

                  &err);                        

        /* Check �err� */

        :

        :

    }

}

void  MyOtherTask (void *p_arg)

{

    OS_ERR  err;

    :

    :

    while (1) {

        :

        :

        OSTimeDlyResume(&MyTaskTCB,

                        &err);     

        /* Check �err� */

        :

        :

    }

}
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11-4  OSTimeSet() AND OSTimeGet()

μC/OS-III increments a tick counter every time a tick interrupt occurs. This counter allows

the application to make coarse time measurements and have some notion of time (after

power up).

OSTimeGet() allows the user to take a snapshot of the tick counter. As shown in a previous

section, use this value to delay a task for a specific number of ticks and repeat this

periodically without losing track of time.

OSTimeSet() allows the user to change the current value of the tick counter. Although

μC/OS-III allows for this, it is recommended to use this function with great care.

11-5  OSTimeTick()

The tick Interrupt Service Routine (ISR) must call this function every time a tick interrupt

occurs. μC/OS-III uses this function to update time delays and timeouts on other system

calls. OSTimeTick() is considered an internal function to μC/OS-III.

11-6  SUMMARY

μC/OS-III provides services to applications so that tasks can suspend their execution for

user-defined time delays. Delays are either specified by a number of clock ticks or hours,

minutes, seconds, and milliseconds.

Application code can resume a delayed task by calling OSTimeDlyResume(). However, its

use is not recommended because resumed task will not know that they were resumed as

opposed to the time delay expired.

μC/OS-III keeps track of the number of ticks occurring since power up or since the number

of ticks counter was last changed by OSTimeSet(). The counter may be read by the

application code using OSTimeGet().
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12
Timer Management

μC/OS-III provides timer services to the application programmer and code to handle timers

is found in OS_TMR.C. Timer services are enabled when setting OS_CFG_TMR_EN to 1 in

OS_CFG.H. 

Timers are down counters that perform an action when the counter reaches zero. The user

provides the action through a callback function (or simply callback). A callback is a

user-declared function that will be called when the timer expires. The callback can be used

to turn a light on or off, start a motor, or perform other actions. However, it is important to

never make blocking calls within a callback function (i.e., call OSTimeDly(),

OSTimeDlyHMSM(), OS???Pend(), or anything that causes the timer task to block or be

deleted).

Timers are useful in protocol stacks (retransmission timers, for example), and can also be

used to poll I/O devices at predefined intervals. 

An application can have any number of timers (limited only by the amount of RAM

available). Timer services in μC/OS-III start with the OSTmr???() prefix, and the services

available to the application programmer are described in Appendix A, “μC/OS-III API

Reference Manual” on page 375.

The resolution of all the timers managed by μC/OS-III is determined by the configuration

constant: OS_CFG_TMR_TASK_RATE_HZ, which is expressed in Hertz (Hz). So, if the timer

task (described later) rate is set to 10, all timers have a resolution of 1/10th of a second

(ticks in the diagrams to follow). In fact, this is the typical recommended value for the timer

task. Timers are to be used with “coarse” granularity.
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μC/OS-III provides a number of services to manage timers as summarized in Table 12-1.

Table 12-1 Timer API summary

A timer needs to be created before it can be used. Create a timer by calling OSTmrCreate()

and specify a number of arguments to this function based on how the timer is to operate.

Once the timer operation is specified, its operating mode cannot be changed unless the

timer is deleted and recreated. The function prototype for OSTmrCreate() is shown below

as a quick reference:

Once created, a timer can be started (or restarted) and stopped as often as is necessary.

Timers can be created to operate in one of three modes: One-shot, Periodic (no initial

delay), and Periodic (with initial delay).

Function Name Operation

OSTmrCreate() Create and specify the operating mode of the timer.

OSTmrDel() Delete a timer.

OSTmrRemainGet() Obtain the remaining time left before the timer expires.

OSTmrStart() Start (or restart) a timer.

OSTmrStateGet() Obtain the current state of a timer.

OSTmrStop() Stop the countdown process of a timer.

void  OSTmrCreate (OS_TMR              *p_tmr,            /* Pointer to timer     */

                   CPU_CHAR            *p_name,           /* Name of timer, ASCII */

                   OS_TICK              dly,              /* Initial delay        */

                   OS_TICK              period,           /* Repeat period        */

                   OS_OPT               opt,              /* Options              */

                   OS_TMR_CALLBACK_PTR  p_callback,       /* Fnct to call at 0    */

                   void                *p_callback_arg,   /* Arg. to callback     */

                   OS_ERR              *p_err)
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12-1  ONE-SHOT TIMERS

As its name implies, a one-shot timer will countdown from its initial value, call the callback

function when it reaches zero, and stop. Figure 12-1 shows a timing diagram of this

operation. The countdown is initiated by calling OSTmrStart(). At the completion of the

time delay, the callback function is called, assuming a callback function was provided when

the timer was created. Once completed, the timer does not do anything unless restarted by

calling OSTmrStart(), at which point the process starts over. 

Terminate the countdown process of a timer (before it reaches zero) by calling

OSTmrStop(). In this case, specify that the callback function be called or not. 

Figure 12-1 One Shot Timers (dly > 0, period == 0)

As shown in Figure 12-2, a one-shot timer is retriggered by calling OSTmrStart() before the

timer reaches zero. This feature can be used to implement watchdogs and similar safeguards.

Figure 12-2 Retriggering a One Shot Timer
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12-2  PERIODIC (NO INITIAL DELAY)

As indicated in Figure 12-3, timers can be configured for periodic mode. When the

countdown expires, the callback function is called, the timer is automatically reloaded, and

the process is repeated. If specifying a delay of zero (i.e., dly == 0) when the timer is

created, when started, the timer immediately uses the “period” as the reload value. Calling

OSTmrStart() at any point in the countdown restarts the process.

Figure 12-3 Periodic Timers (dly == 0, period > 0)

12-3  PERIODIC (WITH INITIAL DELAY)

As shown in Figure 12-4, timers can be configured for periodic mode with an initial delay

that is different than its period. The first countdown count comes from the “dly” argument

passed in the OSTmrCreate() call, and the reload value is the “period”. Calling

OSTmrStart() restarts the process including the initial delay.

Figure 12-4 Periodic Timers (dly > 0, period > 0)
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12-4  TIMER MANAGEMENT INTERNALS

12-4-1  TIMER MANAGEMENT INTERNALS - TIMERS STATES

Figure 12-5 shows the state diagram of a timer. 

Tasks can call OSTmrStateGet() to find out the state of a timer. Also, at any time during the

countdown process, the application code can call OSTmrRemainGet() to find out how

much time remains before the timer reaches zero (0). The value returned is expressed in

“timer ticks.” If timers are decremented at a rate of 10 Hz then a count of 50 corresponds to

5 seconds. If the timer is in the stop state, the time remaining will correspond to either the

initial delay (one shot or periodic with initial delay), or the period if the timer is configured

for periodic without initial delay.

Figure 12-5 Timer State Diagram
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F12-5(1) The “Unused” state is a timer that has not been created or has been “deleted.”

In other words, μC/OS-III does not know about this timer. 

F12-5(2) When creating a timer or calling OSTmrStop(), the timer is placed in the

“stopped” state.

F12-5(3) A timer is placed in running state when calling OSTmrStart(). The timer stays

in that state unless it’s stopped, deleted, or completes its one shot. 

F12-5(4) The “Completed” state is the state a one-shot timer is in when its delay expires.

12-4-2  TIMER MANAGEMENT INTERNALS - OS_TMR

A timer is a kernel object as defined by the OS_TMR data type (see OS.H) as shown in

Listing 12-1.

The services provided by μC/OS-III to manage timers are implemented in the file OS_TMR.C.

A μC/OS-III licensee has access to the source code. In this case, timer services are enabled

at compile time by setting the configuration constant OS_CFG_TMR_EN to 1 in OS_CFG.H.

Listing 12-1 OS_TMR data type

typedef  struct  os_tmr  OS_TMR;               (1)

struct  os_tmr {

    OS_OBJ_TYPE          Type;                 (2) 

    CPU_CHAR            *NamePtr;              (3) 

    OS_TMR_CALLBACK_PTR  CallbackPtr;          (4)  

    void                *CallbackPtrArg;       (5)          

    OS_TMR              *NextPtr;              (6) 

    OS_TMR              *PrevPtr;          

    OS_TICK              Match;                (7)          

    OS_TICK              Remain;               (8)        

    OS_TICK              Dly;                  (9) 

    OS_TICK              Period;              (10) 

    OS_OPT               Opt;                 (11) 

    OS_STATE             State;               (12) 

};
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L12-1(1) In μC/OS-III, all structures are given a data type. In fact, all data types start with

“OS_” and are all uppercase. When a timer is declared, simply use OS_TMR as

the data type of the variable used to declare the timer.

L12-1(2) The structure starts with a “Type” field, which allows it to be recognized by

μC/OS-III as a timer. Other kernel objects will also have a “Type” as the first

member of the structure. If a function is passed a kernel object, μC/OS-III is

able to confirm that it is passed the proper data type. For example, if passing a

message queue (OS_Q) to a timer service (for example OSTmrStart()) then

μC/OS-III will be able to recognize that an invalid object was passed, and

return an error code accordingly.

L12-1(3) Each kernel object can be given a name for easier recognition by debuggers or

μC/Probe. This member is simply a pointer to an ASCII string which is assumed

to be NUL terminated.

L12-1(4) The .CallbackPtr member is a pointer to a function that is called when the

timer expires. If a timer is created and passed a NULL pointer, a callback would

not be called when the timer expires.

L12-1(5) If there is a non-NULL .CallbackPtr then the application code could have also

specified that the callback be called with an argument when the timer expires.

This is the argument that would be passed in this call.

L12-1(6) .NextPtr and .PrevPtr are pointers used to link a timer in a doubly linked

list. These are described later.

L12-1(7) A timer expires when the timer manager variable OSTmrTickCtr reaches the

value stored in a timer’s .Match field. This is also described later.

L12-1(8) The .Remain contains the amount of time remaining for the timer to expire.

This value is updated once per OS_CFG_TMR_WHEEL_SIZE (see OS_CFG_APP.H)

that the timer task executes (described later). The value is expressed in

multiples of 1/OS_CFG_TMR_TASK_RATE_HZ of a second (see OS_CFG_APP.H).
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L12-1(9) The .Dly field contains the one-shot time when the timer is configured

(i.e., created) as a one-shot timer and the initial delay when the timer is

created as a periodic timer. The value is expressed in multiples of

1/OS_CFG_TMR_TASK_RATE_HZ of a second (see OS_CFG_APP.H).

L12-1(10) The .Period is the timer period when the timer is created to operate in

periodic mode. The value is expressed in multiples of

1/OS_CFG_TMR_TASK_RATE_HZ of a second (see OS_CFG_APP.H).

L12-1(11) The .Opt field contains options as passed to OSTmrCreate().

L12-1(12) The .State field represents the current state of the timer (see Figure 12-5).

Even if the internals of the OS_TMR data type are understood, the application code should

never access any of the fields in this data structure directly. Instead, always use the

Application Programming Interfaces (APIs) provided with μC/OS-III.

12-4-3  TIMER MANAGEMENT INTERNALS - TIMER TASK

OS_TmrTask() is a task created by μC/OS-III (assumes setting OS_CFG_TMR_EN to 1 in

OS_CFG.H) and its priority is configurable by the user through μC/OS-III’s configuration

file OS_CFG_APP.H (see OS_CFG_TMR_TASK_PRIO). OS_TmrTask() is typically set to a

medium priority.

OS_TmrTask() is a periodic task and uses the same interrupt source used to generate clock

ticks. However, timers are generally updated at a slower rate (i.e., typically 10 Hz or so) and

thus, the timer tick rate is divided down in software. If the tick rate is 1000 Hz and the

desired timer rate is 10 Hz then the timer task will be signaled every 100th tick interrupt as

shown in Figure 12-6.
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Figure 12-6 Tick ISR and Timer Task relationship

Figure 12-7 shows timing diagram associated with the timer management task.

Figure 12-7 Timing Diagram

F12-7(1) The tick ISR occurs and assumes interrupts are enabled and executes.

F12-7(2) The tick ISR signals the tick task that it is time for it to update timers.
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F12-7(3) The tick ISR terminates, however there are higher priority tasks that need to

execute (assuming the timer task has a lower priority). Therefore, μC/OS-III

runs the higher priority task(s).

F12-7(4) When all higher priority tasks have executed, μC/OS-III switches to the timer

task and determines that there are three timers that expired.

F12-7(5) The callback for the first timer is executed. 

F12-7(6) The callback for the second expired timer is executed.

F12-7(7) The callback for the third expired timer is executed.

There are a few interesting things to notice:

■ Execution of the callback functions is performed within the context of the timer task.

This means that the application code will need to make sure there is sufficient stack

space for the timer task to handle these callbacks.

■ The callback functions are executed one after the other based on the order they are

found in the timer list.

■ The execution time of the timer task greatly depends on how many timers expire and

how long each of the callback functions takes to execute. Since the callbacks are

provided by the application code they have a large influence on the execution time of

the timer task. 

■ The timer callback functions must never wait on events that would delay the timer task

for excessive amounts of time, if not forever.

■ Callbacks are called with the scheduler locked, so you should ensure that callbacks

execute as quickly as possible. 
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12-4-4  TIMER MANAGEMENT INTERNALS - TIMER LIST

μC/OS-III might need to literally maintain hundreds of timers (if an application requires

that many). The timer list management needs to be implemented such that it does not

take too much CPU time to update the timers. The timer list works similarly to a tick list as

shown in Figure 12-8.

Figure 12-8 Empty Timer List

F12-8(1) The timer list consists of a table (OSCfg_TmrWheel[]) and a counter

(OSTmrTickCtr). 

F12-8(2) The table contains up to OS_CFG_TMR_WHEEL_SIZE entries, which is a compile

time configuration value (see OS_CFG_APP.H). The number of entries depends

on the amount of RAM available to the processor and the maximum number of

timers in the application. A good starting point for OS_CFG_TMR_WHEEL_SIZE

might be: #Timers/4. It is not recommended to make OS_CFG_TMR_WHEEL_SIZE

an even multiple of the timer task rate. In other words, if the timer task is 10 Hz,

avoid setting OS_CFG_TMR_WHEEL_SIZE to 10 or 100 (use 11 or 101 instead).

Also, use prime numbers for the timer wheel size. Although it is not really

possible to plan at compile time what will happen at run time, ideally the

number of timers waiting in each entry of the table is distributed uniformly. 
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F12-8(3) Each entry in the table contains three fields: .NbrEntriesMax, .NbrEntries

and .FirstPtr. .NbrEntries indicates how many timers are linked to this

table entry. .NbrEntriesMax keeps track of the highest number of entries in

the table. Finally, .FirstPtr contains a pointer to a doubly linked list of timers

(through the tasks OS_TMR) belonging into the list at that table position. 

The counter is incremented by OS_TmrTask() every time the tick ISR signals the task. 

Timers are inserted in the timer list by calling OSTmrStart(). However, a timer must be

created before it can be used.

An example to illustrate the process of inserting a timer in the timer list is as follows. Let’s

assume that the timer list is completely empty, OS_CFG_TMR_WHEEL_SIZE is configured to 9,

and the current value of OSTmrTickCtr is 12 as shown in Figure 12-9. A timer is placed in

the timer list when calling OSTmrStart(), and assumes that the timer was created with a

delay of 1 and that this timer will be a one-shot timer as follows:

Listing 12-2 Creating and Starting a timer

OS_TMR  MyTmr1;

OS_TMR  MyTmr2;

void MyTask (void *p_arg)

{

    OS_ERR  err;

    while (DEF_ON) {

        :

        OSTmrCreate((OS_TMR            *)&MyTmr1,

                    (OS_CHAR           *)�My Timer #1�,

                    (OS_TICK            )1,

                    (OS_TICK            )0,

                    (OS_OPT             )OS_OPT_TMR_ONE_SHOT,

                    (OS_TMR_CALLBACK_PTR)0;

                    (OS_ERR            *)&err;

        /* Check �err� */

        OSTmrStart ((OS_TMR *)&MyTmr1,

                    (OS_ERR *)&err);

        /* Check �err� */

        // Continues in the next code listing!  
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Since OSTmrTickCtr has a value of 12, the timer will expire when OSTmrTickCtr reaches

13, or during the next time the timer task is signaled. Timers are inserted in the

OSCfg_TmrWheel[] table using the following equation:

MatchValue                   = OSTmrTickCtr + dly

Index into OSCfg_TmrWheel[]  = MatchValue % OS_CFG_TMR_WHEEL_SIZE

Where “dly” (in this example) is the value passed in the third argument of OSTmrCreate()

(i.e., 1 in this example). Again, using the example, we arrive at the following:

MatchValue                   = 12 + 1

Index into OSCfg_TickWheel[] = 13 % 9

or,

MatchValue                   = 13

Index into OSCfg_TickWheel[] = 4

Because of the “circular” nature of the table (a modulo operation using the size of the

table), the table is referred to as a timer wheel, and each entry is a spoke in the wheel. 

The timer is entered at index 4 in the timer wheel, OSCfg_TmrWheel[]. In this case, the

OS_TMR is placed at the head of the list (i.e., pointed to by OSCfg_TmrWheel[4].FirstPtr),

and the number of entries at index 4 is incremented (i.e., OSCfg_TmrWheel[4].NbrEntries

will be 1). “MatchValue” is placed in the OS_TMR field .Match. Since this is the first timer

inserted in the timer list at index 4, the .NextPtr and .PrevPtr both point to NULL.

Figure 12-9 Inserting a timer in the timer list
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The code below shows creating and starting another timer. This is performed “before” the

timer task is signaled.

Listing 12-3 Creating and Starting a timer - continued

μC/OS-III will calculate the match value and index as follows:

MatchValue                  = 12 + 10

Index into OSCfg_TmrWheel[] = 22 % 9

or,

MatchValue                   = 22

Index into OSCfg_TickWheel[] =  4

The “second timer” will be inserted at the same table entry as shown in Figure 12-10, but

sorted so that the timer with the least amount of time remaining before expiration is placed

at the head of the list, and the timer with the longest to wait at the end.

        // Continuation of code from previous code listing.

        :

        :

        OSTmrCreate((OS_TMR            *)&MyTmr2,

                    (OS_CHAR           *)�My Timer #2�,

                    (OS_TICK            )10,

                    (OS_TICK            )0,

                    (OS_OPT             )OS_OPT_TMR_ONE_SHOT,

                    (OS_TMR_CALLBACK_PTR)0;

                    (OS_ERR            *)&err;

        /* Check �err� */

        OSTmrStart ((OS_TMR *)&MyTmr,

                    (OS_ERR *)&err);

        /* Check �err� */

    }

}
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Figure 12-10 Inserting a second timer in the tick list
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12-5  SUMMARY

Timers are down counters that perform an action when the counter reaches zero. The

action is provided by the user through a callback function. 

μC/OS-III allows application code to create any number of timers (limited only by the

amount of RAM available).

The callback functions are executed in the context of the timer task with the scheduler

locked. Keep callback functions as short and as fast as possible and do not have the

callbacks make blocking calls.
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13
Resource Management

This chapter will discuss services provided by μC/OS-III to manage shared resources. A

shared resource is typically a variable (static or global), a data structure, table (in RAM), or

registers in an I/O device.

When protecting a shared resource it is preferred to use mutual exclusion semaphores, as

will be described in this chapter. Other methods are also presented. 

Tasks can easily share data when all tasks exist in a single address space and can reference

global variables, pointers, buffers, linked lists, ring buffers, etc. Although sharing data

simplifies the exchange of information between tasks, it is important to ensure that each

task has exclusive access to the data to avoid contention and data corruption. 

For example, when implementing a module that performs a simple time-of-day algorithm in

software, the module obviously keeps track of hours, minutes and seconds. The

TimeOfDay() task may appear as that shown in Listing 13-1.

Imagine if this task was preempted by another task because an interrupt occurred, and, the

other task was more important than the TimeOfDay() task) after setting the Minutes to 0.

Now imagine what will happen if this higher priority task wants to know the current time

from the time-of-day module. Since the Hours were not incremented prior to the interrupt,

the higher-priority task will read the time incorrectly and, in this case, it will be incorrect by

a whole hour. 

The code that updates variables for the TimeOfDay() task must treat all of the variables

indivisibly (or atomically) whenever there is possible preemption. Time-of-day variables are

considered shared resources and any code that accesses those variables must have exclusive

access through what is called a critical section. μC/OS-III provides services to protect shared

resources and enables the easy creation of critical sections.
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Listing 13-1 Faulty Time-Of-Day clock task

The most common methods of obtaining exclusive access to shared resources and to create

critical sections are:

■ disabling interrupts

■ disabling the scheduler

■ using semaphores

■ using mutual exclusion semaphores (a.k.a. a mutex)

CPU_INT08U  Hours;

CPU_INT08U  Minutes;

CPU_INT08U  Seconds;

void  TimeOfDay (void *p_arg)

{

    OS_ERR  err;

    (void)&p_arg;

    while (DEF_ON) {

        OSTimeDlyHMSM(0, 

                      0, 

                      1, 

                      0, 

                      OS_OPT_TIME_HMSM_STRICT, 

                      &err);

        /* Examine �err� to make sure the call was successful */

        Seconds++;

        if (Seconds > 59) {

            Seconds = 0;

            Minutes++;

            if (Minutes > 59) {

                Minutes = 0;

                Hours++;

                if (Hours > 23) {

                    Hours = 0;

                }

            }

        }

    }

}



211

Resource Management

The mutual exclusion mechanism used depends on how fast the code will access a shared

resource, as shown in Table 13-1.

Table 13-1 Resource sharing

Resource Sharing Method When should you use?

Disable/Enable Interrupts When access to shared resource is very quick (reading from or writing 

to few variables) and access is faster than µC/OS-III’s interrupt 

disable time.

It is highly recommended to not use this method as it impacts 

interrupt latency.

Locking/Unlocking the Scheduler When access time to the shared resource is longer than µC/OS-III’s 

interrupt disable time, but shorter than µC/OS-III’s scheduler lock 

time.

Locking the scheduler has the same effect as making the task that 

locks the scheduler the highest-priority task.

It is recommended not to use this method since it defeats the 

purpose of using µC/OS-III. However, it is a better method than 

disabling interrupts, as it does not impact interrupt latency.

Semaphores When all tasks that need to access a shared resource do not have 

deadlines. This is because semaphores may cause unbounded 

priority inversions (described later). However, semaphore services are 

slightly faster (in execution time) than mutual-exclusion semaphores.

Mutual Exclusion Semaphores This is the preferred method for accessing shared resources, 

especially if the tasks that need to access a shared resource have 

deadlines.

Remember that µC/OS-III’s mutual exclusion semaphores have a 

built-in priority inheritance mechanism, which avoids unbounded 

priority inversions.

However, mutual exclusion semaphore services are slightly slower (in 

execution time) than semaphores since the priority of the owner may 

need to be changed, which requires CPU processing.
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13-1  DISABLE/ENABLE INTERRUPTS

The easiest and fastest way to gain exclusive access to a shared resource is by disabling and

enabling interrupts, as shown in the pseudo-code in Listing 13-2.

Listing 13-2 Disabling and Enabling Interrupts

μC/OS-III uses this technique (as do most, if not all, kernels) to access certain internal

variables and data structures, ensuring that these variables and data structures are

manipulated atomically. However, disabling and enabling interrupts are actually CPU-related

functions rather than OS-related functions and functions in CPU-specific files are provided

to accomplish this (see the CPU.H file of the processor being used). The services provided

in the CPU module are called μC/CPU. Each different target CPU architecture has its own set

of μC/CPU-related files.

Listing 13-3 Using CPU macros to disable and enable interrupts

L13-3(1) The CPU_SR_ALLOC() macro is required when the other two macros that

disable/enable interrupts are used. This macro simply allocates storage for a

local variable to hold the value of the current interrupt disable status of the

CPU. If interrupts are already disabled we do not want to enable them upon

exiting the critical section.

    Disable Interrupts;

    Access the resource;

    Enable  Interrupts;

void OS_Function (void) 

{

    CPU_SR_ALLOC();                 (1)

 

    CPU_CRITICAL_ENTER();           (2) 

    Access the resource;            (3) 

    CPU_CRITICAL_EXIT();            (4) 

}
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L13-3(2) CPU_CRITICAL_ENTER() saves the current state of the CPU interrupt disable

flag(s) in the local variable allocated by CPU_SR_ALLOC() and disables all

maskable interrupts.

L13-3(3) The critical section of code is then accessed without fear of being changed by

either an ISR or another task because interrupts are disabled. In other words,

this operation is now atomic.

L13-3(4) CPU_CRITICAL_EXIT() restores the previously saved interrupt disable status of

the CPU from the local variable.

CPU_CRITICAL_ENTER() and CPU_CRITICAL_EXIT() are always used in pairs. Interrupts

should be disabled for as short a time as possible as disabling interrupts impacts the

response of the system to interrupts. This is known as interrupt latency. Disabling and

enabling is used only when changing or copying a few variables.

Note, this is the only way that a task can share variables or data structures with an ISR.

μC/CPU provides a way to actually measure interrupt latency.

When using μC/OS-III, interrupts may be disabled for as much time as μC/OS-III does,

without affecting interrupt latency. Obviously, it is important to know how long μC/OS-III

disables interrupts, which depends on the CPU used. 

Although this method works, avoid disabling interrupts as it affects the responsiveness of

the system to real-time events.
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13-2  LOCK/UNLOCK

If the task does not share variables or data structures with an ISR, disable and enable

μC/OS-III’s scheduler while accessing the resource, as shown in Listing 13-4.

Listing 13-4 Accessing a resource with the scheduler locked

Using this method, two or more tasks share data without the possibility of contention. Note

that while the scheduler is locked, interrupts are enabled and if an interrupt occurs while in

the critical section, the ISR is executed immediately. At the end of the ISR, the kernel always

returns to the interrupted task even if a higher priority task is made ready to run by the ISR.

Since the ISR returns to the interrupted task, the behavior of the kernel is similar to that of a

non-preemptive kernel (while the scheduler is locked). 

OSSchedLock() and OSSchedUnlock() can be nested up to 250 levels deep. The scheduler

is invoked only when OSSchedUnlock() is called the same number of times the application

called OSSchedLock().

After the scheduler is unlocked, μC/OS-III performs a context switch if a higher priority task

is ready to run. 

μC/OS-III will not allow the user to make blocking calls when the scheduler is locked. If the

application were able to make blocking calls, the application would most likely fail.

Although this method works well, avoid disabling the scheduler as it defeats the purpose of

having a preemptive kernel. Locking the scheduler makes the current task the highest

priority task.

void OS_Function (void) 

{

    CPU_SR_ALLOC();                 (1) 

    CPU_CRITICAL_ENTER();           (2) 

    Access the resource;            (3) 

    CPU_CRITICAL_EXIT();            (4) 

}
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13-3  SEMAPHORES

A semaphore originally was a mechanical signaling mechanism. The railroad industry used

the device to provide a form of mutual exclusion for railroads tracks shared by more than

one train. In this form, the semaphore signaled trains by closing a set of mechanical arms to

block a train from a section of track that was currently in use. When the track became

available, the arm would swing up and the waiting train would then proceed.

The notion of using a semaphore in software as a means of synchronization was invented

by the Dutch computer scientist Edgser Dijkstra in 1959. In computer software, a

semaphore is a protocol mechanism offered by most multitasking kernels. Semaphores,

originally used to control access to shared resources, now are used for synchronization as

described in Chapter 14, “Synchronization” on page 251. However, it is useful to describe

how semaphores can be used to share resources. The pitfalls of semaphores will be

discussed in a later section.

A semaphore was originally a “lock mechanism” and code acquired the key to this lock to

continue execution. Acquiring the key means that the executing task has permission to

enter the section of otherwise locked code. Entering a section of locked code causes the

task to wait until the key becomes available.

Typically, two types of semaphores exist: binary semaphores and counting semaphores. As

its name implies, a binary semaphore can only take two values: 0 or 1. A counting

semaphore allows for values between 0 and 255, 65,535, or 4,294,967,295, depending on

whether the semaphore mechanism is implemented using 8, 16, or 32 bits, respectively. For

μC/OS-III, the maximum value of a semaphore is determined by the data type OS_SEM_CTR

(see OS_TYPE.H), which can be changed as needed (assuming μC/OS-III’s source code is

available). Along with the semaphore’s value, μC/OS-III also keeps track of tasks waiting for

the semaphore’s availability. 

Only tasks are allowed to use semaphores when semaphores are used for sharing resources;

ISRs are not allowed.

A semaphore is a kernel object defined by the OS_SEM data type, which is defined by the

structure os_sem (see OS.H). The application can have any number of semaphores (limited

only by the amount of RAM available).
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There are a number of operations the application is able to perform on semaphores,

summarized in Table 13-2. In this chapter, only three functions used most often are

discussed: OSSemCreate(), OSSemPend(), and OSSemPost(). Other functions are described

in Appendix A, “μC/OS-III API Reference Manual” on page 375. When semaphores are used

for sharing resources, every semaphore function must be called from a task and never from

an ISR. The same limitation does not apply when using semaphores for signaling, as

described later in Chapter 13.

Table 13-2 Semaphore API summary

Function Name Operation

OSSemCreate() Create a semaphore.

OSSemDel() Delete a semaphore.

OSSemPend() Wait on a semaphore.

OSSemPendAbort() Abort the wait on a semaphore.

OSSemPost() Release or signal a semaphore.

OSSemSet() Force the semaphore count to a desired value.



217

Resource Management

13-3-1  BINARY SEMAPHORES

A task that wants to acquire a resource must perform a Wait (or Pend) operation. If the

semaphore is available (the semaphore value is greater than 0), the semaphore value is

decremented, and the task continues execution (owning the resource). If the semaphore’s

value is 0, the task performing a Wait on the semaphore is placed in a waiting list. μC/OS-III

allows a timeout to be specified. If the semaphore is not available within a certain amount

of time, the requesting task is made ready to run, and an error code (indicating that a

timeout has occurred) is returned to the caller.

A task releases a semaphore by performing a Signal (or Post) operation. If no task is waiting

for the semaphore, the semaphore value is simply incremented. If there is at least one task

waiting for the semaphore, the highest-priority task waiting on the semaphore is made

ready to run, and the semaphore value is not incremented. If the readied task has a higher

priority than the current task (the task releasing the semaphore), a context switch occurs

and the higher-priority task resumes execution. The current task is suspended until it again

becomes the highest-priority task that is ready to run.

The operations described above are summarized using the pseudo-code shown in Listing 13-5.

Listing 13-5 Using a semaphore to access a shared resource

OS_SEM  MySem;                                (1) 

void  main (void)

{

    OS_ERR  err;

    :

    :

    OSInit(&err);

    :

    OSSemCreate(&MySem,                       (2) 

                �My Semaphore�,               (3) 

                1,                            (4) 

                &err);                        (5) 

    /* Check �err� */

    :

    /* Create task(s) */

    :

    OSStart(&err);

    (void)err;

}
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L13-5(1) The application must declare a semaphore as a variable of type OS_SEM. This

variable will be referenced by other semaphore services.

L13-5(2) Create a semaphore by calling OSSemCreate() and pass the address to the

semaphore allocated in (1). The semaphore must be created before it can be

used by other tasks. Here, the semaphore is initialized in startup code (i.e.,

main ()), however it could also be initialized by a task (but it must be

initialized before it is used).

L13-5(3) Assign an ASCII name to the semaphore, which can be used by debuggers or

μC/Probe to easily identify the semaphore. Storage for the ASCII characters is

typically in ROM, which is typically more plentiful than RAM. If it is necessary

to change the name of the semaphore at runtime, store the characters in an

array in RAM and simply pass the address of the array to OSSemCreate(). Of

course, the array must be NUL terminated.

L13-5(4) Specify the initial value of the semaphore. Initialize the semaphore to 1 when

the semaphore is used to access a single shared resource (as in this example).

L13-5(5) OSSemCreate() returns an error code based on the outcome of the call. If all

the arguments are valid, err will contain OS_ERR_NONE. Refer to the description

of OSSemCreate() in Appendix A, “μC/OS-III API Reference Manual” on

page 375 for a list of other error codes and their meaning.
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Listing 13-6 Using a semaphore to access a shared resource

L13-6(6) The task pends (or waits) on the semaphore by calling OSSemPend(). The

application must specify the desired semaphore to wait upon, and the

semaphore must have been previously created.

L13-6(7) The next argument is a timeout specified in number of clock ticks. The actual

timeout depends on the tick rate. If the tick rate (see OS_CFG_APP.H) is set to

1000, a timeout of 10 ticks represents 10 milliseconds. Specifying a timeout of

zero (0) means waiting forever for the semaphore.

void  Task1 (void *p_arg)

{

    OS_ERR  err;

    CPU_TS  ts;

    while (DEF_ON) {

        :

        OSSemPend(&MySem,                              (6) 

                  0,                                   (7) 

                  OS_OPT_PEND_BLOCKING,                (8) 

                  &ts,                                 (9) 

                  &err);                              (10) 

        switch (err) {

            case OS_ERR_NONE:

                 Access Shared Resource;              (11) 

                 OSSemPost(&MySem,                    (12) 

                           OS_OPT_POST_1,             (13) 

                           &err);                     (14) 

                 /* Check �err� */

                 break;

            case OS_ERR_PEND_ABORT:

                 /* The pend was aborted by another task     */

                 break;

            case OS_ERR_OBJ_DEL:

                 /* The semaphore was deleted                */

                 break;

            default:

                 /* Other errors                             */

        }

        :

    }

}
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L13-6(8) The third argument specifies how to wait. There are two options:

OS_OPT_PEND_BLOCKING and OS_OPT_PEND_NON_BLOCKING. The blocking

option means that if the semaphore is not available, the task calling

OSSemPend() will wait until the semaphore is posted or until the timeout

expires. The non-blocking option indicates that if the semaphore is not

available, OSSemPend() will return immediately and not wait. This last option is

rarely used when using a semaphore to protect a shared resource.

L13-6(9) When the semaphore is posted, μC/OS-III reads a “timestamp” and returns this

timestamp when OSSemPend() returns. This feature allows the application to

know “when” the post happened and the semaphore was released. At this

point, OS_TS_GET() is read to get the current timestamp and compute the

difference, indicating the length of the wait.

L13-6(10) OSSemPend() returns an error code based on the outcome of the call. If the call

is successful, err will contain OS_ERR_NONE. If not, the error code will indicate

the reason for the error. See Appendix A, “μC/OS-III API Reference Manual” on

page 375 for a list of possible error code for OSSemPend(). Checking for error

return values is important since other tasks might delete or otherwise abort the

pend. However, it is not a recommended practice to delete kernel objects at

run time as the action may cause serious problems.

L13-6(11) The resource can be accessed when OSSemPend() returns, if there are no

errors.

L13-6(12) When finished accessing the resource, simply call OSSemPost() and specify the

semaphore to be released.

L13-6(13) OS_OPT_POST_1 indicates that the semaphore is signaling a single task, if there

are many tasks waiting on the semaphore. In fact, always specify this option

when a semaphore is used to access a shared resource.

L13-6(14) As with most μC/OS-III functions, specify the address of a variable that will

receive an error message from the call.
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Listing 13-7 Using a semaphore to access a shared resource

L13-7(15) Another task wanting to access the shared resource needs to use the same

procedure to access the shared resource.

void  Task2 (void *p_arg)

{

    OS_ERR  err;

    CPU_TS  ts;

    while (DEF_ON) {

        :

        OSSemPend(&MySem,                             (15) 

                  0,                       

                  OS_OPT_PEND_BLOCKING,     

                  &ts,                      

                  &err); 

        switch (err) {

            case OS_ERR_NONE:

                 Access Shared Resource;

                 OSSemPost(&MySem,      

                           OS_OPT_POST_1,

                           &err);        

                 /* Check �err� */

                 break;

            case OS_ERR_PEND_ABORT:

                 /* The pend was aborted by another task     */

                 break;

            case OS_ERR_OBJ_DEL:

                 /* The semaphore was deleted                */

                 break;

            default:

                 /* Other errors                             */

        }

        :

    }

}
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Semaphores are especially useful when tasks share I/O devices. Imagine what would

happen if two tasks were allowed to send characters to a printer at the same time. The

printer would contain interleaved data from each task. For instance, the printout from

Task 1 printing “I am Task 1,” and Task 2 printing “I am Task 2,” could result in “I Ia amm T

Tasask k1 2”. In this case, use a semaphore and initialize it to 1 (i.e., a binary semaphore).

The rule is simple: to access the printer each task must first obtain the resource’s

semaphore. Figure 13-1 shows tasks competing for a semaphore to gain exclusive access to

the printer. Note that a key, indicating that each task must obtain this key to use the printer,

represents the semaphore symbolically.

Figure 13-1 Using a semaphore to access a printer

The above example implies that each task knows about the existence of the semaphore to

access the resource. It is almost always better to encapsulate the critical section and its

protection mechanism. Each task would therefore not know that it is acquiring a semaphore

when accessing the resource. For example, an RS-232C port is used by multiple tasks to

send commands and receive responses from a device connected at the other end as shown

in Figure 13-2.

Task
2

Task
1

OSSemPend()

Access Printer

OSSemPost()

OSSemPend()

AccessPrinter

OSSemPost()

Printer



223

Resource Management

Figure 13-2 Hiding a semaphore from a task

The function CommSendCmd() is called with three arguments: the ASCII string containing the

command, a pointer to the response string from the device, and finally, a timeout in case the

device does not respond within a certain amount of time. The pseudo-code for this function

is shown in Listing 13-8.

Listing 13-8 Encapsulating the use of a semaphore

APP_ERR  CommSendCmd (CPU_CHAR  *cmd,

                      CPU_CHAR  *response,

                      OS_TICK    timeout)

{

    Acquire serial port�s semaphore;

    Send �cmd� to device;

    Wait for response with �timeout�;

    if (timed out) {

        Release serial port�s semaphore;

        return (error code);

    } else {

        Release serial port�s semaphore;

        return (no error);

    }

}
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Each task that needs to send a command to the device must call this function. The

semaphore is assumed to be initialized to 1 (i.e., available) by the communication driver

initialization routine. The first task that calls CommSendCmd() acquires the semaphore,

proceeds to send the command, and waits for a response. If another task attempts to send a

command while the port is busy, this second task is suspended until the semaphore is

released. The second task appears simply to have made a call to a normal function that will

not return until the function performs its duty. When the semaphore is released by the first

task, the second task acquires the semaphore and is allowed to use the RS-232C port.

13-3-2  COUNTING SEMAPHORES

A counting semaphore is used when elements of a resource can be used by more than one

task at the same time. For example, a counting semaphore is used in the management of a

buffer pool, as shown in Figure 13-3. Assume that the buffer pool initially contains 10

buffers. A task obtains a buffer from the buffer manager by calling BufReq(). When the

buffer is no longer needed, the task returns the buffer to the buffer manager by calling

BufRel(). The pseudo-code for these functions is shown in Listing 13-9.

The buffer manager satisfies the first 10 buffer requests because the semaphore is initialized

to 10. When all buffers are used, a task requesting a buffer is suspended until a buffer

becomes available. Use μC/OS-III’s OSMemGet() and OSMemPut() (see Chapter 17, “Memory

Management” on page 323) to obtain a buffer from the buffer pool. When a task is finished

with the buffer it acquired, the task calls BufRel() to return the buffer to the buffer

manager and the buffer is inserted into the linked list before the semaphore is signaled. By

encapsulating the interface to the buffer manager in BufReq() and BufRel(), the caller

does not need to be concerned with actual implementation details. 
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Figure 13-3 Using a counting semaphore

Listing 13-9 Buffer management using a semaphore.

BUF  *BufReq (void) 

{

    BUF  *ptr;

    Wait on semaphore;

    ptr = OSMemGet(...) ;                    /* Get a buffer      */

    return (ptr); 

}

void  BufRel (BUF *ptr) 

{

    OSMemPut(..., (void *)ptr, ...);         /* Return the buffer */

    Signal semaphore; 

} 
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Note that the details of creating the memory partition are removed since this is discussed in

Chapter 17, “Memory Management” on page 323. The semaphore is used here to extend the

memory management capabilities of μC/OS-III, and to provide it with a blocking

mechanism. However, only tasks can make BufReq() and BufRel() calls.

13-3-3  NOTES ON SEMAPHORES

Using a semaphore to access a shared resource does not increase interrupt latency. If an ISR

or the current task makes a higher priority task ready to run while accessing shared data,

the higher priority task executes immediately.

An application may have as many semaphores as required to protect a variety of different

resources. For example, one semaphore may be used to access a shared display, another to

access a shared printer, another for shared data structures, and another to protect a pool of

buffers, etc. However, it is preferable to use semaphores to protect access to I/O devices

rather than memory locations.

Semaphores are often overused. The use of a semaphore to access a simple shared variable

is overkill in most situations. The overhead involved in acquiring and releasing the

semaphore consumes valuable CPU time. Perform the job more efficiently by disabling and

enabling interrupts, however there is an indirect cost to disabling interrupts: even higher

priority tasks that do not share the specific resource are blocked from using the CPU.

Suppose, for instance, that two tasks share a 32-bit integer variable. The first task increments

the variable, while the second task clears it. When considering how long a processor takes

to perform either operation, it is easy to see that a semaphore is not required to gain

exclusive access to the variable. Each task simply needs to disable interrupts before

performing its operation on the variable and enable interrupts when the operation is

complete. A semaphore should be used if the variable is a floating-point variable and the

microprocessor does not support hardware floating-point operations. In this case, the time

involved in processing the floating-point variable may affect interrupt latency if interrupts

are disabled.

Semaphores are subject to a serious problem in real-time systems called priority inversion,

which is described in section 13-3-5 “Priority Inversions” on page 232. 
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13-3-4  SEMAPHORE INTERNALS (FOR RESOURCE SHARING)

As previously mentioned, a semaphore is a kernel object as defined by the OS_SEM data

type, which is derived from the structure os_sem (see OS.H) as shown in Listing 13-10. 

The services provided by μC/OS-III to manage semaphores are implemented in the file

OS_SEM.C. μC/OS-III licensees have access to the source code. In this case, semaphore

services are enabled at compile time by setting the configuration constant OS_CFG_SEM_EN

to 1 in OS_CFG.H. 

Listing 13-10 OS_SEM data type

L13-10(1) In μC/OS-III, all structures are given a data type. All data types start with “OS_”

and are uppercase. When a semaphore is declared, simply use OS_SEM as the

data type of the variable used to declare the semaphore.

L13-10(2) The structure starts with a “Type” field, which allows it to be recognized by

μC/OS-III as a semaphore. Other kernel objects will also have a “.Type” as the

first member of the structure. If a function is passed a kernel object, μC/OS-III

will confirm that it is being passed the proper data type. For example, if

passing a message queue (OS_Q) to a semaphore service (for example

OSSemPend()), μC/OS-III will recognize that an invalid object was passed, and

return an error code accordingly.

L13-10(3) Each kernel object can be given a name for easier recognition by debuggers or

μC/Probe. This member is simply a pointer to an ASCII string, which is

assumed to be NUL terminated.

typedef  struct  os_sem  OS_SEM;              (1) 

struct  os_sem {

    OS_OBJ_TYPE          Type;                (2) 

    CPU_CHAR            *NamePtr;             (3) 

    OS_PEND_LIST         PendList;            (4) 

    OS_SEM_CTR           Ctr;                 (5) 

    CPU_TS               TS;                  (6) 

};
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L13-10(4) Since it is possible for multiple tasks to wait (or pend) on a semaphore, the

semaphore object contains a pend list as described in Chapter 10, “Pend Lists

(or Wait Lists)” on page 177.

L13-10(5) A semaphore contains a counter. As explained above, the counter can be

implemented as either an 8-, 16- or 32-bit value, depending on how the data

type OS_SEM_CTR is declared in OS_TYPE.H. 

μC/OS-III does not make a distinction between binary and counting

semaphores. The distinction is made when the semaphore is created. If creating

a semaphore with an initial value of 1, it is a binary semaphore. When creating

a semaphore with a value > 1, it is a counting semaphore. In the next chapter,

we discover that a semaphore is more often used as a signaling mechanism and

therefore, the semaphore counter is initialized to zero.

L13-10(6) A semaphore contains a timestamp used to indicate the last time the semaphore

was posted. μC/OS-III assumes the presence of a free-running counter that

allows the application to make time measurements. When the semaphore is

posted, the free-running counter is read and the value is placed in this field,

which is returned when OSSemPend() is called. The value of this field is more

useful when a semaphore is used as a signaling mechanism (see Chapter 14,

“Synchronization” on page 251), as opposed to a resource-sharing mechanism.

Even if the user understands the internals of the OS_SEM data type, the application code

should never access any of the fields in this data structure directly. Instead, always use the

APIs provided with μC/OS-III.

As previously mentioned, semaphores must be created before they can be used by an

application. 

A task waits on a semaphore before accessing a shared resource by calling OSSemPend() as

shown in Listing 13-11 (see Appendix A, “μC/OS-III API Reference Manual” on page 375 for

details regarding the arguments).
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Listing 13-11 Pending on and Posting to a Semaphore

L13-11(1) When called, OSSemPend() starts by checking the arguments passed to this

function to make sure they have valid values.

If the semaphore counter (.Ctr of OS_SEM) is greater than zero, the counter is

decremented and OSSemPend() returns. If OSSemPend() returns without error,

then the task now owns the shared resource.

When the semaphore counter is zero, this indicates that another task owns the

semaphore, and the calling task may need to wait for the semaphore to be

released. If specifying OS_OPT_PEND_NON_BLOCKING as the option (the

application does not want the task to block), OSSemPend() returns immediately

to the caller and the returned error code indicates that the semaphore is

unavailable. Use this option if the task does not want to wait for the resource to

be available, and would prefer to do something else and check back later.

OS_SEM  MySem;

void MyTask (void *p_arg)

{

    OS_ERR  err;

    CPU_TS  ts;

    

    :   

    while (DEF_ON) {

        :

        OSSemPend(&MySem,               /* (1) Pointer to semaphore                         */

                  10,                   /*     Wait up until this time for the semaphore    */

                  OS_OPT_PEND_BLOCKING, /*     Option(s)                                    */

                  &ts,                  /*     Returned timestamp of when sem. was released */

                  &err);                /*     Pointer to Error returned                    */

        :

        /* Check �err� */               /* (2)                                              */

        :

        OSSemPost(&MySem,               /* (3) Pointer to semaphore                         */

                  OS_OPT_POST_1,        /*     Option(s) � always OS_OPT_POST_1             */

                  &err);                /*     Pointer to Error returned                    */

        /* Check �err� */

        :

        :

    }

}
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If specifying the OS_OPT_PEND_BLOCKING option, the calling task will be

inserted in the list of tasks waiting for the semaphore to become available. The

task is inserted in the list by priority order and therefore, the highest priority

task waiting on the semaphore is at the beginning of the list. 

If specifying a non-zero timeout, the task will also be inserted in the tick list. A

zero value for a timeout indicates that the user is willing to wait forever for the

semaphore to be released. Most of the time, specify an infinite timeout when

using the semaphore in resource sharing. Adding a timeout may temporarily

break a deadlock, however, there are better ways of preventing deadlock at the

application level (e.g., never hold more than one semaphore at the same time;

resource ordering; etc.).

The scheduler is called since the current task is no longer able to run (it is

waiting for the semaphore to be released). The scheduler will then run the next

highest-priority task that is ready to run.

When the semaphore is released and the task that called OSSemPend() is again

the highest-priority task, μC/OS-III examines the task status to determine the

reason why OSSemPend() is returning to its caller. The possibilities are: 

1) The semaphore was given to the waiting task

2) The pend was aborted by another task

3) The semaphore was not posted within the specified timeout

4) The semaphore was deleted

When OSSemPend() returns, the caller is notified of the above outcome

through an appropriate error code.
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L13-11(2) If OSSemPend() returns with err set to OS_ERR_NONE, assume that you now

have access to the resource. 

If err contains anything else, OSSemPend() either timed out (if the timeout

argument was non-zero), the pend was aborted by another task, or the

semaphore was deleted by another task. It is always important to examine the

returned error code and not assume that everything went well. 

L13-11(3) When the task is finished accessing the resource, it needs to call OSSemPost()

and specify the same semaphore. Again, OSSemPost() starts by checking the

arguments passed to this function to make sure there are valid values.

OSSemPost() then calls OS_TS_GET() to obtain the current timestamp so it can

place that information in the semaphore to be used by OSSemPend().

OSSemPost() checks to see if any tasks are waiting for the semaphore. If not,

OSSemPost() simply increments p_sem->Ctr, saves the timestamp in the

semaphore, and returns.

If there are tasks waiting for the semaphore to be released, OSSemPost()

extracts the highest-priority task waiting for the semaphore. This is a fast

operation as the pend list is sorted by priority order.

When calling OSSemPost(), it is possible to specify as an option to not call the

scheduler. This means that the post is performed, but the scheduler is not

called even if a higher priority task waits for the semaphore to be released. This

allows the calling task to perform other post functions (if needed) and make all

posts take effect simultaneously without the possibility of context switching in

between each post. 
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13-3-5  PRIORITY INVERSIONS

Priority inversion is a problem in real-time systems, and occurs only when using a

priority-based preemptive kernel. Figure 13-4 illustrates a priority-inversion scenario. Task H

(high priority) has a higher priority than Task M (medium priority), which in turn has a

higher priority than Task L (low priority).

Figure 13-4 Unbounded priority Inversion

F13-4(1) Task H and Task M are both waiting for an event to occur and Task L is

executing. 

F13-4(2) At some point, Task L acquires a semaphore, which it needs before it can

access a shared resource. 

F13-4(3) Task L performs operations on the acquired resource. 

F13-4(4) The event that Task H was waiting for occurs, and the kernel suspends Task L

and start executing Task H since Task H has a higher priority. 

F13-4(5) Task H performs computations based on the event it just received.
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F13-4(6) Task H now wants to access the resource that Task L currently owns (i.e., it

attempts to get the semaphore that Task L owns). Because Task L owns the

resource, Task H is placed in a list of tasks waiting for the semaphore to be free. 

F13-4(7) Task L is resumed and continues to access the shared resource.

F13-4(8) Task L is preempted by Task M since the event that Task M was waiting for

occurred. 

F13-4(9) Task M handles the event.

F13-4(10) When Task M completes, the kernel relinquishes the CPU back to Task L. 

F13-4(11) Task L continues accessing the resource.

F13-4(12) Task L finally finishes working with the resource and releases the semaphore.

At this point, the kernel knows that a higher-priority task is waiting for the

semaphore, and a context switch takes place to resume Task H. 

F13-4(13) Task H has the semaphore and can access the shared resource.

So, what happened here is that the priority of Task H has been reduced to that of Task L

since it waited for the resource that Task L owned. The trouble begins when Task M

preempted Task L, further delaying the execution of Task H. This is called an unbounded

priority inversion. It is unbounded because any medium priority can extend the time Task

H has to wait for the resource. Technically, if all medium-priority tasks have known

worst-case periodic behavior and bounded execution times, the priority inversion time is

computable. This process, however, may be tedious and would need to be revised every

time the medium priority tasks change.

This situation can be corrected by raising the priority of Task L, only during the time it takes

to access the resource, and restore the original priority level when the task is finished. The

priority of Task L should be raised up to the priority of Task H. μC/OS-III contains a special

type of semaphore that does just that called a mutual-exclusion semaphore.
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13-4  MUTUAL EXCLUSION SEMAPHORES (MUTEX)

μC/OS-III supports a special type of binary semaphore called a mutual exclusion

semaphore (also known as a mutex) that eliminates unbounded priority inversions.

Figure 13-5 shows how priority inversions are bounded using a Mutex.

Figure 13-5 Using a mutex to share a resource

F13-5(1) Task H and Task M are both waiting for an event to occur and Task L is

executing. 

F13-5(2) At some point, Task L acquires a mutex, which it needs before it is able to

access a shared resource. 

F13-5(3) Task L performs operations on the acquired resource. 

F13-5(4) The event that Task H waited for occurs and the kernel suspends Task L and

begins executing Task H since Task H has a higher priority. 
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F13-5(5) Task H performs computations based on the event it just received.

F13-5(6) Task H now wants to access the resource that Task L currently owns (i.e., it

attempts to get the mutex from Task L). Given that Task L owns the resource,

μC/OS-III raises the priority of Task L to the same priority as Task H to allow

Task L to finish with the resource and prevent Task L from being preempted by

medium-priority tasks. 

F13-5(7) Task L continues accessing the resource, however it now does so while it is

running at the same priority as Task H. Note that Task H is not actually running

since it is waiting for Task L to release the mutex. In other words, Task H is in

the mutex wait list.

F13-5(8) Task L finishes working with the resource and releases the mutex. μC/OS-III

notices that Task L was raised in priority and thus lowers Task L to its original

priority. After doing so, μC/OS-III gives the mutex to Task H, which was

waiting for the mutex to be released.

F13-5(9) Task H now has the mutex and can access the shared resource.

F13-5(10) Task H is finished accessing the shared resource, and frees up the mutex.

F13-5(11) There are no higher-priority tasks to execute, therefore Task H continues

execution.

F13-5(12) Task H completes and decides to wait for an event to occur. At this point,

μC/OS-III resumes Task M, which was made ready to run while Task H or Task

L were executing.

F13-5(13) Task M executes.

Note that there is no priority inversion, only resource sharing. Of course, the faster Task L

accesses the shared resource and frees up the mutex, the better.

μC/OS-III implements full-priority inheritance and therefore if a higher priority requests the

resource, the priority of the owner task will be raised to the priority of the new requestor.
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A mutex is a kernel object defined by the OS_MUTEX data type, which is derived from the

structure os_mutex (see OS.H). An application may have an unlimited number of mutexes

(limited only by the RAM available).

Only tasks are allowed to use mutual exclusion semaphores (ISRs are not allowed).

μC/OS-III enables the user to nest ownership of mutexes. If a task owns a mutex, it can

own the same mutex up to 250 times. The owner must release the mutex an equivalent

number of times. In several cases, an application may not be immediately aware that it

called OSMutexPend() multiple times, especially if the mutex is acquired again by calling a

function as shown in Listing 13-12.

OS_MUTEX           MyMutex;

SOME_STRUCT        MySharedResource;

void  MyTask (void *p_arg)

{

    OS_ERR  err;

    CPU_TS  ts;

    

    :

    while (DEF_ON) {

        OSMutexPend((OS_MUTEX *)&MyMutex,                      (1) 

                    (OS_TICK   )0,

                    (OS_OPT    )OS_OPT_PEND_BLOCKING,

                    (CPU_TS   *)&ts,

                    (OS_ERR   *)&err);

        /* Check �err�                                 */      (2) 

        /* Acquire shared resource if no error         */

        MyLibFunction();                                       (3) 

        OSMutexPost((OS_MUTEX *)&MyMutex,                      (7) 

                    (OS_OPT    )OS_OPT_POST_NONE,

                    (OS_ERR   *)&err);

        /* Check �err�                                 */

    }

}
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Listing 13-12 Nesting calls to OSMutexPend()

L13-12(1) A task starts by pending on a mutex to access shared resources.

OSMutexPend() sets a nesting counter to 1.

L13-12(2) Check the error return value. If no errors exist, MyTask() owns

MySharedResource.

L13-12(3) A function is called that will perform additional work. 

L13-12(4) The designer of MyLibFunction() knows that, to access MySharedResource, it

must acquire the mutex. Since the calling task already owns the mutex, this

operation should not be necessary. However, MyLibFunction() could have

been called by yet another function that might not need access to

MySharedResource. μC/OS-III allows nested mutex pends, so this is not a

problem. The mutex nesting counter is thus incremented to 2.

L13-12(5) MyLibFunction() can access the shared resource.

void  MyLibFunction (void)

{

    OS_ERR  err;

    CPU_TS  ts;

    OSMutexPend((OS_MUTEX *)&MyMutex,                          (4) 

                (OS_TICK   )0,

                (OS_OPT    )OS_OPT_PEND_BLOCKING,

                (CPU_TS   *)&ts,

                (OS_ERR   *)&err);

    /* Check �err�                         */

    /* Access shared resource if no error  */                  (5)

    OSMutexPost((OS_MUTEX *)&MyMutex,                          (6) 

                (OS_OPT    )OS_OPT_POST_NONE,

                (OS_ERR   *)&err);

    /* Check �err�                         */

}
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L13-12(6) The mutex is released and the nesting counter is decremented back to 1. Since

this indicates that the mutex is still owned by the same task, nothing further

needs to be done, and OSMutexPost() simply returns. MyLibFunction()

returns to its caller.

L13-12(7) The mutex is released again and, this time, the nesting counter is decremented

back to 0 indicating that other tasks can now acquire the mutex. 

Always check the return value of OSMutexPend() (and any kernel call) to ensure that the

function returned because you properly obtained the mutex, and not because the return

from OSMutexPend() was caused by the mutex being deleted, or because another task

called OSMutexPendAbort() on this mutex.

As a general rule, do not make function calls in critical sections. All mutual exclusion

semaphore calls should be in the leaf nodes of the source code (e.g., in the low level

drivers that actually touches real hardware or in other reentrant function libraries).

There are a number of operations that can be performed on a mutex, as summarized in

Table 13-3. However, in this chapter, we will only discuss the three functions that most

often used: OSMutexCreate(), OSMutexPend(), and OSMutexPost(). Other functions are

described in Appendix A, “μC/OS-III API Reference Manual” on page 375.

Table 13-3 Mutex API summary

Function Name Operation

OSMutexCreate() Create a mutex.

OSMutexDel() Delete a mutex.

OSMutexPend() Wait on a mutex.

OSMutexPendAbort() Abort the wait on a mutex.

OSMutexPost() Release a mutex.
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13-4-1  MUTUAL EXCLUSION SEMAPHORE INTERNALS

A mutex is a kernel object defined by the OS_MUTEX data type, which is derived from the

structure os_mutex (see OS.H) as shown in Listing 13-13:

Listing 13-13 OS_MUTEX data type

L13-13(1) In μC/OS-III, all structures are given a data type. All data types begin with

“OS_” and are uppercase. When a mutex is declared, simply use OS_MUTEX as

the data type of the variable used to declare the mutex.

L13-13(2) The structure starts with a “Type” field, which allows it to be recognized by

μC/OS-III as a mutex. Other kernel objects may also have a “.Type” as the first

member of the structure. If a function is passed a kernel object, μC/OS-III will

be able to confirm that it is being passed the proper data type. For example, if

passing a message queue (OS_Q) to a mutex service (for example

OSMutexPend()), μC/OS-III will recognize that the application passed an

invalid object and return an error code accordingly.

L13-13(3) Each kernel object can be given a name to make them easier to recognize by

debuggers or μC/Probe. This member is simply a pointer to an ASCII string,

which is assumed to be NUL terminated.

L13-13(4) Because it is possible for multiple tasks to wait (or pend on a mutex), the

mutex object contains a pend list as described in Chapter 10, “Pend Lists (or

Wait Lists)” on page 177.

typedef  struct  os_mutex  OS_MUTEX;          (1)

 

struct  os_mutex {

    OS_OBJ_TYPE          Type;                (2) 

    CPU_CHAR            *NamePtr;             (3) 

    OS_PEND_LIST         PendList;            (4) 

    OS_TCB              *OwnerTCBPtr;         (5) 

    OS_PRIO              OwnerOriginalPrio;   (6) 

    OS_NESTING_CTR       OwnerNestingCtr;     (7) 

    CPU_TS               TS;                  (8) 

};
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L13-13(5) If the mutex is owned by a task, it will point to the OS_TCB of that task.

L13-13(6) If the mutex is owned by a task, this field contains the “original” priority of the

task that owns the mutex. This field is required in case the priority of the task

must be raised to a higher priority to prevent unbounded priority inversions.

L13-13(7) μC/OS-III allows a task to “acquire” the same mutex multiple times. In order for

the mutex to be released, the owner must release the mutex the same number

of times that it was acquired. Nesting can be performed up to 250-levels deep.

L13-13(8) A mutex contains a timestamp, used to indicate the last time it was released.

μC/OS-III assumes the presence of a free-running counter that allows

applications to make time measurements. When the mutex is released, the

free-running counter is read and the value is placed in this field, which is

returned when OSMutexPend() returns. 

Application code should never access any of the fields in this data structure directly. Instead,

always use the APIs provided with μC/OS-III.

A mutual exclusion semaphore (mutex) must be created before it can be used by an

application. Listing 13-14 shows how to create a mutex.

Listing 13-14 Creating a mutex

OS_MUTEX  MyMutex;                           (1)

void  MyTask (void *p_arg)

{

    OS_ERR  err;

    :   

    :

    OSMutexCreate(&MyMutex,                  (2) 

                 �My Mutex�,                 (3) 

                 &err);                      (4) 

    /* Check �err� */

    :

    :

}
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L13-14(1) The application must declare a variable of type OS_MUTEX. This variable will be

referenced by other mutex services.

L13-14(2) Create a mutex by calling OSMutexCreate() and pass the address to the mutex

allocated in (1).

L13-14(3) Assign an ASCII name to the mutex, which can be used by debuggers or

μC/Probe to easily identify this mutex. There are no practical limits to the

length of the name since μC/OS-III stores a pointer to the ASCII string, and not

to the actual characters that makes up the string.

L13-14(4) OSMutexCreate() returns an error code based on the outcome of the call. If

all the arguments are valid, err will contain OS_ERR_NONE.

Note that since a mutex is always a binary semaphore, there is no need to initialize a mutex

counter. 

A task waits on a mutual exclusion semaphore before accessing a shared resource by calling

OSMutexPend() as shown in Listing 13-15 (see Appendix A, “μC/OS-III API Reference

Manual” on page 375 for details regarding the arguments).
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Listing 13-15 Pending (or waiting) on a Mutual Exclusion Semaphore

L13-15(1) When called, OSMutexPend() starts by checking the arguments passed to this

function to make sure they have valid values.

If the mutex is available, OSMutexPend() assumes the calling task is now the

owner of the mutex and stores a pointer to the task’s OS_TCB in

p_mutex->OwnerTCPPtr, saves the priority of the task in

p_mutex->OwnerOriginalPrio, and sets a mutex nesting counter to 1.

OSMutexPend() then returns to its caller with an error code of OS_ERR_NONE.

If the task that calls OSMutexPend() already owns the mutex, OSMutexPend()

simply increments a nesting counter. Applications can nest calls to

OSMutexPend() up to 250-levels deep. In this case, the error returned will

indicate OS_ERR_MUTEX_OWNER.

OS_MUTEX  MyMutex;

void MyTask (void *p_arg)

{

    OS_ERR  err;

    CPU_TS  ts;

    :   

    while (DEF_ON) {

        :

        OSMutexPend(&MyMutex,             /* (1) Pointer to mutex                           */

                    10,                   /*     Wait up until this time for the mutex      */

                    OS_OPT_PEND_BLOCKING, /*     Option(s)                                  */

                    &ts,                  /*     Timestamp of when mutex was released       */

                    &err);                /*     Pointer to Error returned                  */

        :

        /* Check �err�                       (2)                                            */

        :

        OSMutexPost(&MyMutex,             /* (3) Pointer to mutex                           */

                    OS_OPT_POST_NONE,

                    &err);                /*     Pointer to Error returned                  */

        /* Check �err�                                                                      */

        :

        :

    }

}
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If the mutex is already owned by another task and

OS_OPT_PEND_NON_BLOCKING is specified, OSMutexPend() returns since the

task is not willing to wait for the mutex to be released by its owner.

If the mutex is owned by a lower-priority task, μC/OS-III will raise the priority

of the owner to match the priority of the current task. 

If specifying OS_OPT_PEND_BLOCKING as the option, the calling task will be

inserted in the list of tasks waiting for the mutex to be available. The task is

inserted in the list by priority order and the highest priority task waiting on the

mutex is at the beginning of the list. 

If further specifying a non-zero timeout, the task will also be inserted in the

tick list. A zero value for a timeout indicates a willingness to wait forever for the

mutex to be released.

The scheduler is then called since the current task is no longer able to run (it is

waiting for the mutex to be released). The scheduler will then run the next

highest-priority task that is ready to run.

When the mutex is finally released and the task that called OSMutexPend() is

again the highest-priority task, a task status is examined to determine the

reason why OSMutexPend() is returning to its caller. The possibilities are: 

1) The mutex was given to the waiting task

2) The pend was aborted by another task

3) The mutex was not posted within the specified timeout

4) The mutex was deleted

When OSMutexPend() returns, the caller is notified of the outcome through an

appropriate error code.
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L13-15(2) If OSMutexPend() returns with err set to OS_ERR_NONE, assume that the calling

task now owns the resource and can proceed with accessing it. If err contains

anything else, then OSMutexPend() either timed out (if the timeout argument

was non-zero), the pend was aborted by another task, or the mutex was

deleted by another task. It is always important to examine returned error codes

and not assume everything went as planned. 

If “err� is OS_ERR_NESTING_OWNER, then the caller attempted to pend on the

same mutex.

L13-15(3) When your task is finished accessing the resource, it must call OSMutexPost()

and specify the same mutex. Again, OSMutexPost() starts by checking the

arguments passed to this function to make sure they contain valid values.

OSMutexPost() now calls OS_TS_GET() to obtain the current timestamp and

place that information in the mutex, which will be used by OSMutexPend().

OSMutexPost() decrements the nesting counter and, if still non-zero,

OSMutexPost() returns to the caller. In this case, the current owner has not

fully released the mutex. The error code will indicate OS_ERR_MUTEX_NESTING.

If there are no tasks waiting for the mutex, OSMutexPost() sets

p_mutex->OwnerTCBPtr to a NULL pointer and clears the mutex nesting

counter.

If μC/OS-III had to raise the priority of the mutex owner, it is returned to its

original priority at this time.

The highest-priority task waiting on the mutex is then extracted from the pend

list and given the mutex. This is a fast operation since the pend list is sorted by

priority.

The scheduler is called to see if the new mutex owner has a higher priority

than the current task. If so, μC/OS-III will switch context to the new mutex

owner.

You should note that you should only acquire one mutex at a time. In fact, it’s highly

recommended that when you acquire a mutex, you don’t acquire any other kernel objects.
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13-5  SHOULD YOU USE A SEMAPHORE INSTEAD OF A MUTEX?

A semaphore can be used instead of a mutex if none of the tasks competing for the shared

resource have deadlines to be satisfied. 

However, if there are deadlines to meet, you should use a mutex prior to accessing shared

resources. Semaphores are subject to unbounded priority inversions, while mutex are not.

13-6  DEADLOCKS (OR DEADLY EMBRACE)

A deadlock, also called a deadly embrace, is a situation in which two tasks are each

unknowingly waiting for resources held by the other. 

Assume Task T1 has exclusive access to Resource R1 and Task T2 has exclusive access to

Resource R2 as shown in the pseudo-code of Listing 13-16. 

void T1 (void *p_arg)

{

    while (DEF_ON) {

        Wait for event to occur;          (1)

        Acquire M1;                       (2)

        Access  R1;                       (3)

        :

        :

        \--------  Interrupt!             (4)

        :

        :                                 (8)

        Acquire M2;                       (9)

        Access  R2;

    }

}
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Listing 13-16 Deadlock problem

L13-16(1) Assume that the event that task T1 is waiting for occurs and T1 is now the

highest priority task that must execute. 

L13-16(2) Task T1 executes and acquires M1.

L13-16(3) Resource R1 is accessed.

L13-16(4) An interrupt occurs causing the CPU to switch to task T2 as T2 is now the

highest-priority task. Actually, this could be a blocking call when the task is

suspended and the CPU is given to another task.

L13-16(5) The ISR is the event that task T2 was waiting for and therefore T2 resumes

execution.

L13-16(6) Task T2 acquires mutex M2 and is able to access resource R2.

L13-16(7) Task T2 tries to acquire mutex M1, but μC/OS-III knows that mutex M1 is

owned by another task. 

L13-16(8) μC/OS-III switches back to task T1 because Task T2 can no longer continue. It

needs mutex M1 to access resource R1.

L13-16(9) Task T1 now tries to access mutex M2 but, unfortunately, mutex M2 is owned

by task T2. At this point, the two tasks are deadlocked.

void  T2 (void *p_arg)

{

    while (DEF_ON) {

        Wait for event to occur;          (5)

        Acquire M2;                       (6)

        Access  R2;                        

        :

        :

        Acquire M1;                       (7)

        Access  R1;

    }

}
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Techniques used to avoid deadlocks are for tasks to:

■ Never acquire more than one mutex at a time

■ Never acquire a mutex directly (i.e., let them be hidden inside drivers and reentrant

library calls)

■ Acquire all resources before proceeding

■ Always acquire resources in the same order

μC/OS-III allows the calling task to specify a timeout when acquiring a semaphore or a

mutex. This feature allows a deadlock to be broken, but the same deadlock may then recur

later, or many times later. If the semaphore or mutex is not available within a certain period

of time, the task requesting the resource resumes execution. μC/OS-III returns an error code

indicating that a timeout occurred. A return error code prevents the task from thinking it has

properly obtained the resource. 
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The pseudo-code avoids deadlocks by first acquiring all resources as shown in Listing 13-17.

Listing 13-17 Deadlock avoidance – acquire all first and in the same order

void T1 (void *p_arg)

{

    while (DEF_ON) {

        Wait for event to occur;          

        Acquire M1;                       

        Acquire M2;

        Access  R1;                        

        Access  R2;

    }

}

void  T2 (void *p_arg)

{

    while (DEF_ON) {

        Wait for event to occur;     

        Acquire M1;                  

        Acquire M2;                  

        Access  R1;                        

        Access  R2;

    }

}
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The pseudo-code to acquire all of the mutexes in the same order is shown in Listing 13-18. This

is similar to the previous example, except that it is not necessary to acquire all the mutexes first,

only to make sure that the mutexes are acquired in the same order for both tasks.

Listing 13-18 Deadlock avoidance – acquire in the same order

void T1 (void *p_arg){

    while (DEF_ON) {

        Wait for event to occur;          

        Acquire M1;                       

        Access  R1;                        

        Acquire M2;

        Access  R2;

    }

}

void  T2 (void *p_arg)

{

    while (DEF_ON) {

        Wait for event to occur;     

        Acquire M1;                  

        Access  R1;                        

        Acquire M2;                  

        Access  R2;

    }

}
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13-7  SUMMARY

The mutual exclusion mechanism used depends on how fast code will access the shared

resource, as shown in Table 13-4.

Table 13-4 Resource sharing summary

Resource Sharing Method When should you use?

Disable/Enable Interrupts When access to shared resource is very quick (reading from or writing to

just a few variables) and the access is actually faster than µC/OS-III’s

interrupt disable time. 

It is highly recommended to not use this method as it impacts interrupt

latency.

Locking/Unlocking the Scheduler When access time to the shared resource is longer than µC/OS-III’s

interrupt disable time, but shorter than µC/OS-III’s scheduler lock time.

Locking the scheduler has the same effect as making the task that locks

the scheduler the highest priority task.  

It is recommended to not use this method since it defeats the purpose of

using µC/OS-III. However, it’s a better method than disabling interrupts as

it does not impact interrupt latency.

Semaphores When all tasks that need to access a shared resource do not have

deadlines. This is because semaphores can cause unbounded priority

inversions. However, semaphore services are slightly faster (in execution

time) than mutual exclusion semaphores. 

Mutual Exclusion Semaphores This is the preferred method for accessing shared resources, especially if

the tasks that need to access a shared resource have deadlines.  

Remember that mutual exclusion semaphores have a built-in priority

inheritance mechanism, which avoids unbounded priority inversions.  

However, mutual exclusion semaphore services are slightly slower (in

execution time) than semaphores, because the priority of the owner may

need to be changed, which requires CPU processing.
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14
Synchronization

This chapter focuses on how tasks can synchronize their activities with Interrupt Service

Routines (ISRs), or other tasks. 

When an ISR executes, it can signal a task telling the task that an event of interest has

occurred. After signaling the task, the ISR exits and, depending on the signaled task priority,

the scheduler is run. The signaled task may then service the interrupting device, or

otherwise react to the event. Serving interrupting devices from task level is preferred

whenever possible, since it reduces the amount of time that interrupts are disabled and the

code is easier to debug.

There are two basic mechanisms for synchronizations in μC/OS-III: semaphores and event flags.
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14-1  SEMAPHORES

As defined in Chapter 13, “Resource Management” on page 209, a semaphore is a protocol

mechanism offered by most multitasking kernels. Semaphores were originally used to

control access to shared resources. However, better mechanisms exist to protect access to

shared resources, as described in Chapter 12. Semaphores are best used to synchronize an

ISR to a task, or synchronize a task with another task as shown in Figure 14-1.

Note that the semaphore is drawn as a flag to indicate that it is used to signal the

occurrence of an event. The initial value for the semaphore is typically zero (0), indicating

the event has not yet occurred. 

The value “N” next to the flag indicates that the semaphore can accumulate events or credits. It is

possible to initialize the semaphore with a value other than zero, indicating that the semaphore

initially contains that number of events. An ISR (or a task) can post (or signal) multiple times to a

semaphore and the semaphore will remember how many times it was posted. 

Also, the small hourglass close to the receiving task indicates that the task has an option to

specify a timeout. This timeout indicates that the task is willing to wait for the semaphore to

be signaled (or posted to) within a certain amount of time. If the semaphore is not signaled

within that time, μC/OS-III resumes the task and returns an error code indicating that the

task was made ready to run because of a timeout and not the semaphore was signaled.

Figure 14-1 µC/OS-III Semaphore Services

There are a number of operations to perform on semaphores as summarized in Table 14-1

and Figure 14-1. However, in this chapter, we will only discuss the three functions used most

often: OSSemCreate(), OSSemPend(), and OSSemPost(). The other functions are described

in Appendix A, “μC/OS-III API Reference Manual” on page 375. Also note that every

semaphore function is callable from a task, but only OSSemPost() can be called by an ISR
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.

Table 14-1 Semaphore API summary

When used for synchronization, a semaphore keeps track of how many times it was

signaled using a counter. The counter can take values between 0 and 255, 65,535, or

4,294,967,295, depending on whether the semaphore mechanism is implemented using 8,

16, or 32 bits, respectively. For μC/OS-III, the maximum value of a semaphore is determined

by the data type OS_SEM_CTR (see OS_TYPE.H), which is changeable, as needed (assuming

access to μC/OS-III’s source code). Along with the semaphore’s value, μC/OS-III keeps track

of tasks waiting for the semaphore to be signaled.

Function Name Operation

OSSemCreate() Create a semaphore.

OSSemDel() Delete a semaphore.

OSSemPend() Wait on a semaphore.

OSSemPendAbort() Abort the wait on a semaphore.

OSSemPost() Signal a semaphore.

OSSemSet() Force the semaphore count to a desired value.
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14-1-1  UNILATERAL RENDEZVOUS

Figure 14-2 shows that a task can be synchronized with an ISR (or another task) by using a

semaphore. In this case, no data is exchanged, however there is an indication that the ISR or

the task (on the left) has occurred. Using a semaphore for this type of synchronization is

called a unilateral rendezvous. 

Figure 14-2 Unilateral Rendezvous

A unilateral rendezvous is used when a task initiates an I/O operation and waits (i.e., call

OSSemPend()) for the semaphore to be signaled (posted). When the I/O operation is

complete, an ISR (or another task) signals the semaphore (i.e., calls OSSemPost()), and the

task is resumed. This process is also shown on the timeline of Figure 14-3 and described

below. The code for the ISR and task is shown in Listing 14-1.

Figure 14-3 Unilateral Rendezvous, Timing Diagram
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F14-3(1) A high priority task is executing. The task needs to synchronize with an ISR

(i.e., wait for the ISR to occur) and call OSSemPend().

F14-3(2)

F14-3(3)

F14-3(4) Since the ISR has not occurred, the task will be placed in the waiting list for the

semaphore until the event occurs The scheduler in μC/OS-III will then select

the next most important task and context switch to that task.

F14-3(5) The low-priority task executes.

F14-3(6) The event that the original task was waiting for occurs. The lower-priority task

is immediately preempted (assuming interrupts are enabled), and the CPU

vectors to the interrupt handler for the event.

F14-3(7)

F14-3(8) The ISR handles the interrupting device and then calls OSSemPost() to signal

the semaphore. When the ISR completes, μC/OS-III is called.

F14-3(9)

F14-3(10) μC/OS-III notices that a higher-priority task is waiting for this event to occur

and context switches back to the original task.

F14-3(11) The original task resumes execution immediately after the call to OSSemPend().
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Listing 14-1 Pending (or waiting) on a Semaphore

A few interesting things are worth noting about this process. First, the task does not need to

know about the details of what happens behind the scenes. As far as the task is concerned,

it called a function (OSSemPend()) that will return when the event it is waiting for occurs.

Second, μC/OS-III maximizes the use of the CPU by selecting the next most important task,

which executes until the ISR occurs. In fact, the ISR may not occur for many milliseconds

and, during that time, the CPU will work on other tasks. As far as the task that is waiting for

the semaphore is concerned, it does not consume CPU time while it is waiting. Finally, the

task waiting for the semaphore will execute immediately after the event occurs (assuming it

is the most important task that needs to run).

OS_SEM  MySem;

void MyISR (void)

{

    OS_ERR  err;

    /* Clear the interrupting device */

    OSSemPost(&MySem,                    (7) 

              OS_OPT_POST_1,

              &err);   

    /* Check �err� */     

}

void MyTask (void *p_arg)

{

    OS_ERR  err;

    CPU_TS  ts;

    :

    :

    while (DEF_ON) {

        OSSemPend(&MySem,                (1) 

                  10,                   

                  OS_OPT_PEND_BLOCKING,

                  &ts,                 

                  &err);      

        /* Check �err� */                (11) 

        :                               

        :

    }

}
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14-1-2  CREDIT TRACKING

As previously mentioned, a semaphore “remembers” how many times it was signaled (or

posted to). In other words, if the ISR occurs multiple times before the task waiting for the

event becomes the highest-priority task, the semaphore will keep count of the number of

times it was signaled. When the task becomes the highest priority ready-to-run task, it will

execute without blocking as many times as there were ISRs signaled. This is called Credit

Tracking and is illustrated in Figure 14-4 and described below. 

Figure 14-4 Semaphore Credit Tracking

F14-4(1) A high-priority task is executing.

F14-4(2)

F14-4(3) An event meant for a lower-priority task occurs which preempts the task

(assuming interrupts are enabled). The ISR executes and posts the semaphore.

At this point the semaphore count is 1.

F14-4(4)

F14-4(5)

F14-4(6) μC/OS-III is called at the end of the ISR to see if the ISR caused a

higher-priority task to be ready to run. Since the ISR was an event that a

lower-priority task was waiting on, μC/OS-III will resume execution of the

higher-priority task at the exact point where it was interrupted.
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F14-4(7) The high-priority task is resumed and continues execution.

F14-4(8)

F14-4(9) The interrupt occurs a second time. The ISR executes and posts the semaphore.

At this point the semaphore count is 2.

F14-4(10)

F14-4(11)

F14-4(12) μC/OS-III is called at the end of the ISR to see if the ISR caused a

higher-priority task to be ready to run. Since the ISR was an event that a

lower-priority task was waiting on, μC/OS-III resumes execution of the

higher-priority task at the exact point where it was interrupted.

F14-4(13)

F14-4(14) The high-priority task resumes execution and actually terminates the work it

was doing. This task will then call one of the μC/OS-III services to wait for “its”

event to occur. 

F14-4(15)

F14-4(16) μC/OS-III will then select the next most important task, which happens to be

the task waiting for the event and will context switch to that task.

F14-4(17) The new task executes and will know that the ISR occurred twice since the

semaphore count is two. The task will handle this accordingly.
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14-1-3  MULTIPLE TASKS WAITING ON A SEMAPHORE

It is possible for more than one task to wait on the same semaphore, each with its own

timeout as illustrated in Figure 14-5. 

Figure 14-5 Multiple Tasks waiting on a Semaphore

When the semaphore is signaled (whether by an ISR or task), μC/OS-III makes the

highest-priority task waiting on the semaphore ready to run. However, it is also possible to

specify that all tasks waiting on the semaphore be made ready to run. This is called

broadcasting and is accomplished by specifying OS_OPT_POST_ALL as an option when

calling OSSemPost(). If any of the waiting tasks has a higher priority than the previously

running task, μC/OS-III will execute the highest-priority task made ready by OSSemPost().

Broadcasting is a common technique used to synchronize multiple tasks and have them

start executing at the same time. However, some of the tasks that we want to synchronize

might not be waiting for the semaphore. It is fairly easy to resolve this problem by

combining semaphores and event flags. This will be described after examining event flags.
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14-1-4  SEMAPHORE INTERNALS (FOR SYNCHRONIZATION)

Note that some of the material presented in this section is also contained in Chapter 13,

“Resource Management” on page 209, as semaphores were also discussed in that chapter.

However, the material presented here will be applicable to semaphores used for

synchronization and thus will differ somewhat.

A counting semaphore allows values between 0 and 255, 65,535, or 4,294,967,295,

depending on whether the semaphore mechanism is implemented using 8, 16, or 32 bits,

respectively. For μC/OS-III, the maximum value of a semaphore is determined by the data

type OS_SEM_CTR (see OS_TYPE.H), which can be changed as needed (assuming access to

μC/OS-III’s source code). Along with the semaphore’s value, μC/OS-III keeps track of tasks

waiting for the semaphore’s availability.

The application programmer can create an unlimited number of semaphores (limited only

by available RAM). Semaphore services in μC/OS-III start with the OSSem???() prefix, and

services available to the application programmer are described in Appendix A, “μC/OS-III

API Reference Manual” on page 375. Semaphore services are enabled at compile time by

setting the configuration constant OS_CFG_SEM_EN to 1 in OS_CFG.H.

Semaphores must be created before they can be used by the application. Listing 14-3 shows

how to create a semaphore.

As previously mentioned, a semaphore is a kernel object as defined by the OS_SEM data

type, which is derived from the structure os_sem (see OS.H) as shown in Listing 14-2. 

The services provided by μC/OS-III to manage semaphores are implemented in the file

OS_SEM.C. μC/OS-III licensees, have access to the source code.
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Listing 14-2 OS_SEM data type

L14-2(1) In μC/OS-III, all structures are given a data type. In fact, all data types start with

“OS_” and are all uppercase. When a semaphore is declared, simply use OS_SEM

as the data type of the variable used to declare the semaphore.

L14-2(2) The structure starts with a “Type” field, which allows it to be recognized by

μC/OS-III as a semaphore. In other words, other kernel objects will also have a

“Type” as the first member of the structure. If a function is passed a kernel

object, μC/OS-III will confirm that it is being passed the proper data type. For

example, if passing a message queue (OS_Q) to a semaphore service (for

example OSSemPend()), μC/OS-III will recognize that an invalid object was

passed, and return an error code accordingly.

L14-2(3) Each kernel object can be given a name to make them easier to be recognized

by debuggers or μC/Probe. This member is simply a pointer to an ASCII string,

which is assumed to be NUL terminated.

L14-2(4) Since it is possible for multiple tasks to be waiting (or pending) on a

semaphore, the semaphore object contains a pend list as described in

Chapter 10, “Pend Lists (or Wait Lists)” on page 177.

L14-2(5) A semaphore contains a counter. As explained above, the counter can be

implemented as either an 8-, 16- or 32-bit value, depending on how the data

type OS_SEM_CTR is declared in OS_TYPE.H. 

μC/OS-III keeps track of how many times the semaphore is signaled with this

counter and this field is typically initialized to zero by OSSemCreate().

typedef  struct  os_sem  OS_SEM;              (1) 

struct  os_sem {

    OS_OBJ_TYPE          Type;                (2) 

    CPU_CHAR            *NamePtr;             (3) 

    OS_PEND_LIST         PendList;            (4) 

    OS_SEM_CTR           Ctr;                 (5) 

    CPU_TS               TS;                  (6) 

};
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L14-2(6) A semaphore contains a time stamp, which is used to indicate the last time the

semaphore was signaled (or posted to). μC/OS-III assumes the presence of a

free-running counter that allows the application to make time measurements.

When the semaphore is signaled, the free-running counter is read and the

value is placed in this field, which is returned when OSSemPend() is called.

This value allows the application to determine either when the signal was

performed, or how long it took for the task to get control of the CPU from the

signal. In the latter case, call OS_TS_GET() to determine the current timestamp

and compute the difference.

Even for users who understand the internals of the OS_SEM data type, the application code

should never access any of the fields in this data structure directly. Instead, always use the

APIs provided with μC/OS-III.

Semaphores must be created before they can be used by an application. Listing 14-3 shows

how to create a semaphore.

Listing 14-3 Creating a Semaphore

L14-3(1) The application must declare a variable of type OS_SEM. This variable will be

referenced by other semaphore services.

L14-3(2) Create a semaphore by calling OSSemCreate() and pass the address to the

semaphore allocated in (1).

OS_SEM  MySem;                         (1) 

void  MyCode (void)

{

    OS_ERR  err;

    :   

    OSSemCreate(&MySem,                (2) 

                �My Semaphore�,        (3) 

                (OS_SEM_CTR)0,         (4) 

                &err);                 (5) 

    /* Check �err� */

    :

}
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L14-3(3) Assign an ASCII name to the semaphore, which can be used by debuggers or

μC/Probe to easily identify this semaphore.

L14-3(4) Initialize the semaphore to zero (0) when using a semaphore as a signaling

mechanism.

L14-3(5) OSSemCreate() returns an error code based on the outcome of the call. If all

arguments are valid, err will contain OS_ERR_NONE.

OSSemCreate() performs a check on the arguments passed to this function and only

initializes the contents of the variable of type OS_SEM used for signaling.

A task waits for a signal from an ISR or another task by calling OSSemPend() as shown in

Listing 14-4 (see Appendix A, “μC/OS-III API Reference Manual” on page 375 for details

regarding the arguments). 

Listing 14-4 Pending (or waiting) on a Semaphore

L14-4(1) When called, OSSemPend() starts by checking the arguments passed to this

function to make sure they have valid values.

If the semaphore counter (.Ctr of OS_SEM) is greater than zero, the counter is

decremented and OSSemPend() returns, which indicates that the signal

occurred. This is the outcome that the caller expects.

OS_SEM  MySem;                         (1) 

void  MyCode (void)

{

    OS_ERR  err;

    :   

    OSSemCreate(&MySem,                (2) 

                �My Semaphore�,        (3) 

                (OS_SEM_CTR)0,         (4) 

                &err);                 (5) 

    /* Check �err� */

    :

}
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If the semaphore counter is zero, this indicates that the signal has not occurred

and the calling task might need to wait for the semaphore to be released. If

specifying OS_OPT_PEND_NON_BLOCKING as the option (the task is not to

block), OSSemPend() returns immediately to the caller and the returned error

code will indicate that the signal did not occur.

If specifying OS_OPT_PEND_BLOCKING as the option, the calling task will be

inserted in the list of tasks waiting for the semaphore to be signaled. The task is

inserted in the list by priority order with the highest priority task waiting on the

semaphore at the beginning of the list as shown in Figure 14-6.

If further specifying a non-zero timeout, the task will also be inserted in the

tick list. A zero value for a timeout indicates that the calling task is willing to

wait forever for the semaphore to be signaled.

The scheduler is then called as the current task is not able to run (it is waiting

for the semaphore to be signaled). The scheduler will then run the next

highest-priority task that is ready to run.

When the semaphore is signaled and the task that called OSSemPend() is again

the highest-priority task, a task status is examined to determine the reason why

OSSemPend() is returning to its caller. The possibilities are: 

1) The semaphore was signaled

2) The pend was aborted by another task

3) The semaphore was not signaled within the specified timeout

4) The semaphore was deleted

When OSSemPend() returns, the caller is notified of the above outcome

through an appropriate error code.

L14-4(2) If OSSemPend() returns with err set to OS_ERR_NONE, assume that the

semaphore was signaled and the task can proceed with servicing the ISR or

task that caused the signal. If err contains anything else, OSSemPend() either

timed out (if the timeout argument was non-zero), the pend was aborted by
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another task, or the semaphore was deleted by another task. It is always

important to examine returned error code and not assume everything went

as expected.

To signal a task (either from an ISR or a task), simply call OSSemPost() as shown in

Listing 14-5.

Listing 14-5 Posting (or signaling) a Semaphore

L14-5(1) Your task signals (or posts to) the semaphore by calling OSSemPost(). Specify

the semaphore to post by passing its address. The semaphore must have been

previously created.

L14-5(2) The next argument specifies how the task wants to post. There are a number of

options to choose from. 

Specify OS_OPT_POST_1, which indicates posting to only one task in case there

are multiple tasks waiting on the semaphore. The task that will be made ready

to run will be the highest-priority task waiting on the semaphore. If there are

multiple tasks at the same priority, only one of them will be made ready-to-run.

As shown in Figure 14-6, tasks waiting are in priority order (HPT means High

Priority Task and LPT means Low Priority Task). It is a fast operation to extract

the HPT from the list.

OS_SEM  MySem;

void MyISR (void)

{

    OS_ERR  err;

    :   

    OSSemPost(&MySem,                (1) 

              OS_OPT_POST_1,         (2) 

              &err);                 (3) 

    /* Check �err� */

    :

    :

}
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If specifying OS_OPT_POST_ALL, all tasks waiting on the semaphore will be

posted and made ready to run. 

The calling task can “add” the option OS_OPT_POST_NO_SCHED to either of the

two previous options to indicate that the scheduler is not to be called at the

end of OSSemPost(), possibly because additional postings will be performed,

and rescheduling should take place when finished. This means that the signal is

performed, but the scheduler is not called even if a higher-priority task was

waiting for the semaphore to be signaled. This allows the calling task to

perform other post functions (if needed) and make all the posts take effect

simultaneously. Note that OS_OPT_POST_NO_SCHED is “additive,” meaning that it

can be used with either of the previous options. You can specify:

OS_OPT_POST_1 

OS_OPT_POST_ALL

OS_OPT_POST_1  + OS_OPT_POST_NO_SCHED

OS_OPT_POST_ALL + OS_OPT_POST_NO_SCHED

Figure 14-6 Tasks waiting for semaphore
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L14-5(3) OSSemPost() returns an error code based on the outcome of the call. If the call

was successful, err will contain OS_ERR_NONE. If not, the error code will

indicate the reason for the error (see Appendix A, “μC/OS-III API Reference

Manual” on page 375 for a list of possible error codes for OSSemPost().

14-2  TASK SEMAPHORE

Signaling a task using a semaphore is a very popular method of synchronization and, in

μC/OS-III, each task has its own built-in semaphore. This feature not only simplifies code,

but is also more efficient than using a separate semaphore object. The semaphore, which is

built into each task, is shown in Figure 14-7. 

Task semaphore services in μC/OS-III start with the OSTaskSem???() prefix, and the

services available to the application programmer are described in Appendix A, “μC/OS-III

API Reference Manual” on page 375. Task semaphores are built into μC/OS-III and cannot

be disabled at compile time as can other services. The code for task semaphores is found

in OS_TASK.C.

Use this feature if the code knows which task to signal when the event occurs. For example, if

receiving an interrupt from an Ethernet controller, signal the task responsible for processing the

received packet as it is preferable to perform this processing using a task instead of the ISR.

Figure 14-7 Semaphore built-into a Task

There are a number of operations to perform on task semaphores, summarized in

Table 14-2.
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Table 14-2 Task Semaphore API summary

14-2-1  PENDING (i.e., WAITING) ON A TASK SEMAPHORE

When a task is created, it automatically creates an internal semaphore with an initial value

of zero (0). Waiting on a task semaphore is quite simple, as shown in Listing 14-6.

Listing 14-6 Pending (or waiting) on Task’s internal semaphore

L14-6(1) A task pends (or waits) on the task semaphore by calling OSTaskSemPend().

There is no need to specify which task, as the current task is assumed. The first

argument is a timeout specified in number of clock ticks. The actual timeout

obviously depends on the tick rate. If the tick rate (see OS_CFG_APP.H) is set to

1000, a timeout of 10 ticks represents 10 milliseconds. Specifying a timeout of

zero (0) means that the task will wait forever for the task semaphore.

Function Name Operation

OSTaskSemPend() Wait on a task semaphore.

OSTaskSemPendAbort() Abort the wait on a task semaphore.

OSTaskSemPost() Signal a task.

OSTaskSemSet() Force the semaphore count to a desired value.

void MyTask (void *p_arg)

{

    OS_ERR  err;

    CPU_TS  ts;

    :   

    while (DEF_ON) {

        OSTaskSemPend(10,                    (1) 

                      OS_OPT_PEND_BLOCKING,  (2) 

                      &ts,                   (3) 

                      &err);                 (4) 

        /* Check �err� */

    :

    :

}
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L14-6(2) The second argument specifies how to pend. There are two options:

OS_OPT_PEND_BLOCKING and OS_OPT_PEND_NON_BLOCKING. The blocking

option means that, if the task semaphore has not been signaled (or posted to),

the task will wait until the semaphore is signaled, the pend is aborted by

another task or, until the timeout expires.

L14-6(3) When the semaphore is signaled, μC/OS-III reads a “timestamp” and places it

in the receiving task’s OS_TCB. When OSTaskSemPend() returns, the value of

the timestamp is placed in the local variable “ts”. This feature captures “when”

the signal actually happened. Call OS_TS_GET() to read the current

timestamp and compute the difference. This establishes how long it took for

the task to receive the signal from the posting task or ISR.

L14-6(4) OSTaskSemPend() returns an error code based on the outcome of the call. If

the call was successful, err will contain OS_ERR_NONE. If not, the error code will

indicate the reason of the error (see Appendix A, “μC/OS-III API Reference

Manual” on page 375 for a list of possible error code for OSTaskSemPend().

14-2-2  POSTING (i.e., SIGNALING) A TASK SEMAPHORE

An ISR or a task signals a task by calling OSTaskSemPost(), as shown in Listing 14-7.

Listing 14-7 Posting (or signaling) a Semaphore

OS_TCB  MyTaskTCB;

void MyISR (void *p_arg)

{

    OS_ERR  err;

    :   

    OSTaskSemPost(&MyTaskTCB,            (1) 

                  OS_OPT_POST_NONE,      (2) 

                  &err);                 (3) 

    /* Check �err� */

    :

    :

}
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L14-7(1) A task posts (or signals) the task by calling OSTaskSemPost(). It is necessary to

pass the address of the desired task’s OS_TCB. Of course, the task must exist.

L14-7(2) The next argument specifies how the user wants to post. There are only two

choices. 

Specify OS_OPT_POST_NONE, which indicates the use of the default option of

calling the scheduler after posting the semaphore.

Or, specify OS_OPT_POST_NO_SCHED to indicate that the scheduler is not to be

called at the end of OSTaskSemPost(), possibly because there will be

additional postings, and rescheduling would take place when finished (the last

post would not specify this option).

L14-7(3) OSTaskSemPost() returns an error code based on the outcome of the call. If

the call was successful, err will contain OS_ERR_NONE. If not, the error code will

indicate the reason of the error (see Appendix A, “μC/OS-III API Reference

Manual” on page 375 for a list of possible error codes for OSTaskSemPost().
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14-2-3  BILATERAL RENDEZVOUS

Two tasks can synchronize their activities by using two task semaphores, as shown in

Figure 14-8, and is called a bilateral rendezvous. A bilateral rendezvous is similar to a

unilateral rendezvous, except that both tasks must synchronize with one another before

proceeding. A bilateral rendezvous cannot be performed between a task and an ISR

because an ISR cannot wait on a semaphore. 

Figure 14-8 Bilateral Rendezvous

The code for a bilateral rendezvous is shown in Listing 14-8. Of course, a bilateral

rendezvous can use two separate semaphores, but the built-in task semaphore makes

setting up this type of synchronization quite straightforward.

�	�
B$

���	���*��	
!#

���	���*��	
!#

�	�
B"

���	���*��	
!#

���	���*����!#



272

Chapter 14

Listing 14-8  Tasks synchronizing their activities

OS_TCB  MyTask1_TCB;

OS_TCB  MyTask2_TCB;

void Task1 (void *p_arg) 

{

    OS_ERR  err;

    CPU_TS  ts;

    while (DEF_ON) {

        :

        OSTaskSemPost(&MyTask2_TCB,             (1) 

                      OS_OPT_POST_NONE,

                      &err);                

        /* Check �err� */

        OSTaskSemPend(0,                        (2) 

                      OS_OPT_PEND_BLOCKING,

                      &ts,

                      &err);

        /* Check �err� */

        :

    } 

} 

void Task2 (void *p_arg) 

{

    OS_ERR  err;

    CPU_TS  ts;

    while (DEF_ON) {

        :

        OSTaskSemPost(&MyTask1_TCB,             (3) 

                      OS_OPT_POST_NONE,

                      &err);                

        /* Check �err� */

        OSTaskSemPend(0,                        (4) 

                      OS_OPT_PEND_BLOCKING,

                      &ts,

                      &err);

        /* Check �err� */

        :

    } 

}



273

Synchronization

L14-8(1) Task #1 is executing and signals Task #2’s semaphore.

L14-8(2) Task #1 pends on its internal semaphore to synchronize with Task #2. Because

Task #2 has not executed yet, Task #1 is blocked waiting on its semaphore to

be signaled. μC/OS-III context switches to Task #2.

L14-8(3) Task #2 executes, and signals Task #1’s semaphore. 

L14-8(4) Since it has already been signaled, Task #2 is now synchronized to Task #1. If

Task #1 is higher in priority than Task #2, μC/OS-III will switch back to Task

#1. If not, Task #2 continues execution.

14-3  EVENT FLAGS

Event flags are used when a task needs to synchronize with the occurrence of multiple

events. The task can be synchronized when any of the events have occurred, which is called

disjunctive synchronization (logical OR). A task can also be synchronized when all events

have occurred, which is called conjunctive synchronization (logical AND). Disjunctive and

conjunctive synchronization are shown in Figure 14-9. 

The application programmer can create an unlimited number of event flag groups (limited

only by available RAM). Event flag services in μC/OS-III start with the OSFlag???() prefix.

The services available to the application programmer are described in Appendix A,

“μC/OS-III API Reference Manual” on page 375.

The code for event flag services is found in the file OS_FLAG.C, and is enabled at compile

time by setting the configuration constant OS_CFG_FLAG_EN to 1 in OS_CFG.H.
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Figure 14-9 Event Flags

F14-9(1) A μC/OS-III “event flag group” is a kernel object of type OS_FLAG_GRP (see

OS.H), and consists of a series of bits (8-, 16- or 32-bits, based on the data type

OS_FLAGS defined in OS_TYPE.H). The event flag group also contains a list of

tasks waiting for some (or all) of the bits to be set (1) or clear (0). An event flag

group must be created before it can be used by tasks and ISRs. Create event

flags prior to starting μC/OS-III, or by a startup task in the application code.

F14-9(2) Tasks or ISRs can post to event flags. In addition, only tasks can create, delete,

and stop other task from pending on event flag groups. 

F14-9(3) A task can wait (i.e., pend) on any number of bits in an event flag group (i.e., a

subset of all the bits). As with all μC/OS-III pend calls, the calling task can

specify a timeout value such that if the desired bits are not posted within a

specified amount of time (in ticks), the pending task is resumed and informed

about the timeout.

F14-9(4) The task can specify whether it wants to wait for “any” subset of bits (OR) to be

set (or clear), or wait for “all” bits in a subset of bit (AND) to be set (or clear).
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There are a number of operations to perform on event flags, as summarized in Table 14-3.

Table 14-3 Event Flags API summary

14-3-1  USING EVENT FLAGS

When a task or an ISR posts to an event flag group, all tasks that have their wait conditions

satisfied will be resumed.

It’s up to the application to determine what each bit in an event flag group means and it is

possible to use as many event flag groups as needed. In an event flag group you can, for

example, define that bit #0 indicates that a temperature sensor is too low, bit #1 may

indicate a low battery voltage, bit #2 could indicate that a switch was pressed, etc. The code

(tasks or ISRs) that detects these conditions would set the appropriate event flag by calling

OSFlagPost() and the task(s) that would respond to those conditions would call

OSFlagPend().

Listing 14-9 shows how to use event flags.

Function Name Operation

OSFlagCreate() Create an event flag group

OSFlagDel() Delete an event flag group

OSFlagPend() Pend (i.e., wait) on an event flag group

OSFlagPendAbort() Abort waiting on an event flag group

OSFlagPendGetFlagsRdy() Get flags that caused task to become ready

OSFlagPost() Post flag(s) to an event flag group
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#define      TEMP_LOW   (OS_FLAGS)0x0001                             (1) 

#define      BATT_LOW   (OS_FLAGS)0x0002

#define      SW_PRESSED (OS_FLAGS)0x0004

OS_FLAG_GRP  MyEventFlagGrp;                                         (2) 

void main (void)

{

    OS_ERR  err;

    OSInit(&err);

    :

    OSFlagCreate(&MyEventFlagGrp,                                    (3) 

                 �My Event Flag Group�,

                 (OS_FLAGS)0,

                 &err);

    /* Check �err� */

    :

    OSStart(&err);    

}

void  MyTask (void *p_arg)                                           (4) 

{

    OS_ERR  err;

    CPU_TS  ts;

    while (DEF_ON) {

        OSFlagPend(&MyEventFlagGrp,                                  (5) 

                   TEMP_LOW + BATT_LOW,

                   (OS_TICK )0,        

                   (OS_OPT)OS_OPT_PEND_FLAG_SET_ANY,

                   &ts,                               

                   &err);                             

        /* Check �err� */

        :

    } 

} 
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Listing 14-9 Using Event Flags

L14-9(1) Define some bits in the event flag group.

L14-9(2) Declare an object of type OS_FLAG_GRP. This object will be referenced in all

subsequent μC/OS-III calls that apply to this event flag group. For the sake of

discussions, assume that event flags are declared to be 16-bits in OS_TYPE.H

(i.e., of type CPU_INT16U).

L14-9(3) Event flag groups must be “created” before they can be used. The best place to

do this is in your startup code as it ensures that no tasks, or ISR, will be able to

use the event flag group until μC/OS-III is started. In other words, the best

place is to create the event flag group is in main(). In the example, the event

flag was given a name and all bits start in their cleared state (i.e., all zeros).

L14-9(4) Assume that the application created “MyTask()” which will be pending on the

event flag group.

L14-9(5) To pend on an event flag group, call OSFlagPend() and pass it the address of

the desired event flag group. 

The second argument specifies which bits the task will be waiting to be set

(assuming the task is triggered by set bits instead of cleared bits). 

Specify how long to wait for these bits to be set. A timeout value of zero (0)

indicates that the task will wait forever. A non-zero value indicates the number

of ticks the task will wait until it is resumed if the desired bits are not set. 

void  MyISR (void)                                                   (6) 

{

    OS_ERR  err;

    :

    OSFlagPost(&MyEventFlagGrp,                                      (7) 

               BAT_LOW,                       

               (OS_OPT)OS_OPT_POST_FLAG_SET,

               &err);                         

    /* Check �err� */

    :

}
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Specifying OS_OPT_FLAG_SET_ANY indicates that the task will wake up if either

of the two bits specified is set. 

A timestamp is read and saved when the event flag group is posted to. This

timestamp can be used to determine the response time to the event.

OSFlagPend() performs a number of checks on the arguments passed (i.e., did

you pass NULL pointers, invalid options, etc.), and returns an error code based

on the outcome of the call. If the call was successful “err” will be set to

OS_ERR_NONE. 

L14-9(6) An ISR (it can also be a task) is setup to detect when the battery voltage of the

product goes low (assuming the product is battery operated). The ISR signals

the task, letting the task perform whatever corrective action is needed. 

L14-9(7) The desired event flag group is specified in the post call as well as which flag

the ISR is setting. The third option specifies that the error condition will be

“flagged” as a set bit. Again, the function sets “err” based on the outcome of

the call.

Event flags are generally used for two purposes: status and transient events. Typically use

different event flag groups to handle each of these as shown in Listing 14-10.

Tasks or ISRs can report status information such as a temperature that has exceeded a

certain value, that RPM is zero on an engine or motor, or there is fuel in the tank, and more.

This status information cannot be “consumed” by the tasks waiting for these events, because

the status is managed by other tasks or ISRs. Event flags associated with status information

are monitored by other task by using non-blocking wait calls. 

Tasks will report transient events such as a switch was pressed, an object was detected by a

motion sensor, an explosion occurred, etc. The task that responds to these events will

typically block waiting for any of those events to occur and “consume” the event.
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Figure 14-10 Event Flags used for Status and Transient Events

14-3-2  EVENT FLAGS INTERNALS

The application programmer can create an unlimited number of event flag groups (limited

only by available RAM). Event flag services in μC/OS-III start with OSFlag and the services

available to the application programmer are described in Appendix A, “μC/OS-III API

Reference Manual” on page 375. Event flag services are enabled at compile time by setting

the configuration constant OS_CFG_FLAG_EN to 1 in OS_CFG.H.

An event flag group is a kernel object as defined by the OS_FLAG_GRP data type, which is

derived from the structure os_flag_grp (see OS.H) as shown in Listing 14-10. 
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The services provided by μC/OS-III to manage event flags are implemented in the file

OS_FLAG.C. μC/OS-III licensees have access to the source code.

Listing 14-10 OS_FLAG_GRP data type

L14-10(1) In μC/OS-III, all structures are given a data type. In fact, all data types start with

“OS_” and are uppercase. When an event flag group is declared, simply use

OS_FLAG_GRP as the data type of the variable used to declare the event flag

group.

L14-10(2) The structure starts with a “Type” field, which allows it to be recognized by

μC/OS-III as an event flag group. In other words, other kernel objects will also

have a “Type” as the first member of the structure. If a function is passed a

kernel object, μC/OS-III will be able to confirm that it is being passed the

proper data type. For example, if passing a message queue (OS_Q) to an event

flag service (for example OSFlagPend()), μC/OS-III will be able to recognize

that an invalid object was passed, and return an error code accordingly.

L14-10(3) Each kernel object can be given a name to make them easier to be recognized

by debuggers or μC/Probe. This member is simply a pointer to an ASCII string,

which is assumed to be NUL terminated.

L14-10(4) Because it is possible for multiple tasks to be waiting (or pending) on an event

flag group, the event flag group object contains a pend list as described in

Chapter 10, “Pend Lists (or Wait Lists)” on page 177.

typedef  struct  os_flag_grp  OS_FLAG_GRP;   (1) 

struct  os_flag_grp {

    OS_OBJ_TYPE          Type;               (2) 

    CPU_CHAR            *NamePtr;            (3) 

    OS_PEND_LIST         PendList;           (4) 

    OS_FLAGS             Flags;              (5) 

    CPU_TS               TS;                 (6) 

};
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L14-10(5) An event flag group contains a series of flags (i.e., bits), and this member

contains the current state of these flags. The flags can be implemented using

either an 8-, 16- or 32-bit value depending on how the data type OS_FLAGS is

declared in OS_TYPE.H. 

L14-10(6) An event flag group contains a timestamp used to indicate the last time the

event flag group was posted to. μC/OS-III assumes the presence of a

free-running counter that allows users to make time measurements. When the

event flag group is posted to, the free-running counter is read and the value is

placed in this field, which is returned when OSFlagPend() is called. This value

allows an application to determine either when the post was performed, or

how long it took for your the to obtain control of the CPU from the post. In the

latter case, call OS_TS_GET() to determine the current timestamp and compute

the difference.

Even if the user understands the internals of the OS_FLAG_GRP data type, application code

should never access any of the fields in this data structure directly. Instead, always use the

APIs provided with μC/OS-III.

Event flag groups must be created before they can be used by an application as shown in

Listing 14-11.

Listing 14-11 Creating a Event Flag Group

OS_FLAG_GRP  MyEventFlagGrp;                 (1) 

void  MyCode (void)

{

    OS_ERR  err;

    :   

    OSFlagCreate(&MyEventFlagGrp,            (2) 

                �My Event Flag Group�,       (3) 

                (OS_FLAGS)0,                 (4) 

                &err);                       (5) 

    /* Check �err� */

    :

}
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L14-11(1) The application must declare a variable of type OS_FLAG_GRP. This variable will

be referenced by other event flag services.

L14-11(2) Create an event flag group by calling OSFlagCreate() and pass the address to

the event flag group allocated in (1).

L14-11(3) Assign an ASCII name to the event flag group, which can be used by debuggers

or μC/Probe to easily identify this event flag group. μC/OS-III stores a pointer

to the name so there is no practical limit to its size, except that the ASCII string

needs to be NUL terminated.

L14-11(4) Initialize the flags inside the event flag group to zero (0) unless the task and

ISRs signal events with bits cleared instead of bits set. If using cleared bits,

initialize all the bits to ones (1).

L14-11(5) OSFlagCreate() returns an error code based on the outcome of the call. If all

the arguments are valid, err will contain OS_ERR_NONE.

A task waits for one or more event flag bits either from an ISR or another task by calling

OSFlagPend() as shown in Listing 14-12 (see Appendix A, “μC/OS-III API Reference

Manual” on page 375 for details regarding the arguments).
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Listing 14-12 Pending (or waiting) on an Event Flag Group

L14-12(1) When called, OSFlagPend() starts by checking the arguments passed to this

function to ensure they have valid values. If the bits the task is waiting for are

set (or cleared depending on the option), OSFlagPend() returns and indicate

which flags satisfied the condition. This is the outcome that the caller expects.

If the event flag group does not contain the flags that the caller is looking for,

the calling task might need to wait for the desired flags to be set (or cleared). If

specifying OS_OPT_PEND_NON_BLOCKING as the option (the task is not to

block), OSFlagPend() returns immediately to the caller and the returned error

code indicates that the bits have not been set (or cleared).

If specifying OS_OPT_PEND_BLOCKING as the option, the calling task will be

inserted in the list of tasks waiting for the desired event flag bits. The task is not

inserted in priority order but simply inserted at the beginning of the list. This is

done because whenever bits are set (or cleared), it is necessary to examine all

tasks in this list to see if their desired bits have been satisfied.

OS_FLAG_GRP  MyEventFlagGrp;

void MyTask (void *p_arg)

{

    OS_ERR  err;

    CPU_TS  ts;

    :   

    while (DEF_ON) {

        :

        OSFlagPend(&MyEventFlagGrp,          /* (1) Pointer to event flag group        */

                   (OS_FLAGS)0x0F,           /*     Which bits to wait on              */

                   10,                       /*     Maximum time to wait               */

                   OS_OPT_PEND_BLOCKING +

                   OS_OPT_PEND_FLAG_SET_ANY, /*     Option(s)                          */

                   &ts,                      /*     Timestamp of when posted to        */

                   &err);                    /*     Pointer to Error returned          */

        /* Check �err�                          (2)                                    */

        :

        :

    }

}
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If further specifying a non-zero timeout, the task will also be inserted in the

tick list. A zero value for a timeout indicates that the calling task is willing to

wait forever for the desired bits.

The scheduler is then called since the current task is no longer able to run (it is

waiting for the desired bits). The scheduler will run the next highest-priority

task that is ready to run.

When the event flag group is posted to and the task that called OSFlagPend()

has its desired bits set or cleared, a task status is examined to determine the

reason why OSFlagPend() is returning to its caller. The possibilities are: 

1) The desired bits were set (or cleared)

2) The pend was aborted by another task

3) The bits were not set (or cleared) within the specified timeout

4) The event flag group was deleted

When OSFlagPend() returns, the caller is notified of the above outcome

through an appropriate error code.

L14-12(2) If OSFlagPend() returns with err set to OS_ERR_NONE, assume that the desired

bits were set (or cleared) and the task can proceed with servicing the ISR or

task that created those events. If err contains anything else, OSFlagPend()

either timed out (if the timeout argument was non-zero), the pend was aborted

by another task or, the event flag group was deleted by another task. It is

always important to examine the returned error code and not assume

everything went as planned. 

To set (or clear) event flags (either from an ISR or a task), simply call OSFlagPost(), as

shown in Listing 14-13.
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Listing 14-13 Posting flags to an Event Flag Group

L14-13(1) A task posts to the event flag group by calling OSFlagPost(). Specify the

desired event flag group to post by passing its address. Of course, the event

flag group must have been previously created.

L14-13(2) The next argument specifies which bit(s) the ISR (or task) will be setting or

clearing in the event flag group.

L14-13(3) Specify OS_OPT_POST_FLAG_SET or OS_OPT_POST_FLAG_CLR.

If specifying OS_OPT_POST_FLAG_SET, the bits specified in the second

arguments will set the corresponding bits in the event flag group. For example,

if MyEventFlagGrp.Flags contains 0x03, the code in Listing 14-13 will change

MyEventFlagGrp.Flags to 0x0F. 

If specifying OS_OPT_POST_FLAG_CLR, the bits specified in the second

arguments will clear the corresponding bits in the event flag group. For

example, if MyEventFlagGrp.Flags contains 0x0F, the code in Listing 14-13

will change MyEventFlagGrp.Flags to 0x03. 

OS_FLAG_GRP  MyEventFlagGrp;

void MyISR (void)

{

    OS_ERR  err;

    :   

    OSFlagPost(&MyEventFlagGrp,       (1) 

               (OS_FLAGS)0x0C,        (2) 

               OS_OPT_POST_FLAG_SET,  (3) 

               &err);                 (4) 

    /* Check �err� */

    :

    :

}
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When calling OSFlagPost() specify as an option (i.e., OS_OPT_POST_NO_SCHED)

to not call the scheduler. This means that the post is performed, but the

scheduler is not called even if a higher-priority task was waiting for the event

flag group. This allows the calling task to perform other post functions (if

needed) and make all the posts take effect simultaneously.

L14-13(4) OSFlagPost() returns an error code based on the outcome of the call. If the

call was successful, err will contain OS_ERR_NONE. If not, the error code will

indicate the reason of the error (see Appendix A, “μC/OS-III API Reference

Manual” on page 375 for a list of possible error codes for OSFlagPost().

14-4  SYNCHRONIZING MULTIPLE TASKS

Synchronizing the execution of multiple tasks by broadcasting to a semaphore is a

commonly used technique. It may be important to have multiple tasks start executing at

the same time. Obviously, on a single processor, only one task will actually execute at

one time. However, the start of their execution will be synchronized to the same time.

This is called a multiple task rendezvous. However, some of the tasks synchronized might

not be waiting for the semaphore when the broadcast is performed. It is fairly easy to

resolve this problem by combining semaphores and event flags, as shown in Figure 14-11.

For this to work properly, the task on the left needs to have a lower priority than the tasks

waiting on the semaphore.
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Figure 14-11 Multiple Task Rendezvous

F14-11(1) Each task that needs to synchronize at the rendezvous needs to set an event

flag bit (and specify OS_OPT_POST_NO_SCHED).

F14-11(2) The task needs to wait for the semaphore to be signaled.

F14-11(3) The task that will be broadcasting must wait for “all” of the event flags

corresponding to each task to be set.

F14-11(4) When all waiting tasks are ready, the task that will synchronize the waiting task

issues a broadcast to the semaphore.
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14-5  SUMMARY

Three methods are presented to allow an ISR or a task to signal one or more tasks:

semaphores, task semaphores, and event flags. 

Both semaphores and task semaphores contain a counter allowing them to perform credit

tracking and accumulate the occurrence of events. If an ISR or task needs to signal a single

task (as opposed to multiple tasks when the event occurs), it makes sense to use a task

semaphore since it prevents the user from having to declare an external semaphore object.

Also, task semaphore services are slightly faster (in execution time) than semaphores.

Event flags are used when a task needs to synchronize with the occurrence of one or more

events. However, event flags cannot perform credit tracking since a single bit (as opposed

to a counter) represents each event.
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15
Message Passing

It is sometimes necessary for a task or an ISR to communicate information to another task.

This information transfer is called inter-task communication. Information can be

communicated between tasks in two ways: through global data, or by sending messages.

As seen in Chapter 13, “Resource Management” on page 209, when using global variables,

each task or ISR must ensure that it has exclusive access to variables. If an ISR is involved,

the only way to ensure exclusive access to common variables is to disable interrupts. If two

tasks share data, each can gain exclusive access to variables either by disabling interrupts,

locking the scheduler, using a semaphore, or preferably, using a mutual-exclusion

semaphore. Note that a task can only communicate information to an ISR by using global

variables. A task is not aware when a global variable is changed by an ISR, unless the ISR

signals the task, or the task polls the contents of a variable periodically.

Messages can either be sent to an intermediate object called a message queue, or directly to

a task since in μC/OS-III, each task has its own built-in message queue. Use an external

message queue if multiple tasks are to wait for messages. Send a message directly to a task

if only one task will process the data received.

When a task waits for a message to arrive, it does not consume CPU time.
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15-1  MESSAGES

A message consists of a pointer to data, a variable containing the size of the data being pointed

to, and a timestamp indicating when the message was sent. The pointer can point to a data area

or even a function. Obviously, the sender and the receiver must agree as to the contents and the

meaning of the message. In other words, the receiver of the message will know the meaning of

the message received to be able to process it. For example, an Ethernet controller receives a

packet and sends a pointer to this packet to a task that knows how to handle the packet.

The message contents must always remain in scope since the data is actually sent by

reference instead of by value. In other words, data sent is not copied. Consider using

dynamically allocated memory as described in Chapter 17, “Memory Management” on

page 323. Alternatively, pass pointers to a global variable, a global data structure, a global

array, or a function, etc.

15-2  MESSAGE QUEUES

A message queue is a kernel object allocated by the application. In fact, you can allocate

any number of message queues. The only limit is the amount of RAM available. 

There are a number of operations that the user can perform on message queues,

summarized in Figure 15-1. However, an ISR can only call OSQPost(). A message queue

must be created before sending messages through it.

Figure 15-1 Operations on message queue
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Message queues are drawn as a first-in, first-out pipe (FIFO). However, with μC/OS-III, it is

possible to post messages in last-in, first-out order (LIFO). The LIFO mechanism is useful

when a task or an ISR must send an “urgent” message to a task. In this case, the message

bypasses all other messages already in the message queue. The size of the message queue

is configurable at run time.

The small hourglass close to the receiving task indicates that the task has an option to

specify a timeout. This timeout indicates that the task is willing to wait for a message to be

sent to the message queue within a certain amount of time. If the message is not sent within

that time, μC/OS-III resumes the task and returns an error code indicating that the task was

made ready to run because of a timeout, and not because the message was received. It is

possible to specify an infinite timeout and indicate that the task is willing to wait forever for

the message to arrive.

The message queue also contains a list of tasks waiting for messages to be sent to the message

queue. Multiple tasks can wait on a message queue as shown in Figure 15-2. When a message

is sent to the message queue, the highest priority task waiting on the message queue receives

the message. Optionally, the sender can broadcast a message to all tasks waiting on the

message queue. In this case, if any of the tasks receiving the message from the broadcast has a

higher priority than the task sending the message (or interrupted task, if the message is sent by

an ISR), μC/OS-III will run the highest-priority task that is waiting. Notice that not all tasks must

specify a timeout; some tasks may want to wait forever.

Figure 15-2 Multiple tasks waiting on a message queue
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15-3  TASK MESSAGE QUEUE

It is fairly rare to find applications where multiple tasks wait on a single message queue.

Because of this, a message queue is built into each task and the user can send messages

directly to a task without going through an external message queue object. This feature not

only simplifies the code but, is also more efficient than using a separate message queue

object. The message queue that is built into each task is shown in Figure 15-3.

Figure 15-3 Task message queue

Task message queue services in μC/OS-III start with the OSTaskQ???() prefix, and services

available to the application programmer are described in Appendix A, “μC/OS-III API

Reference Manual” on page 375. Setting OS_CFG_TASK_EN in OS_CFG.H enables task

message queue services. The code for task message queue management is found in

OS_TASK.C.

Use this feature if the code knows which task to send the message(s) to. For example, if

receiving an interrupt from an Ethernet controller, send the address of the received packet

to the task that will be responsible for processing the received packet.
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15-4  BILATERAL RENDEZVOUS

Two tasks can synchronize their activities by using two message queues, as shown in

Figure 15-4. This is called a bilateral rendezvous and works the same as with semaphores

except that both tasks may send messages to each other. A bilateral rendezvous cannot be

performed between a task and an ISR since an ISR cannot wait on a message queue.

Figure 15-4 Bilateral Rendezvous

In a bilateral rendezvous, each message queue holds a maximum of one message. Both

message queues are initially created empty. When the task on the left reaches the

rendezvous point, it sends a message to the top message queue and waits for a message to

arrive on the bottom message queue. Similarly, when the task on the right reaches its

rendezvous point, it sends a message to the message queue on the bottom and waits for a

message to arrive on the top message queue.

Figure 15-5 shows how to use task-message queues to perform a bilateral rendezvous. 
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Figure 15-5 Figure Bilateral Rendezvous with task message queues

15-5  FLOW CONTROL

Task-to-task communication often involves data transfer from one task to another. One task

produces data while the other consumes it. However, data processing takes time and

consumers might not consume data as fast as it is produced. In other words, it is possible for

the producer to overflow the message queue if a higher-priority task preempts the consumer.

One way to solve this problem is to add flow control in the process as shown in Figure 15-6.

Figure 15-6 Producer and consumer tasks with flow control
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Here, a counting semaphore is used, initialized with the number of allowable messages that

can be sent by the consumer. If the consumer cannot queue more than 10 messages, the

counting semaphore contains a count of 10. 

As shown in the pseudo code of Listing 15-1, the producer must wait on the semaphore

before it is allowed to send a message. The consumer waits for messages and, when

processed, signals the semaphore.

Listing 15-1 Producer and consumer flow control

Combining the task message queue and task semaphores (see Chapter 14,

“Synchronization” on page 251), it is easy to implement flow control as shown in

Figure 15-7. In this case, however, OSTaskSemSet() must be called immediately after

creating the task to set the value of the task semaphore to the same value as the maximum

number of allowable messages in the task message queue.

Producer Task:

Pend on Semaphore;

Send message to message queue;

Consumer Task:

Wait for message from message queue;

Signal the semaphore;



296

Chapter 15

Figure 15-7 Flow control with task semaphore and task message queue

15-6  KEEPING THE DATA IN SCOPE

The messages sent typically point to data structures, variables, arrays, tables, etc. However,

it is important to realize that the data must remain static until the receiver of the data

completes its processing of the data. Once sent, the sender must not touch the sent data.

This seems obvious, however it is easy to forget.

One possibility is to use the fixed-size memory partition manager provided with μC/OS-III

(see Chapter 17, “Memory Management” on page 323) to dynamically allocate and free

memory blocks used to pass the data. Figure 15-8 shows an example. For sake of illustration,

assume that a device is sending data bytes to the UART in packets using a protocol. In this

case, the first byte of a packet is unique and the end-of-packet byte is also unique.
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Figure 15-8 Using memory partitions for message contents

F15-8(1) Here, a UART generates an interrupt when characters are received.

F15-8(2) The pseudo-code in Listing 15-2 shows what the UART ISR code might look

like. There are a lot of details omitted for sake of simplicity. The ISR reads the

byte received from the UART and sees if it corresponds to a start of packet. If it

is, a buffer is obtained from the memory partition. 

F15-8(3) The received byte is then placed in the buffer. 

F15-8(4) If the data received is an end-of-packet byte, simply post the address of the

buffer to the message queue so that the task can process the received packet.

F15-8(5) If the message sent makes the UART task the highest priority task, μC/OS-III

will switch to that task at the end of the ISR instead of returning to the

interrupted task. The task retrieves the packet from the message queue. Note

that the OSQPend() call also returns the number of bytes in the packet and a

time stamp indicating when the message was sent. 

F15-8(6) When the task is finished processing the packet, the buffer is returned to the

memory partition it came from by calling OSMemPut().
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Listing 15-2 UART ISR Pseudo-code

void  UART_ISR (void)

{

    OS_ERR  err;

    RxData = Read byte from UART;

    if (RxData == Start of Packet) {               /* See if we need a new buffer      */

        RxDataPtr = OSMemGet(&UART_MemPool,        /* Yes                              */

                             &err);

        RxDataCtr = 0;

    } else {

        RxDataCtr++;                               /* Update number of bytes received  */

    }

    if (RxData == End of Packet byte) {            /* See if we got a full packet      */

        OSQPost((OS_Q      *)&UART_Q,              /* Yes, post to task for processing */

                (void      *)RxDataPtr,

                (OS_MSG_SIZE)RxDataCtr,

                (OS_OPT     )OS_OPT_POST_FIFO,

                (OS_ERR    *)&err);

        RxDataPtr = NULL;                          /* Don�t point to sent buffer       */
        RxDataCtr = 0;

    } else; {

       *RxDataPtr++ = RxData;                      /* Save the byte received           */

   }

}
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15-7  USING MESSAGE QUEUES

Table 15-1 shows a summary of message-queue services available from μC/OS-III. Refer to

Appendix A, “μC/OS-III API Reference Manual” on page 375 for a full description on their use. 

Table 15-1 Message queue API summary

Table 15-2 is a summary of task message queue services available from μC/OS-III. Refer to

Appendix A, “μC/OS-III API Reference Manual” on page 375, for a full description on how

to their use. 

Table 15-2 Task message queue API summary

Function Name Operation

OSQCreate() Create a message queue.

OSQDel() Delete a message queue.

OSQFlush() Empty the message queue.

OSQPend() Wait for a message.

OSQPendAbort() Abort waiting for a message.

OSQPost() Send a message through a message queue.

Function Name Operation

OSTaskQPend() Wait for a message.

OSTaskQPendAbort() Abort the wait for a message.

OSTaskQPost() Send a message to a task.

OSTaskQFlush() Empty the message queue.
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Figure 15-9 shows an example of using a message queue when determining the speed of a

rotating wheel.

Figure 15-9 Measuring RPM

F15-9(1) The goal is to measure the RPM of a rotating wheel.

F15-9(2) A sensor is used to detect the passage of a hole in the wheel. In fact, to receive

additional resolution, the wheel could contain multiple holes that are equally

spaced.

F15-9(3) A 32-bit input capture register is used to capture the value of a free-running

counter when the hole is detected.

F15-9(4) An interrupt is generated when the hole is detected. The ISR reads the current

count of the input capture register and subtracts the value of the previous capture

to receive the time it took for one rotation (assuming only a single hole).

Delta Counts    = Current Counts � Previous Counts;

Previous Counts = Current Counts;
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F15-9(5) The delta counts are sent to a message queue. Since a message is actually a

pointer, if the pointer is 32-bits wide on the processor in use, simply cast the

32-bit delta counts to a pointer and send this through the message queue. A

safer and more portable approach is to dynamically allocate storage to hold the

delta counts using a memory block from μC/OS-III’s memory management

services (see Chapter 17, “Memory Management” on page 323) and send the

address of the allocated memory block.

F15-9(6) When the message is sent, the RPM measurement task wakes up and computes

the RPM as follows:

The user may specify a timeout on the pend call and the task will wake up if a

message is not sent within the timeout period. This allows the user to easily

detect that the wheel is not rotating and therefore, the RPM is 0.

F15-9(7) Along with computing RPM, the task can also compute average RPM, maximum

RPM, and whether the speed is above or below thresholds, etc.

A few interesting things are worth noting about the above example. First, the ISR is very

short; read the input capture and post the delta counts to the task to accomplish the

time-consuming math. Second, with the timeout on the pend, it is easy to detect that the

wheel is stopped. Finally, the task can perform additional calculations and can further

detect such errors as the wheel spinning too fast or too slow. In fact, the task can notify

other tasks about these errors, if needed.

Listing 15-3 shows how to implement the RPM measurement example using μC/OS-III’s

message queue services. Some of the code is pseudo-code, while the calls to μC/OS-III

services are actual calls with their appropriate arguments.

RPM = 60 * Reference Frequency / Delta Counts; 
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OS_Q        RPM_Q;                                                   (1)

CPU_INT32U  DeltaCounts;

CPU_INT32U  CurrentCounts;

CPU_INT32U  PreviousCounts;

void main (void)

{

    OS_ERR  err ;

    :

    OSInit(&err) ;                                                  (2)

    :

    OSQCreate((OS_Q     *)&RPM_Q,

              (CPU_CHAR *)�My Queue�,

              (OS_MSG_QTY)10,

              (OS_ERR   *)&err);

    :

    OSStart(&err);

}

 

void RPM_ISR (void)                                                 (3)

{

    OS_ERR  err;

    Clear the interrupt from the sensor;

    CurrentCounts  = Read the input capture;

    DeltaCounts    = CurrentCounts � PreviousCounts;

    PreviousCounts = CurrentCounts;

    OSQPost((OS_Q      *)&RPM_Q,                                    (4)

            (void      *)DeltaCounts,

            (OS_MSG_SIZE)sizeof(void *),

            (OS_OPT     )OS_OPT_POST_FIFO,

            (OS_ERR    *)&err);        

}
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Listing 15-3 Pseudo-code of RPM measurement

L15-3(1) Variables are declared. Notice that it is necessary to allocate storage for the

message queue itself.

L15-3(2) Call OSInit() and create the message queue before it is used. The best place

to do this is in startup code. 

void RPM_Task (void *p_arg)                                         

{

    CPU_INT32U   delta;

    OS_ERR       err;

    OS_MSG_SIZE  size;

    CPU_TS       ts;

    DeltaCounts    = 0;

    PreviousCounts = 0;

    CurrentCounts  = 0;   

    while (DEF_ON) {

        delta = (CPU_INT32U)OSQPend((OS_Q        *)&RPM_Q,          (5)

                                    (OS_TICK      )OS_CFG_TICK_RATE * 10,                   

                                    (OS_OPT       )OS_OPT_PEND_BLOCKING,

                                    (OS_MSG_SIZE *)&size,

                                    (CPU_TS      *)&ts,                 

                                    (OS_ERR      *)&err);               

        if (err == OS_ERR_TIMEOUT) {                                (6)

            RPM = 0;

        } else {

            if (delta > 0u) {

                RPM = 60 * Reference Frequency / delta;             (7)

            }

        }

        Compute average RPM;                                        (8)                         

        Detect maximum RPM;

        Check for overspeed;

        Check for underspeed;

        :                               

        :

    }

}
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L15-3(3) The RPM ISR clears the sensor interrupt and reads the value of the 32-bit input

capture. Note that it is possible to read RPM if there is only a 16-bit input

capture. The problem with a 16-bit input capture is that it is easy for it to

overflow, especially at low RPMs. 

The RPM ISR also computes delta counts directly in the ISR. It is just as easy to

post the current counts and let the task compute the delta. However, the

subtraction is a fast operation and does not significantly increase ISR

processing time.

L15-3(4) Send the delta counts to the RPM task, responsible for computing the RPM and

perform additional computations. Note that the message gets lost if the queue

is full when the user attempts to post. This happens if data is generated faster

than it is processed. Unfortunately, it is not possible to implement flow control

in the example because it is dealing with an ISR.

L15-3(5) The RPM task starts by waiting for a message from the RPM ISR by pending on

the message queue. The third argument specifies the timeout. In this case, ten

seconds worth of timeout is specified. However, the value chosen depends on

the requirements of an application. 

Also notice that the ts variable contains the timestamp of when the post was

completed. Determine the time it took for the task to respond to the message

received by calling OS_TS_GET(), and subtract the value of ts:

L15-3(6) If a timeout occurs, assume the wheel is no longer spinning.

L15-3(7) The RPM is computed from the delta counts received, and from the reference

frequency of the free-running counter.

L15-3(8) Additional computations are performed as needed. In fact, messages can be

sent to different tasks in case error conditions are detected. The messages

would be processed by the other tasks. For example, if the wheel spins too

fast, another task can initiate a shutdown on the device that is controlling the

wheel speed.

response_time = OS_TS_GET() � ts;
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In Listing 15-4, OSQPost() and OSQPend() are replaced with OSTaskQPost() and

OSTaskQPend() for the RPM measurement example. Notice that the code is slightly simpler

to use and does not require creating a separate message queue object. However, when

creating the RPM task, it is important to specify the size of the message queue used by the

task and compile the application code with OS_CFG_TASK_Q_EN set to 1. The differences

between using message queues and the task’s message queue will be explained.

OS_TCB      RPM_TCB;                                                (1)

OS_STK      RPM_Stk[1000];                           

CPU_INT32U  DeltaCounts ;

CPU_INT32U  CurrentCounts ;

CPU_INT32U  PreviousCounts ;

void main (void)

{

    OS_ERR  err ;

    :

    OSInit(&err) ;                                 

    :

    void  OSTaskCreate ((OS_TCB       *)&RPM_TCB,                   (2) 

                        (CPU_CHAR     *)�RPM Task�,

                        (OS_TASK_PTR   )RPM_Task,

                        (void         *)0,

                        (OS_PRIO       )10,

                        (CPU_STK      *)&RPM_Stk[0],

                        (CPU_STK_SIZE  )100,

                        (CPU_STK_SIZE  )1000,

                        (OS_MSG_QTY    )10,

                        (OS_TICK       )0,

                        (void         *)0,

                        (OS_OPT        )(OS_OPT_TASK_STK_CHK + OS_OPT_TASK_STK_CLR),

                        (OS_ERR       *)&err);

    :

    OSStart(&err);

}



306

Chapter 15

Listing 15-4 Pseudo-code of RPM measurement

void RPM_ISR (void)                               

{

    OS_ERR  err;

    Clear the interrupting from the sensor;

    CurrentCounts  = Read the input capture;

    DeltaCounts    = CurrentCounts � PreviousCounts;

    PreviousCounts = CurrentCounts;

    OSTaskQPost((OS_TCB    *)&RPM_TCB,                                           (3)

                (void      *)DeltaCounts,

                (OS_MSG_SIZE)sizeof(DeltaCounts),

                (OS_OPT     )OS_OPT_POST_FIFO,

                (OS_ERR    *)&err);        

}

void RPM_Task (void *p_arg)                                                

{

    CPU_INT32U   delta;

    OS_ERR       err;

    OS_MSG_SIZE  size;

    CPU_TS       ts;

 

    DeltaCounts    = 0;

    PreviousCounts = 0;

    CurrentCounts  = 0;   

    while (DEF_ON) {

        delta = (CPU_INT32U)OSTaskQPend((OS_TICK       )OS_CFG_TICK_RATE * 10,   (4)  

                                        (OS_OPT       )OS_OPT_PEND_BLOCKING,

                                        (OS_MSG_SIZE *)&size,

                                        (CPU_TS      *)&ts,                 

                                        (OS_ERR      *)&err);               

        if (err == OS_ERR_TIMEOUT) {

            RPM = 0;

        } else {

            if (delta > 0u) {

                RPM = 60 * ReferenceFrequency / delta;

            }

        }

        Compute average RPM;

        Detect maximum RPM;

        Check for overspeed;

        Check for underspeed;

        :                               

        :

    }

}
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L15-4(1) Instead of declaring a message queue, it is important to know the OS_TCB of

the task that will be receiving messages. 

L15-4(2) The RPM task is created and a queue size of 10 entries is specified. Of course,

hard-coded values should not be specified in a real application, but instead,

use #defines. Fixed numbers are used here for sake of illustration.

L15-4(3) Instead of posting to a message queue, the ISR posts the message directly to

the task, specifying the address of the OS_TCB of the task. This is known since

the OS_TCB is allocated when creating the task.

L15-4(4) The RPM task starts by waiting for a message from the RPM ISR by calling

OSTaskQPend(). This is an inherent call so it is not necessary to specify the

address of the OS_TCB to pend on as the current task is assumed. The second

argument specifies the timeout. Here, ten seconds worth of timeout is

specified, which corresponds to 6 RPM. 

15-8  CLIENTS AND SERVERS

Another interesting use of message queues is shown in Figure 15-10. Here, a task (the

server) is used to monitor error conditions that are sent to it by other tasks or ISRs (clients).

For example, a client detects whether the RPM of the rotating wheel has been exceeded,

another client detects whether an over-temperature exists, and yet another client detects

that a user pressed a shutdown button. When the clients detect error conditions, they send

a message through the message queue. The message sent indicates the error detected,

which threshold was exceeded, the error code that is associated with error conditions, or

even suggests the address of a function that will handle the error, and more.

Figure 15-10 Clients and Servers

Error
Handler

Task

ISR

OSQPost()

OSQPend()

Timeout

Message
Queue

Task

Task

OSQPost()

OSQPost()



308

Chapter 15

15-9  MESSAGE QUEUES INTERNALS

As previously described, a message consists of a pointer to actual data, a variable indicating the

size of the data being pointed to and a timestamp indicating when the message was actually

sent. When sent, a message is placed in a data structure of type OS_MSG, shown in Figure 15-11.

The sender and receiver are unaware of this data structure since everything is hidden

through the APIs provided by μC/OS-III.

Figure 15-11 OS_MSG structure

μC/OS-III maintains a pool of free OS_MSGs. The total number of available messages in the

pool is determined by the value of OS_CFG_MSG_POOL_SIZE found in OS_CFG_APP.H. When

μC/OS-III is initialized, OS_MSGs are linked in a single linked list as shown in Figure 15-12.

Notice that the free list is maintained by a data structure of type OS_MSG_POOL, which

contains three fields: .NextPtr, which points to the free list; .NbrFree, which contains the

number of free OS_MSGs in the pool; and finally .NbrUsed, which contains the number of

OS_MSGs allocated to application.

Figure 15-12 Pool of free OS_MSGs
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Messages are queued using a data structure of type OS_MSG_Q, as shown in Figure 15-13.

Figure 15-13 OS_MSG_Q structure

.InPtr This field contains a pointer to where the next OS_MSG will be

inserted in the queue. In fact, the OS_MSG will be inserted “after”

the OS_MSG pointed to.

.OutPtr This field contains a pointer to where the next OS_MSG will be

extracted.

.NbrEntriesSize This field contains the maximum number of OS_MSGs that the

queue will hold. If an application attempts to send a message and

the .NbrEntries matches this value, the queue is considered to

be full and the OS_MSG will not be inserted. 

.NbrEntries This field contains the current number of OS_MSGs in the queue.

.NbrEntriesMax This field contains the highest number of OS_MSGs existing in the

queue at any given time.

A number of internal functions are used by μC/OS-III to manipulate the free list and

messages. Specifically, OS_MsgQPut() inserts an OS_MSG in an OS_MSG_Q, OS_MsgQGet()

extracts an OS_MSG from an OS_MSG_Q, and OS_MsgQFreeAll() returns all OS_MSGs in an

OS_MSG_Q to the pool of free OS_MSGs. There are other OS_MsgQ??() functions in OS_MSG.C

that are used during initialization.
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Figure 15-14 shows an example of an OS_MSG_Q when four OS_MSGs are inserted.

Figure 15-14 OS_MSG_Q with four OS_MSGs

OS_MSG_Qs are used inside two additional data structures: OS_Q and OS_TCB. Recall that an

OS_Q is declared when creating a message queue object. An OS_TCB is a task control block

and, as previously mentioned, each OS_TCB can have its own message queue when the

configuration constant OS_CFG_TASK_Q_EN is set to 1 in OS_CFG.H. Figure 15-15 shows the

contents of an OS_Q and partial contents of an OS_TCB containing an OS_MSG_Q. The

OS_MSG_Q data structure is shown as an “exploded view” to emphasize the structure within

the structure. 

Figure 15-15 OS_Q and OS_TCB each contain an OS_MSG_Q
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15-10  SUMMARY

Message queues are useful when a task or an ISR is to send data to another task. The data

sent must remain in scope as it is actually sent by reference instead of by value. In other

words, the data sent is not copied.

The task waiting for the data will not consume CPU time while waiting for a message to be

sent to it. 

If it is known which task is responsible for servicing messages sent by producers, use task

message queue (i.e., OSTaskQ???()) services since they are simple and fast. Task message

queue services are enabled when OS_CFG_TASK_Q_EN is set to 1 in OS_CFG.H.

If multiple tasks must wait for messages from the same message queue, allocate an OS_Q

and have the tasks wait for messages to be sent to the queue. Alternatively, broadcast

special messages to all tasks waiting on a message queue. Regular message queue services

are enabled when OS_CFG_Q_EN is set to 1 in OS_CFG.H.

Messages are sent using an OS_MSG data structure obtained by μC/OS-III from a pool. Set

the maximum number of messages that can be sent to a message queue, or as many

messages as are available in the pool.
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16
Pending On Multiple Objects

In Chapter 10, “Pend Lists (or Wait Lists)” on page 177 we saw how multiple tasks can pend

(or wait) on a single kernel object such as a semaphore, mutual exclusion semaphore, event

flag group, or message queue. In this chapter, we will see how tasks can pend on multiple

objects. However, μC/OS-III only allows for pend on multiple semaphores and/or message

queues. In other words, it is not possible to pend on multiple event flag groups or mutual

exclusion semaphores.

As shown in Figure 16-1, a task can pend on any number of semaphores or message queues

at the same time. The first semaphore or message queue posted will make the task ready to

run and compete for CPU time with other tasks in the ready list. As shown, a task pends on

multiple objects by calling OSPendMulti() and specifies an optional timeout value. The

timeout applies to all of the objects. If none of the objects are posted within the specified

timeout, the task resumes with an error code indicating that the pend timed out.
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Figure 16-1 Task pending on multiple objects
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Listing 16-1 shows the function prototype of OSPendMulti() and Figure 16-2 exhibits an

array of OS_PEND_DATA elements.

Listing 16-1 OSPendMulti() prototype

Figure 16-2 Array of OS_PEND_DATA

L16-1(1) OSPendMulti() is passed an array of OS_PEND_DATA elements. The caller must

instantiate an array of OS_PEND_DATA. The size of the array depends on the

total number of kernel objects that the task wants to pend on. For example, if

the task wants to pend on three semaphores and two message queues then the

array contains five OS_PEND_DATA elements as shown below:

OS_OBJ_QTY  OSPendMulti (OS_PEND_DATA  *p_pend_data_tbl,                     (1)

                         OS_OBJ_QTY     tbl_size,                            (2)

                         OS_TICK        timeout,                             (3)

                         OS_OPT         opt,                                 (4)

                         OS_ERR        *p_err);                              (5)

OS_PEND_DATA   my_pend_multi_tbl[5];
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The calling task needs to initialize the .PendObjPtr of each element of the

array to point to each of the objects to be pended on. For example:

L16-1(2) This argument specifies the size of the OS_PEND_DATA table. In the above

example, this is 5.

L16-1(3) Specify whether or not to timeout in case none of the objects are posted within

a certain amount of time. A non-zero value indicates the number of ticks to

timeout. Specifying zero indicates the task will wait forever for any of the

objects to be posted.

L16-1(4) The “opt” argument specifies whether to wait for objects to be posted (set opt

to OS_OPT_PEND_BLOCKING) or, not block if none of the objects have already

been posted (set opt to OS_OPT_PEND_NON_BLOCKING).

OS_SEM  MySem1;

OS_SEM  MySem2;

OS_SEM  MySem3;

OS_Q    MyQ1;

OS_Q    MyQ2;

void  MyTask (void) 

{

    OS_ERR        err;

    OS_PEND_DATA  my_pend_multi_tbl[5];

    :

    while (DEF_ON) {

        :

        my_pend_multi_tbl[0].PendObjPtr = (OS_PEND_OBJ)&MySem1;     (6)

        my_pend_multi_tbl[1].PendObjPtr = (OS_PEND_OBJ)&MySem2;

        my_pend_multi_tbl[2].PendObjPtr = (OS_PEND_OBJ)&MySem3;

        my_pend_multi_tbl[3].PendObjPtr = (OS_PEND_OBJ)&MyQ1;

        my_pend_multi_tbl[4].PendObjPtr = (OS_PEND_OBJ)&MyQ2;

        OSPendMulti((OS_PEND_DATA *)&my_pend_multi_tbl[0],

                    (OS_OBJ_QTY    )5,

                    (OS_TICK       )0,

                    (OS_OPT        )OS_OPT_PEND_BLOCKING,

                    (OS_ERR       *)&err);

        /* Check �err� */

        :

    }

}
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F16-2(1) As with most μC/OS-III function calls, specify the address of a variable that will

receive an error code based on the outcome of the function call. See

Appendix A, “μC/OS-III API Reference Manual” on page 375 for a list of

possible error codes. As always, it is highly recommended to examine the error

return code.

F16-2(2) Note that all objects are cast to OS_PEND_OBJ data types.

When called, OSPendMulti() first starts by validating that all of the objects specified in the

OS_PEND_DATA table are either an OS_SEM or an OS_Q. If not, an error code is returned.

Next, OSPendMulti() goes through the OS_PEND_DATA table to see if any of the objects

have already posted. If so, OSPendMulti() fills the following fields in the table:

.RdyObjPtr, .RdyMsgPtr, .RdyMsgSize and .RdyTS. 

.RdyObjPtr is a pointer to the object if the object has been posted. For

example, if the first object in the table is a semaphore and the

semaphore has been posted to, my_pend_multi_tbl[0].RdyObjPtr

is set to my_pend_multi_tbl[0].PendObjPtr.

.RdyMsgPtr is a pointer to a message if the object in the table at this entry is a

message queue and a message was received from the message queue. 

.RdyMsgSize is the size of the message received if the object in the table at this entry is

a message queue and a message was received from the message queue.

.RdyTS is the timestamp of when the object posted. This allows the user to know

when a semaphore or message queue posts.

If there are no objects posted, then OSPendMulti() places the current task in the wait list of

all the objects that it is pending on. This is a complex and tedious process for

OSPendMulti() since there can be other tasks in the pend list of some of these objects we

are pending on.

To indicate how tricky things get, Figure 16-3 is an example of a task pending on two

semaphores.



318

Chapter 16

Figure 16-3 Task pending on two semaphores

F16-3(1) A pointer to the base address of the OS_PEND_DATA table is placed in the

OS_TCB of the task placed in the pend list of the two semaphores.

F16-3(2) The numbers of entries in the OS_PEND_DATA table are also placed in the

OS_TCB. Again, this task is waiting on two semaphores and therefore there are

two entries in the table.
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F16-3(3) Entry [0] of the OS_PEND_DATA table is linked to the semaphore object specified

by that entry’s .PendObjPtr.

F16-3(4) This pointer was specified by the caller of OSPendMulti().

F16-3(5) Since there is only one task in the pend list of the semaphore, the .PrevPtr

and .NextPtr are pointing to NULL.

F16-3(6) The second semaphore points to the second entry in the OS_PEND_DATA table.

F16-3(7) This pointer was specified by the caller of OSPendMulti().

F16-3(8) The second semaphore only has one entry in its pend list. Therefore the

.PrevPtr and .NextPtr both point to NULL.

F16-3(9) OSPendMulti() links back each OS_PEND_DATA entry to the task that is waiting

on the two semaphores.

Figure 16-4 is a more complex example where one task is pending on two semaphores while

another task also pends on one of the two semaphores. The examples presented so far only

show semaphores, but they could be combinations of semaphores and message queues.
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Figure 16-4 Tasks pending on semaphores

��;�

"	�����

�	!)���

 �	(���
.�+�$

���

��

/���2�

���<���

"�:����

��-���

���(/7K���

B(�/7K���

B(������

B(����!*�

B(���

/���2"I�ID�D

���<���

"�:����

��-���

���(/7K���

B(�/7K���

B(������

B(����!*�

B(���

%���(I	�	�7)���

/����-

�

�

�

��;�

"	�����

�	!)���

 �	(���

.�+�4

���

��

/���2�

%���(I	�	�7)2���!� +�4

���

���<���

"�:����

��-���

���(/7K���

B(�/7K���

B(������

B(����!*�

B(���

�

%���(I	�	�7)���

/����-

%���(I	�	�7)2���!� +�$

/���2"I�ID�D
�$�

 !��
��!��!��
�	�

���
��!��!��
�	�



321

Pending On Multiple Objects

When either an ISR or a task signals or sends a message to one of the objects that the task

is pending on, OSPendMulti() returns, indicating in the OS_PEND_DATA table which object

was posted. This is done by only filling in “one” of the .RdyObjPtr entries, the one that

corresponds to the object posted as shown in Figure 16-2.

Only one of the entries in the OS_PEND_DATA table will have a .RdyObjPtr with a non-NULL

value while all the other entries have the .RdyObjPtr set to NULL. Going back to the case

where a task waits on five semaphores and two message queues, if the first message queue

is posted while the task is pending on all those objects, the OS_PEND_DATA table will be as

shown in Figure 16-5. 

Figure 16-5 Message queue #1 posted before timeout expired

16-1  SUMMARY

μC/OS-III allows tasks to pend on multiple kernel objects.

OSPendMulti() can only pend on multiple semaphores and message queues, not event

flags and mutual-exclusion semaphores.

If the objects are already posted when OSPendMulti() is called, μC/OS-III will specify

which of the objects in the list of objects have already been posted.

If none of the objects are posted, OSPendMulti() will place the calling task in the pend list

of all the desired objects. OSPendMulti() will return as soon as one of the objects is

posted. In this case, OSPendMulti() will indicate which object was posted.

OSPendMulti() is a complex function that has potentially long critical sections.
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17
Memory Management

An application can allocate and free dynamic memory using any ANSI C compiler’s

malloc() and free() functions, respectively. However, using malloc() and free() in an

embedded real-time system may be dangerous. Eventually, it might not be possible to obtain a

single contiguous memory area due to fragmentation. Fragmentation is the development of a large

number of separate free areas (i.e., the total free memory is fragmented into small, non-contiguous

pieces). Execution time of malloc() and free() is generally nondeterministic given the

algorithms used to locate a contiguous block of free memory.

μC/OS-III provides an alternative to malloc() and free() by allowing an application to

obtain fixed-sized memory blocks from a partition made from a contiguous memory area, as

illustrated in Figure 17-1. All memory blocks are the same size, and the partition contains an

integral number of blocks. Allocation and deallocation of these memory blocks is performed in

constant time and is deterministic. The partition itself is typically allocated statically (as an

array), but can also be allocated by using malloc() as long as it is never freed. 

Figure 17-1 Memory Partition
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As indicated in Figure 17-2, more than one memory partition may exist in an application

and each one may have a different number of memory blocks and be a different size. An

application can obtain memory blocks of different sizes based upon requirements.

However, a specific memory block must always be returned to the partition that it came

from. This type of memory management is not subject to fragmentation except that it is

possible to run out of memory blocks. It is up to the application to decide how many

partitions to have and how large each memory block should be within each partition.

Figure 17-2 Multiple Memory Partitions

17-1  CREATING A MEMORY PARTITION

Before using a memory partition, it must be created. This allows μC/OS-III to know

something about the memory partition so that it can manage their allocation and

deallocation. Once created, a memory partition is as shown in Figure 17-3. Calling

OSMemCreate() creates a memory partition.

Figure 17-3 Created Memory Partition
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F17-3(1) When creating a partition, the application code supplies the address of a

memory partition control block (OS_MEM). Typically, this memory control block

is allocated from static memory, however it can also be obtained from the heap

by calling malloc(). The application code should however never deallocate it. 

F17-3(2) OSMemCreate() organizes the continuous memory provided into a singly

linked list and stores the pointer to the beginning of the list in the OS_MEM

structure.

F17-3(3) Each memory block must be large enough to hold a pointer. Given the nature

of the linked list, a block needs to be able to point to the next block.

Listing 17-1 indicates how to create a memory partition with μC/OS-III. 

Listing 17-1 Creating a memory partition

L17-1(1) An application needs to allocate storage for a memory partition control block.

This can be a static allocation as shown here or malloc() can be used in the code.

However, the application code must not deallocate the memory control block.

OS_MEM       MyPartition;                                    (1) 

CPU_INT08U   MyPartitionStorage[12][100];                    (2) 

void  main (void)                                            (3) 

{

    OS_ERR  err;

    :

    :

    OSInit(&err);

    :

    OSMemCreate((OS_MEM    *)&MyPartition,                   (4) 

                (CPU_CHAR  *)�My Partition�,                 (5) 

                (void      *)&MyPartitionStorage[0][0],      (6) 

                (OS_MEM_QTY ) 12,                            (7) 

                (OS_MEM_SIZE)100,                            (8) 

                (OS_ERR    *)&err);                          (9) 

    /* Check �err� */

    :

    :

    OSStart(&err);

}
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L17-1(2) The application also needs to allocate storage for the memory that will be split

into memory blocks. This can also be a static allocation or malloc() can be

used. The same reasoning applies. Do not deallocate this storage since other

tasks may rely on the existence of this storage.

L17-1(3) Memory partition must be created before allocating and deallocating blocks

from the partition. One of the best places to create memory partitions is in

main() prior to starting the multitasking process. Of course, an application can

call a function from main() to do this instead of actually placing the code

directly in main().

L17-1(4) Pass the address of the memory partition control block to OSMemCreate().

Never reference any of the internal members of the OS_MEM data structure.

Instead, use μC/OS-III’s API.

L17-1(5) Assign a name to the memory partition. There is no limit to the length of the

ASCII string as μC/OS-III saves a pointer to the ASCII string in the partition

control block and not the actual characters.

L17-1(6) Pass the base address of the storage area reserved for the memory blocks.

L17-1(7) Specify how many memory blocks are available from this memory partition.

Hard coded numbers are used for the sake of the illustration but one should

instead use #define constants.

L17-1(8) Specify the size of each memory block in the partition. Again, a hard coded

value is used for illustration, which is not recommended in real code.

L17-1(9) As with most μC/OS-III services, OSMemCreate() returns an error code

indicating the outcome of the service. The call is successful if “err” contains

OS_ERR_NONE.

Listing 17-2 shows how to create a memory partition with μC/OS-III, this time using

malloc() to allocate storage. Do not deallocate the memory control block or the storage for

the partition.
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Listing 17-2 Creating a memory partition

L17-2(1) Instead of allocating static storage for the memory partition control block,

assign a pointer that receives the OS_MEM allocated using malloc().

L17-2(2) The application allocates storage for the memory control block.

L17-2(3) Allocate storage for the memory partition.

L17-2(4) Pass a pointer to the allocated memory control block to OSMemCreate().

L17-2(5) Pass the base address of the storage used for the partition.

L17-2(6) Finally, pass the number of blocks and the size of each block so that μC/OS-III

creates the linked list of 12 blocks of 100 bytes each. Again, hard coded

numbers are used, but these would typically be replaced by #defines.

OS_MEM      *MyPartitionPtr;                                         (1) 

void  main (void)                                                  

{

    OS_ERR   err;

    void    *p_storage;

    :

    OSInit(&err);

    :

    MyPartitionPtr = (OS_MEM *)malloc(sizeof(OS_MEM));               (2) 

    if (MyPartitionPtr != (OS_MEM *)0) {

        p_storage = malloc(12 * 100);                                (3) 

        if (p_storage != (void *)0) {

            OSMemCreate((OS_MEM    *)MyPartitionPtr,                 (4) 

                        (CPU_CHAR  *)�My Partition�,            

                        (void      *)p_storage,                      (5) 

                        (OS_MEM_QTY ) 12,                            (6) 

                        (OS_MEM_SIZE)100,                            (6) 

                        (OS_ERR    *)&err); 

            /* Check �err� */                       

        }

    }

    :

    OSStart(&err);

}
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17-2  GETTING A MEMORY BLOCK FROM A PARTITION

Application code can request a memory block from a partition by calling OSMemGet() as

shown in Listing 17-3. The code assumes that the partition was already created.

Listing 17-3 Obtaining a memory block from a partition

L17-3(1) The memory partition control block must be accessible by all tasks or ISRs that

will be using the partition. 

L17-3(2) Simply call OSMemGet() to obtain a memory block from the desired partition. A

pointer to the allocated memory block is returned. This is similar to malloc(),

except that the memory block comes from a pool that is guaranteed to not

fragment.

L17-3(3) It is important to examine the returned error code to ensure that there are free

memory blocks and that the application can start putting content in the

memory blocks.

OS_MEM       MyPartition;                                                  (1) 

CPU_INT08U  *MyDataBlkPtr;

void  MyTask (void *p_arg)  

{

    OS_ERR  err;

    

    :

    while (DEF_ON) {

        :

        MyDataBlkPtr = (CPU_INT08U *)OSMemGet((OS_MEM    *)&MyPartition,   (2) 

                                              (OS_ERR    *)&err);

        if (err == OS_ERR_NONE) {                                          (3) 

             /* You have a memory block from the partition */

        }

        :

        :

    }

}
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17-3  RETURNING A MEMORY BLOCK TO A PARTITION

The application code must return an allocated memory block back to the proper partition

when finished. Do this by calling OSMemPut() as shown in Listing 17-4. The code assumes

that the partition was already created.

Listing 17-4 Returning a memory block to a partition

L17-4(1) The memory partition control block must be accessible by all tasks or ISRs that

will be using the partition. 

L17-4(2) Simply call OSMemPut() to return the memory block back to the memory

partition. Note that there is no check to see whether the proper memory block is

being returned to the proper partition (assuming you have multiple different

partitions). It is therefore important to be careful (as is necessary when designing

embedded systems).

L17-4(3) Pass the pointer to the data area that is allocated so that it can be returned to

the pool. Note that a “void *” is assumed.

L17-4(4) Examine the returned error code to ensure that the call was successful.

OS_MEM       MyPartition;                                                  (1) 

CPU_INT08U  *MyDataBlkPtr;

void  MyTask (void *p_arg)  

{

    OS_ERR  err;

    

    :

    while (DEF_ON) {

        :

        OSMemPut((OS_MEM  *)&MyPartition,                                  (2) 

                 (void    *)MyDataBlkPtr,                                  (3) 

                 (OS_ERR  *)&err);

        if (err == OS_ERR_NONE) {                                          (4) 

             /* You properly returned the memory block to the partition */

        }

        :

        :

    }

}
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17-4  USING MEMORY PARTITIONS

Memory management services are enabled at compile time by setting the configuration

constant OS_CFG_MEM_EN to 1 in OS_CFG.H.

There are a number of operations to perform on memory partitions as summarized in

Table 13-1.

Table 17-1 Memory Partition API summary

OSMemCreate() can only be called from task-level code, but OSMemGet() and OSMemPut()

can be called by Interrupt Service Routines (ISRs).

Listing 17-4 shows an example of how to use the dynamic memory allocation feature of

μC/OS-III, as well as message-passing capabilities (see Chapter 15, “Message Passing” on

page 289). In this example, the task on the left reads and checks the value of analog inputs

(pressures, temperatures, and voltage) and sends a message to the second task if any of the

analog inputs exceed a threshold. The message sent contains information about which

channel had the error, an error code, an indication of the severity of the error, and other

information. 

Error handling in this example is centralized. Other tasks, or even ISRs, can post error

messages to the error-handling task. The error-handling task could be responsible for

displaying error messages on a monitor (a display), logging errors to a disk, or dispatching

other tasks to take corrective action based on the error.

Function Name Operation

OSMemCreate() Create a memory partition.

OSMemGet() Obtain a memory block from a memory partition.

OSMemPut() Return a memory block to a memory partition.
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Figure 17-4 Using a Memory Partition – non blocking

F17-4(1) The analog inputs are read by the task. The task determines that one of the

inputs is outside a valid range and an error message needs to be sent to the

error handler.

F17-4(2) The task then obtains a memory block from a memory partition so that it can

place information regarding the detected error.

F17-4(3) The task writes this information to the memory block. As mentioned above, the

task places the analog channel that is at fault, an error code, an indication of

the severity, possible solutions, and more. There is no need to store a

timestamp in the message, as time stamping is a built-in feature of μC/OS-III so

the receiving task will know when the message was posted.

F17-4(4) Once the message is complete, it is posted to the task that will handle such

error messages. Of course the receiving task needs to know how the

information is placed in the message. Once the message is sent, the analog

input task is no longer allowed (by convention) to access the memory block

since it sent it out to be processed.
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F17-4(5) The error handler task (on the right) normally pends on the message queue.

This task will not execute until a message is sent to it. 

F17-4(6) When a message is received, the error handler task reads the contents of the

message and performs necessary action(s). As indicated, once sent, the sender

will not do anything else with the message.

F17-4(7) Once the error handler task is finished processing the message, it simply

returns the memory block to the memory partition. The sender and receiver

therefore need to know about the memory partition or, the sender can pass the

address of the memory partition as part of the message and the error handler

task will know where to return the memory block.

Sometimes it is useful to have a task wait for a memory block in case a partition runs out of

blocks. μC/OS-III does not support pending on partitions, but it is possible to support this

requirement by adding a counting semaphore (see Chapter 13, “Resource Management” on

page 209) to guard the memory partition. This is illustrated in Figure 17-5. 

Figure 17-5 Using a Memory Partition - blocking
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F17-5(1) To obtain a memory block, simply obtain the semaphore by calling

OSSemPend() and call OSMemGet() to receive the memory block.

F17-5(2) To release a block, simply return the memory block by calling OSMemPut() and

signal the semaphore by calling OSSemPost(). 

The above operations must be performed in order.

Note that the user may call OSMemGet() and OSMemPut() from an ISR since these functions

do not block and in fact, execute very quickly. However, you cannot use blocking calls from

ISRs.

17-5  SUMMARY

Do not use malloc() and free() in embedded systems since they lead to fragmentation.

It is possible to use malloc() to allocate memory from the heap, but do not deallocate the

memory.

The application programmer can create an unlimited number of memory partitions (limited

only by the amount of available RAM). 

Memory partition services in μC/OS-III start with the OSMem???() prefix, and the services

available to the application programmer are described in Appendix A, “μC/OS-III API

Reference Manual” on page 375. 

Memory management services are enabled at compile time by setting the configuration

constant OS_CFG_MEM_EN to 1 in OS_CFG.H.

OSMemGet() and OSMemPut() can be called from ISRs.
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18
Porting µC/OS-III

This chapter describes in general terms how to adapt μC/OS-III to different processors.

Adapting μC/OS-III to a microprocessor or a microcontroller is called porting. Most of

μC/OS-III is written in C for portability. However, it is still necessary to write

processor-specific code in C and assembly language. μC/OS-III manipulates processor

registers, which can only be done using assembly language. Porting μC/OS-III to different

processors is relatively easy as μC/OS-III was designed to be portable and, since μC/OS-III

is similar to μC/OS-II, the user can start from a μC/OS-II port. If there is already a port for

the processor to be used, it is not necessary to read this chapter unless, of course, there is

an interest in knowing how μC/OS-III processor-specific code works. 

μC/OS-III can run on a processor if it satisfies the following general requirements:

■ The processor has an ANSI C compiler that generates reentrant code. 

■ The processor supports interrupts and can provide an interrupt that occurs at regular

intervals (typically between 10 and 1000 Hz). 

■ Interrupts can be disabled and enabled. 

■ The processor supports a hardware stack that accommodates a fair amount of data

(possibly many kilobytes). 

■ The processor has instructions to save and restore the stack pointer and other CPU

registers, either on the stack or in memory.

■ The processor has access to sufficient RAM for μC/OS-III’s variables and data structures

as well as internal task stacks.

■ The compiler should support 64-bit data types (typically “long long”).
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Figure 18-1 shows the μC/OS-III architecture and its relationship with other software

components and hardware. When using μC/OS-III in an application, the user is responsible

for providing application software and μC/OS-III configuration sections. 

Figure 18-1 µC/OS-III architecture
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F18-1(1) A μC/OS-III port consists of writing or changing the contents of three

kernel-specific files: OS_CPU.H, OS_CPU_A.ASM and OS_CPU_C.C.

F18-1(2) A port also involves writing or changing the contents of three CPU specific

files: CPU.H, CPU_A.ASM and CPU_CORE.C.

F18-1(3) A Board Support Package (BSP) is generally necessary to interface μC/OS-III to

a timer (which is used for the clock tick) and an interrupt controller.

F18-1(4) Some semiconductor manufacturers provide source and header files to access

on-chip peripherals. These are contained in CPU/MCU specific files.

Porting μC/OS-III is quite straightforward once the subtleties of the target processor and the

C compiler/assembler are understood. Depending on the processor, a port consists of

writing or changing between 100 and 400 lines of code, which takes a few hours to a few

days to accomplish. The easiest thing to do, however, is to modify an existing port from a

processor that is similar to the one intended for use.

A μC/OS-III port looks very much like a μC/OS-II port. Since μC/OS-II was ported to well

over 45 different CPU architectures it is easy to start from a μC/OS-II port. Converting a

μC/OS-II port to μC/OS-III takes approximately an hour. The process is described in

Appendix C, “Migrating from μC/OS-II to μC/OS-III” on page 599.

A port involves three aspects: CPU, OS and board-specific code. The board-specific code is

often called a Board Support Package (BSP) and from μC/OS-III’s point of view, requires

very little.
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18-1  µC/CPU

CPU-specific code is related to the CPU and the compiler in use, and less so with μC/OS-III. For

example, disabling and enabling interrupts and the word width of the stack, whether the stack

grows from high-to-low memory or from low-to-high memory and more are all CPU specific and

not OS specific. Micriμm encapsulates CPU functions and data types into a module called μC/CPU. 

Table 18-1 shows the name of μC/CPU files and where they should be placed on the

computer used to develop a μC/OS-III-based application.

Table 18-1 µC/CPU files and directories

Here, <processor> is the name of the processor that the CPU*.* files apply to, and

<compiler> is the name of the compiler that these files assume because of different

assembly language directives that different tool chains use.

The above source files for the CPU that came with this book are found when downloading

the code from the Micriμm website.

CPU_DEF.H

This file should not require any changes. CPU_DEF.H declares #define constants that are

used by Micriμm software components.

File Directory

CPU_DEF.H \Micrium\Software\uC-CPU\

CPU.H \Micrium\Software\uC-CPU\<processor>\<compiler>

CPU_C.C \Micrium\Software\uC-CPU\<processor>\<compiler>

CPU_CFG.H \Micrium\Software\uC-CPU\CFG\TEMPLATE

CPU_CORE.C \Micrium\Software\uC-CPU\

CPU_CORE.H \Micrium\Software\uC-CPU\

CPU_A.ASM \Micrium\Software\uC-CPU\<processor>\<compiler>
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CPU.H

Many CPUs have different word lengths and CPU.H declares a series of type definitions that

ensure portability. Specifically, at Micriμm, C data types int, short, long, char, etc., are not

used. Instead, clearer data types are defined. Consult compiler documentation to determine

whether the standard declarations described below must be changed for the CPU/compiler

used. When using a 32-bit CPU, the declarations below should work without change.

(1) Especially important for μC/OS-III is the definition of the CPU_STK data type,

which sets the width of a stack entry. Specifically, is the width of data pushed

to and popped from the stack 8 bits, 16 bits, 32 bits or 64 bits?

(2) CPU_SR defines the data type for the processor’s status register (SR) that

generally holds the interrupt disable status. 

(3) The CPU_TS is a time stamp used to determine when an operation occurred, or

to measure the execution time of code.

typedef            void        CPU_VOID;

typedef  unsigned  char        CPU_CHAR;              

typedef  unsigned  char        CPU_BOOLEAN;           

typedef  unsigned  char        CPU_INT08U;            

typedef    signed  char        CPU_INT08S;            

typedef  unsigned  short       CPU_INT16U;            

typedef    signed  short       CPU_INT16S;            

typedef  unsigned  int         CPU_INT32U;            

typedef    signed  int         CPU_INT32S;            

typedef  unsigned  long  long  CPU_INT64U;            

typedef    signed  long  long  CPU_INT64S;            

typedef            float       CPU_FP32;              

typedef            double      CPU_FP64;              

typedef  volatile  CPU_INT08U  CPU_REG08;             

typedef  volatile  CPU_INT16U  CPU_REG16;             

typedef  volatile  CPU_INT32U  CPU_REG32;             

typedef  volatile  CPU_INT64U  CPU_REG64;             

typedef            void      (*CPU_FNCT_VOID)(void);  

typedef            void      (*CPU_FNCT_PTR )(void *);

typedef  CPU_INT32U            CPU_ADDR;

typedef  CPU_INT32U            CPU_DATA;

typedef  CPU_DATA              CPU_ALIGN; 

typedef  CPU_ADDR              CPU_SIZE_T;

typedef  CPU_INT32U            CPU_STK;             (1)

typedef  CPU_ADDR              CPU_STK_SIZE;

typedef  CPU_INT16U            CPU_ERR;

typedef  CPU_INT32U            CPU_SR;              (2)

typedef  CPU_INT32U            CPU_TS;              (3)
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CPU.H also declares macros to disable and enable interrupts: CPU_CRITICAL_ENTER() and

CPU_CRITICAL_EXIT(), respectively. Finally, CPU.H declares function prototypes for a

number of functions found in either CPU_C.C or CPU_CORE.C.

CPU_C.C

This is an optional file containing CPU-specific functions to set the interrupt controller, timer

prescalers, and more. Most implementations will not contain this file.

CPU_CFG.H

This is a configuration file to be copied into the product directory and changed based on the

options to exercise in μC/CPU. The file contains #define constants that may need to be

changed based on the desired use of μC/CPU. For example, to assign a “name” to the CPU, the

name can be queried and displayed. Also, to name the CPU, one must specify the length of the

ASCII string.

CPU_CORE.C

This file is generic and does not need to be changed. However it must be included in all

builds. CPU_CORE.C defines such functions as CPU_Init(), CPU_CntLeadZeros(), and

code to measure maximum CPU interrupt disable time. 

CPU_Init() must be called before calling OSInit().

CPU_CntLeadZeros() is used by the μC/OS-III scheduler to find the highest priority ready

task (see Chapter 7, “Scheduling” on page 133). CPU_CORE.C implements a count leading

zeros in C. However, if the processor used provides a built-in instruction to count leading

zeros, define 

CPU_CFG_LEAD_ZEROS_ASM_PRESENT, and replace this function by an assembly language

equivalent (in CPU_A.ASM). It is important to properly declare CPU_CFG_DATA_SIZE in

CPU.H for this function to work.

CPU_CORE.C also includes code that allows you to read timestamps. μC/CPU timestamps

(CPU_TS) are 32-bit values. However, μC/CPU can return a 64-bit timestamp since μC/CPU

keeps track of overflows of the low part of the 64-bit timestamp. Also use timestamps to

determine when events occur, or to measure the execution time of code. Timestamp

support requires a 16- or 32-bit free-running counter/timer that can be read. The code to

read this timer will be placed in the BSP (Board Support Package) of the evaluation board

or target board used.
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CPU_CORE.H

This header file is required by CPU_CORE.C to define function prototypes.

CPU_A.ASM

This file contains assembly language code to implement such functions as disabling and

enabling interrupts, a more efficient count leading zeros function, and more. At a minimum,

this file should implement CPU_SR_Save() and CPU_SR_Restore().

CPU_SR_Save() reads the current value of the CPU status register where the current

interrupt disable flag resides and returns this value to the caller. However, before returning,

CPU_SR_Save() must disable all interrupts. CPU_SR_Save() is actually called by the macro

CPU_CRITICAL_ENTER().

CPU_SR_Restore() restores the CPU’s status register to a previously saved value.

CPU_SR_Restore() is called from the macro CPU_CRITICAL_EXIT().

18-2  µC/OS-III PORT

Table 18-2 shows the name of μC/OS-III files and where they are typically found.

Table 18-2 µC/OS-III files and directories

Here, <processor> is the name of the processor that the OS_CPU*.* files apply to, and

<compiler> is the name of the compiler that these files assume because of the different

assembly language directives that different tool chains use.

OS_CPU.H

This file must define the macro OS_TASK_SW(), which is called by OSSched() to perform a

task-level context switch. The macro can translate directly to a call to OSCtxSw(), trigger a

software interrupt, or a TRAP. The choice depends on the CPU architecture.

File Directory

OS_CPU.H \Micrium\Software\uCOS-III\Ports\<processor>\<compiler>\

OS_CPU_A.ASM \Micrium\Software\uCOS-III\Ports\<processor>\<compiler>\

OS_CPU_C.C \Micrium\Software\uCOS-III\Ports\<processor>\<compiler>\
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OS_CPU.H must also define the macro OS_TS_GET() which obtains the current time stamp. It is

expected that the time stamp is type CPU_TS, which is typically declared as at least a 32-bit value.

OS_CPU.H also defines function prototypes for OSCtxSw(), OSIntCtxSw(),

OSStartHighRdy() and possibly other functions required by the port.

OS_CPU_A.ASM

This file contains the implementation of the following assembly language functions:

OSStartHighRdy()

OSCtxSw()

OSIntCtxSw()

and optionally,

OSTickISR()

OSTickISR() may optionally be placed in OS_CPU_A.ASM if it does not change from one

product to another. The functions in this file are implemented in assembly language since

they manipulate CPU registers, which is typically not possible from C. The functions are

described in Appendix A, “μC/OS-III API Reference Manual” on page 375.

OS_CPU_C.C

This file contains the implementation of the following C functions:

OSIdleTaskHook()

OSInitHook()

OSStatTaskHook()

OSTaskCreateHook()

OSTaskDelHook()

OSTaskReturnHook()

OSTaskStkInit()

OSTaskSwHook()

OSTimeTickHook()

The functions are described in Appendix A, “μC/OS-III API Reference Manual” on page 375.

OS_CPU_C.C can declare other functions as needed by the port, however the above

functions are mandatory.
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18-3  BOARD SUPPORT PACKAGE (BSP)

A board support package refers to code associated with the actual evaluation board or the

target board used. For example, the BSP defines functions to turn LEDs on or off, reads

push-button switches, initializes peripheral clocks, etc., providing nearly any functionality to

multiple products/projects. 

Names of typical BSP files include: 

BSP.C

BSP.H

BSP_INT.C

BSP_INT.H

All files are generally placed in a directory as follows:

\Micrium\Software\EvalBoards\<manufacturer>\

<board_name>\<compiler>\BSP\

Here, <manufacturer> is the name of the evaluation board or target board manufacturer,

<board_name> is the name of the evaluation or target board and <compiler> is the name of

the compiler that these files assume, although most should be portable to different

compilers since the BSP is typically written in C.

BSP.C and BSP.H

These files normally contain functions and their definitions such as BSP_Init(),

BSP_LED_On(), BSP_LED_Off(), BSP_LED_Toggle(), BSP_PB_Rd(), and others. It is up to

the user to decide if the functions in this file start with the prefix BSP_. In other words, use

LED_On() and PB_Rd() if this is clearer. However, it is a good practice to encapsulate this

type of functionality in a BSP type file.

In BSP.C, add CPU_TS_TmrInit() to initialize the μC/CPU timestamp feature. This function

must return the number 16 if using a 16-bit timer and 0 for a 32-bit timer. 

CPU_TS_TmrGet() is responsible for reading the value of a 16- or 32-bit free-running timer.

If the timer is 16 bits, this function will need to return the value of the timer, but shifted to

the left 16 places so that it looks like a 32-bit timer. If the timer is 32 bits, simply return the
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current value of the timer. Note that the timer is assumed to be an up counter. If the timer

counts down, the BSP code will need to return the ones-complement of the timer value

(prior to the shift). 

BSP_INT.C and BSP_INT.H

These files are typically used to declare interrupt controller related functions. For example,

code that enables or disables specific interrupts from the interrupt controller, acknowledges

the interrupt controller, and code to handle all interrupts if the CPU vectors to a single

location when an interrupt occurs (see Chapter 9, “Interrupt Management” on page 157).

The pseudo code below shows an example of the latter.

(1) Here assume that the handler for the interrupt controller is called from the

assembly language code that saves the CPU registers upon entering an ISR (see

Chapter 9, “Interrupt Management” on page 157).

(2) The handler queries the interrupt controller to ask it for the address of the ISR

that needs to be executed in response to the interrupt. Some interrupt

controllers return an integer value that corresponds to the source. In this case,

simply use this integer value as an index into a table (RAM or ROM) where

those vectors are placed.

(3) The interrupt controller is asked to provide the highest priority interrupt

pending. It is assumed here that the CPU may receive multiple simultaneous

interrupts (or closely spaced interrupts), and that the interrupt will prioritize the

interrupts received. The CPU will then service each interrupt in priority order

instead of on a first-come basis. However, the scheme used greatly depends on

the interrupt controller itself.

void  BSP_IntHandler (void)                                              (1)

{

    CPU_FNCT_VOID   p_isr;

        

    while (interrupts being asserted) {                                  (2)

        p_isr = Read the highest priority interrupt from the controller; (3) 

        if (p_isr != (CPU_FNCT_VOID)0) {                                 (4)

           (*p_isr)();                                                   (5)

        }

        Acknowledge interrupt controller;                                (6)

    }

}



345

Porting µC/OS-III

(4) Check to ensure that the interrupt controller did not return a NULL pointer.

(5) Simply call the ISR associated with the interrupt device.

(6) The interrupt controller generally needs to be acknowledged so that it knows

that the interrupt presented is taken care of.

18-4  SUMMARY

A port involves three aspects: CPU, OS and board specific (BSP) code.

μC/OS-III port consists of writing or changing the contents of three kernel specific files:

OS_CPU.H, OS_CPU_A.ASM and OS_CPU_C.C.

It is necessary to write or change the content of three CPU specific files: CPU.H, CPU_A.ASM

and CPU_C.C.

Finally create or change a Board Support Package (BSP) for the evaluation board or target

board being used.

A μC/OS-III port is similar to a μC/OS-II port, therefore start from one of the many μC/OS-II

ports already available (see Appendix C, “Migrating from μC/OS-II to μC/OS-III” on

page 599).
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19
Run-Time Statistics

μC/OS-III performs substantial run-time statistics that can be displayed by kernel-aware

debuggers and/or μC/Probe. Specifically, it is possible to ascertain the total number of

context switches, maximum interrupt disable time, maximum scheduler lock time, CPU

usage, stack space used on a per-task basis, the RAM used by μC/OS-III, and much more.

No other real-time kernel provides as much run-time information as μC/OS-III. This

information is quite useful during debugging as it provides a sense of how well an

application is running and the resources being used.

μC/OS-III also provides information about the configuration of the system. Specifically, the

amount of RAM used by μC/OS-III, including all internal variables and task stacks.

The μC/OS-III variables described in this chapter should be displayed and never changed. 
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19-1  GENERAL STATISTICS – RUN-TIME

The following is a list of μC/OS-III variables that are not associated to any specific task:

OSCfg_TickWheel[i].NbrEntries

The tick wheel contains up to OS_CFG_TICK_WHEEL_SIZE “spokes” (see OS_CFG_APP.H),

and each spoke contains the .NbrEntries field, which holds the current number of entries

in that spoke.

OSCfg_TickWheel[i].NbrEntriesMax

The .NbrEntriesMax field holds the maximum (i.e., peak) number of entries in a spoke.

OSCfg_TmrWheel[i].NbrEntries

The tick wheel contains up to OS_CFG_TMR_WHEEL_SIZE “spokes” (see OS_CFG_APP.H), and

each spoke contains the .NbrEntries field, which holds the current number of entries in

that spoke.

OSCfg_TmrWheel[i].NbrEntriesMax

The .NbrEntriesMax field holds the maximum (i.e., peak) number of entries in a spoke.

OSIdleTaskCtr

This variable contains a counter that is incremented every time the idle task infinite loop

runs.

OSIntNestingCtr

This variable contains the interrupt nesting level. 1 means servicing the first level of

interrupt nesting, 2 means the interrupt was interrupted by another interrupt, etc.

OSIntDisTimeMax

This variable contains the maximum interrupt disable time (in CPU_TS units).

OSRunning

This variable indicates that multitasking has started.

OSIntQNbrEntries

This variable indicates the current number of entries in the interrupt handler queue.
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OSIntQOvfCtr

This variable shows the number of attempts to post a message from an interrupt to the

interrupt handler queue, and there was not enough room to place the post call. In other

words, how many times an interrupt was not being able to be serviced by its corresponding

task. This value should always be 0 if the interrupt handler queue is sized large enough. If

the value is non-zero, increase the size of the interrupt handler queue. A non-zero value

may also indicate that the processor is not fast enough.

OSIntQTaskTimeMax

This variable contains the maximum execution time of the Interrupt Queue Handler Task (in

CPU_TS units).

OSFlagQty

This variable indicates the number of event flag groups created. This variable is only

declared if OS_CFG_FLAG_EN is set to 1 in OS_CFG.H.

OSMemQty

This variable indicates the number of fixed-sized memory partitions created by the

application. This variable is only declared if OS_CFG_MEM_EN is set to 1 in OS_CFG.H.

OSMsgPool.NbrFree

The variable indicates the number of free OS_MSGs in the message pool. This number

should never be zero since that indicate that the application is no longer able to send

messages. This variable is only declared if OS_CFG_Q_EN is set to 1, or OS_CFG_TASK_Q_EN is

set to 1 in OS_CFG.H.

OSMsgPool.NbrUsed

This variable indicates the number of OS_MSGs currently used by the application. This

variable is only declared if OS_CFG_Q_EN is set to 1, or OS_CFG_TASK_Q_EN is set to 1 in

OS_CFG.H.

OSMutexQty

This variable indicates the number of mutual exclusion semaphores created by the

application. This variable is only declared if OS_CFG_MUTEX_EN is set to 1 in OS_CFG.H.

OSRdyList[i].NbrEntries

It is useful to examine how many entries there are in the ready list at each priority.
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OSSchedLockTimeMax

This variable indicates the maximum amount of time the scheduler was locked irrespective of which

task did the locking. It represents the global scheduler lock time. This value is expressed in CPU_TS

units. The variable is only declared if OS_CFG_SCHED_LOCK_TIME_MEAS_EN is set to 1 in OS_CFG.H.

OSSchedLockTimeMaxCur

This variable indicates the maximum amount of time the scheduler was locked. This value is

expressed in CPU_TS units and is reset by the context switch code so that it can track the

scheduler lock time on a per-task basis. This variable is only declared if

OS_CFG_SCHED_LOCK_TIME_MEAS_EN is set to 1 in OS_CFG.H.

OSSchedLockNestingCtr

This variable keeps track of the nesting level of the scheduler lock. 

OSSchedRoundRobinEn

This variable indicates whether or not round robin scheduling is enabled.

OSSemQty

This variable indicates the number of semaphores created by your application. This variable

is only declared if OS_CFG_SEM_EN is set to 1 in OS_CFG.H.

OSStatTaskCPUUsage

This variable indicates the CPU usage of the application expressed as a percentage. A value

of 10 indicates that 10% of the CPU is used, while 90% of the time the CPU is idling. This

variable is only declared if OS_CFG_STAT_TASK_EN is set to 1 in OS_CFG.H.

OSStatTaskCtr

This variable contains a counter that is incremented every time the idle task infinite loop

runs. This variable is only declared if OS_CFG_STAT_TASK_EN is set to 1 in OS_CFG.H.

OSStatTaskCtrMax

This variable contains the maximum number of times the idle task loop runs in 0.1 second.

This value is used to measure the CPU usage of the application. This variable is only

declared if OS_CFG_STAT_TASK_EN is set to 1 in OS_CFG.H.

OSStatTaskTimeMax

This variable contains the maximum execution time of the statistic task (in CPU_TS units). It

is only declared if OS_CFG_STAT_TASK_EN is set to 1 in OS_CFG.H.



351

Run-Time Statistics

OSTaskCtxSwCtr

This variable accumulates the number of context switches performed by μC/OS-III.

OSTaskQty

The variable contains the total number of tasks created in the application.

OSTickCtr

This variable is incremented every time the tick task executes.

OSTickTaskTimeMax

This variable contains the maximum execution time of the tick task (in CPU_TS units). 

OSTmrQty

This variable indicates the number of timers created by the application. It is only declared if

OS_CFG_TMR_EN is set to 1 in OS_CFG.H.

OSTmrCtr

This variable is incremented every time the timer task executes.

OSTmrTaskTimeMax

This variable contains the maximum execution time of the timer task (in CPU_TS units). It is

only declared if OS_CFG_TMR_EN is set to 1 in OS_CFG.H.
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19-2  PER-TASK STATISTICS – RUN-TIME

μC/OS-III maintains statistics for each task at run-time. This information is saved in the task’s OS_TCB.

.CPUUsage

This variable keeps track of CPU usage of the task as a percentage of the total CPU usage. For

example if the task’s .CPUUsage is 20%, and the total CPU usages from OSTaskStatCPUUsage

is 10%, this variable represents 2% of total CPU usage.

The variable is only declared when OS_CFG_TASK_PROFILE_EN is set to 1 in OS_CFG.H.

.CtxSwCtr

This variable keeps track of the number of times a task is context switched to. This variable

should increment. If it does not increment, the task is not running. At a minimum, the

counter should at least have a value of one since a task is always created ready to run. 

This variable is only declared when OS_CFG_TASK_PROFILE_EN is set to 1 in OS_CFG.H.

.IntDisTimeMax

This variable keeps track of the maximum interrupt disable time of a task (in CPU_TS units).

This variable shows how each task affects interrupt latency. 

The variable is only declared when OS_CFG_TASK_PROFILE_EN is set to 1 in OS_CFG.H and

defines CPU_CFG_INT_DIS_MEAS_EN in CPU_CFG.H.

.MsgQ.NbrEntries

This variable indicates the number of entries currently waiting in the message queue of a task.

This variable is only declared when OS_CFG_TASK_Q_EN is set to 1 in OS_CFG.H.

.MsgQ.NbrEntriesMax

This variable indicates the maximum number of entries placed in the message queue of a task.

This variable is only declared when OS_CFG_TASK_Q_EN is set to 1 in OS_CFG.H.

.MsgQ.NbrEntriesSize

This variable indicates the maximum number of entries that a task message queue is able to

accept before it is full. 

This variable is only declared when OS_CFG_TASK_Q_EN is set to 1 in OS_CFG.H.
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.MsgQ.PendTime

This variable indicates the amount of time it took for a task or an ISR to send a message to

the task (in CPU_TS units). 

The variable is only declared when OS_CFG_TASK_PROFILE_EN is set to 1 in OS_CFG.H.

.MsgQ.PendTimeMax

This variable indicates the maximum amount of time it took for a task or an ISR to send a

message to the task (in CPU_TS units). 

This variable is only declared when OS_CFG_TASK_PROFILE_EN is set to 1 in OS_CFG.H.

.PendOn

This variable indicates what a task is pending on if the task is in a pend state. Possible

values are:

0 Nothing

1 Pending on an event flag group

2 Pending on the task’s message queue

3 Pending on multiple objects

4 Pending on a mutual exclusion semaphore

5 Pending on a message queue

6 Pending on a semaphore

7 Pending on a task’s semaphore

.Prio

This corresponds to the priority of the task. This might change at run time depending on

whether or not the task owns a mutual exclusion semaphore, or the user changes the

priority of the task by calling OSTaskChangePrio().

.SchedLockTimeMax

This variable keeps track of the maximum time a task locks the scheduler (in CPU_TS units).

This variable allows the application to see how each task affects task latency. The variable is

declared only when OS_CFG_TASK_PROFILE_EN and OS_CFG_SCHED_LOCK_TIME_MEAS_EN

are set to 1 in OS_CFG.H.
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.SemPendTime

This variable indicates the amount of time it took for a task or ISR to signal the task (in

CPU_TS units). 

This variable is only declared when OS_CFG_TASK_PROFILE_EN is set to 1 in OS_CFG.H.

.SemPendTimeMax

This variable indicates the maximum amount of time it took for a task or an ISR to signal the

task (in CPU_TS units). 

This variable is only declared when OS_CFG_TASK_PROFILE_EN is set to 1 in OS_CFG.H.

.State

This variable indicates the current state of a task. The possible values are:

0 Ready

1 Delayed

2 Pending

3 Pending with Timeout

4 Suspended

5 Delayed and Suspended

6 Pending and Suspended

7 Pending, Delayed and Suspended

.StkFree

This variable indicates the amount of stack space (in bytes) unused by a task. This value is

determined by the statistic task if OS_CFG_TASK_STAT_STK_CHK_EN is set to 1 in OS_CFG.H.

.StkUsed

This variable indicates the maximum stack usage (in bytes) of a task. This value is

determined by the statistic task if OS_CFG_TASK_STAT_STK_CHK_EN is set to 1 in OS_CFG.H.

.TickRemain

This variable indicates the amount of time left (in clock ticks) until a task time delay

expires, or the task times out waiting on a kernel object such as a semaphore, message

queue, or other.
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19-3  KERNEL OBJECT – RUN-TIME

It is possible to examine the run-time values of certain kernel objects as described below.

SEMAPHORES

.NamePtr

This is a pointer to an ASCII string used to provide a name to the semaphore. The ASCII

string can have any length as long as it is NUL terminated.

.PendList.NbrEntries

Each semaphore contains a wait list of tasks waiting for the semaphore to be signaled. The

variable represents the number of entries in the wait list.

.Ctr

This variable represents the current count of the semaphore. 

.TS

This variable contains the timestamp of when the semaphore was last signaled.

MUTUAL EXCLUSION SEMAPHORES

.NamePtr

This is a pointer to an ASCII string used to provide a name to the mutual exclusion

semaphore. The ASCII string can have any length as long as it is NUL terminated.

.PendList.NbrEntries

Each mutual exclusion semaphore contains a list of tasks waiting for the semaphore to be

released. The variable represents the number of entries in the wait list.

.OwnerOriginalPrio

This variable holds the original priority of the task that owns the mutual exclusion

semaphore.

.OwnerTCBPtr->Prio

Dereferencing the pointer to the OS_TCB of the mutual exclusion semaphore owner allows

the application to determine whether a task priority was changed.
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.OwnerNestingCtr

This variable indicates how many times the owner of the mutual exclusion semaphore

requested the semaphore.

.TS

This variable contains the timestamp of when the mutual exclusion semaphore was last

released.

MESSAGE QUEUES

.NamePtr

This is a pointer to an ASCII string used to provide a name to the message queue. The ASCII

string can have any length, as long as it is NUL terminated.

.PendList.NbrEntries

Each message queue contains a wait list of tasks waiting for messages to be sent to the

queue. The variable represents the number of entries in the wait list.

.MsgQ.NbrEntries

This variable represents the number of messages currently in the message queue.

.MsgQ.NbrEntriesMax

This variable represents the maximum number of messages ever placed in the message

queue.

.MsgQ.NbrEntriesSize

This variable represents the maximum number of messages that can be placed in the

message queue.

EVENT FLAGS

.NamePtr

This is a pointer to an ASCII string used to provide a name to the event flag group. The

ASCII string can have any length, as long as it is NUL terminated.

.PendList.NbrEntries

Each event flag group contains a wait list of tasks waiting for event flags to be set or cleared.

This variable represents the number of entries in the wait list.
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.Flags

This variable contains the current value of the event flags in an event flag group.

.TS

This variable contains the timestamp of when the event flag group was last posted.

 MEMORY PARTITIONS

.NamePtr

This is a pointer to an ASCII string that is used to provide a name to the memory partition.

The ASCII string can have any length as long as it is NUL terminated.

.BlkSize

This variable contains the block size (in bytes) for the memory partition.

.NbrMax

This variable contains the maximum number of memory blocks belonging to the memory

partition.

.NbrFree

This variable contains the number of memory blocks that are available from memory

partition. The number of memory blocks in use is given by:

.NbrMax - .NbrFree
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19-4  OS_DBG.C – STATIC

OS_DBG.C is provided in μC/OS-III as some debuggers are not able to read the values of

#define constants. Specifically, OS_DBG.C contains ROM variables initialized to #define

constants so that users can read them with any debugger.

Below is a list of ROM variables provided in OS_DBG.C, along with their descriptions. These

variables use approximately 100 bytes of code space.

The application code can examine these variables and you do not need to access them in a

critical region as they reside in code space and are therefore not changeable.

When 1, this variable indicates that ROM variables in OS_DBG.C will be compiled. This value

is set in OS_CFG.H.

When 1, this variable indicates that run-time argument checking is enabled. This means that

μC/OS-III will check the validity of the values of arguments passed to functions. The feature

is enabled in OS_CFG.H.

ROM Variable Data Type Value

OSDbg_DbgEn CPU_INT08U OS_CFG_DBG_EN

ROM Variable Data Type Value

OSDbg_ArgChkEn CPU_INT08U OS_CFG_ARG_CHK_EN
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When 1, the variable indicates whether application hooks will be available to the application

programmer, and the pointers listed below are declared. This value is set in OS_CFG.H.

OS_AppTaskCreateHookPtr; 

OS_AppTaskDelHookPtr;

OS_AppTaskReturnHookPtr;

OS_AppIdleTaskHookPtr;

OS_AppStatTaskHookPtr;

OS_AppTaskSwHookPtr;

OS_AppTimeTickHookPtr;

This variable allows the kernel awareness debugger or μC/Probe to determine the

endianness of the CPU. This is easily done by looking at the lowest address in memory

where this variable is saved. If the value is 0x78 then the CPU is a little endian machine. If

it’s 0x12, it is a big endian machine.

When 1, this variable indicates that μC/OS-III will perform run-time checking to see if a

function that is not supposed to be called from an ISR, is called from an ISR. This value is

set in OS_CFG.H.

ROM Variable Data Type Value

OSDbg_AppHooksEn CPU_INT08U OS_CFG_DBG_EN

ROM Variable Data Type Value

OSDbg_EndiannessTest CPU_INT32U 0x12345678

ROM Variable Data Type Value

OSDbg_CalledFromISRChkEn CPU_INT08U OS_CFG_CALLED_FROM_ISR_CHK_EN
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When 1, this variable indicates that μC/OS-III’s event flag services are available to the

application programmer. This value is set in OS_CFG.H.

When 1, this variable indicates that the OSFlagDel() function is available to the application

programmer. This value is set in OS_CFG.H.

When 1, this variable indicates that cleared flags can be used instead of set flags when

posting and pending on event flags. This value is set in OS_CFG.H.

When 1, this variable indicates that the OSFlagPendAbort() function is available to the

application programmer. This value is set in OS_CFG.H.

This variable indicates the memory footprint (in RAM) of an event flag group (in bytes). This

data type is declared in OS.H. 

ROM Variable Data Type Value

OSDbg_FlagEn CPU_INT08U OS_CFG_FLAG_EN

ROM Variable Data Type Value

OSDbg_FlagDelEn CPU_INT08U OS_CFG_FLAG_DEL_EN

ROM Variable Data Type Value

OSDbg_FlagModeClrEn CPU_INT08U OS_CFG_FLAG_MODE_CLR_EN

ROM Variable Data Type Value

OSDbg_FlagPendAbortEn CPU_INT08U OS_CFG_FLAG_PEND_ABORT_EN

ROM Variable Data Type Value

OSDbg_FlagGrpSize CPU_INT16U sizeof(OS_FLAG_GRP)
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This variable indicates the word width (in bytes) of event flags. If event flags are declared as

CPU_INT08U, this variable will be 1, if declared as a CPU_INT16U, this variable will be 2, etc.

This data type is declared in OS_TYPE.H.

This variable indicates the size of the OS_INT_Q data type, which is used to queue up

deferred posts. The value of this variable is zero if OS_CFG_ISR_POST_DEFERRED_EN is 0 in

OS_CFG.H.

When 1, this variable indicates that an ISR will defer posts to task-level code. This value is

set in OS_CFG.H.

When 1, this variable indicates that μC/OS-III’s memory management services are available

to the application. This value is set in OS_CFG.H.

This variable indicates the RAM footprint (in bytes) of a memory partition control block.

ROM Variable Data Type Value

OSDbg_FlagWidth CPU_INT16U sizeof(OS_FLAGS)

ROM Variable Data Type Value

OSDbg_IntQSize CPU_INT16U sizeof(OS_INT_Q)

ROM Variable Data Type Value

OSDbg_ISRPostDeferredEn CPU_INT08U OS_CFG_ISR_POST_DEFERRED_EN

ROM Variable Data Type Value

OSDbg_MemEn CPU_INT08U OS_CFG_MEM_EN

ROM Variable Data Type Value

OSDbg_MemSize CPU_INT16U sizeof(OS_MEM)
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When 1, this variable indicates that the application either enabled message queues, or task

message queues, or both. This value is set in OS_CFG.H by ORing the value of OS_CFG_Q_EN

and OS_CFG_TASK_Q_EN.

This variable indicates the RAM footprint (in bytes) of an OS_MSG data structure.

This variable indicates the RAM footprint (in bytes) of an OS_MSG_POOL data structure.

This variable indicates the RAM footprint (in number of bytes) of an OS_MSG_Q data type.

When 1, this variable indicates that μC/OS-III’s mutual exclusion semaphore management

services are available to the application. This value is set in OS_CFG.H.

ROM Variable Data Type Value

OSDbg_MsgEn CPU_INT08U OS_CFG_MSG_EN

ROM Variable Data Type Value

OSDbg_MsgSize CPU_INT16U sizeof(OS_MSG)

ROM Variable Data Type Value

OSDbg_MsgPoolSize CPU_INT16U sizeof(OS_MSG_POOL)

ROM Variable Data Type Value

OSDbg_MsgQSize CPU_INT16U sizeof(OS_MSG_Q)

ROM Variable Data Type Value

OSDbg_MutexEn CPU_INT08U OS_CFG_MUTEX_EN
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When 1, this variable indicates that the function OSMutexDel() is available to the

application. This value is set in OS_CFG.H.

When 1, the variable indicates that the function OSMutexPendAbort() is available to the

application. This value is set in OS_CFG.H.

This variable indicates the RAM footprint (in number of bytes) of an OS_MUTEX data type.

When 1, this variable indicates that μC/OS-III will check for valid object types at run time.

μC/OS-III will make sure the application is accessing a semaphore if calling OSSem???()

functions, accessing a message queue when calling OSQ???() functions, etc. This value is

set in OS_CFG.H.

When 1, this variable indicates that μC/OS-III’s service to pend on multiple objects

(semaphores or message queues) is available to the application. This value is set in

OS_CFG.H.

ROM Variable Data Type Value

OSDbg_MutexDelEn CPU_INT08U OS_CFG_MUTEX_DEL_EN

ROM Variable Data Type Value

OSDbg_MutexPendAbortEn CPU_INT08U OS_CFG_MUTEX_PEND_ABORT_EN

ROM Variable Data Type Value

OSDbg_MutexSize CPU_INT16U sizeof(OS_MUTEX)

ROM Variable Data Type Value

OSDbg_ObjTypeChkEn CPU_INT08U OS_CFG_OBJ_TYPE_CHK_EN

ROM Variable Data Type Value

OSDbg_PendMultiEn CPU_INT08U OS_CFG_PEND_MULTI_EN
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This variable indicates the RAM footprint (in bytes) of an OS_PEND_DATA data type.

This variable indicates the RAM footprint (in bytes) of an OS_PEND_LIST data type.

This variable indicates the RAM footprint (in bytes) of an OS_PEND_OBJ data type.

This variable indicates the maximum number of priorities that the application will support.

This variable indicates the size (in bytes) of a pointer.

When 1, this variable indicates that μC/OS-III’s message queue services are available to the

application. This value is set in OS_CFG.H.

ROM Variable Data Type Value

OSDbg_PendDataSize CPU_INT16U sizeof(OS_PEND_DATA)

ROM Variable Data Type Value

OSDbg_PendListSize CPU_INT16U sizeof(OS_PEND_LIST)

ROM Variable Data Type Value

OSDbg_PendObjSize CPU_INT16U sizeof(OS_PEND_OBJ)

ROM Variable Data Type Value

OSDbg_PrioMax CPU_INT16U OS_CFG_PRIO_MAX

ROM Variable Data Type Value

OSDbg_PtrSize CPU_INT16U sizeof(void *)

ROM Variable Data Type Value

OSDbg_QEn CPU_INT08U OS_CFG_Q_EN
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When 1, this variable indicates that the function OSQDel() is available to the application.

This value is set in OS_CFG.H.

When 1, this variable indicates that the function OSQFlush() is available to the application.

This value is set in OS_CFG.H.

When 1, this variable indicates that the function OSQPendAbort() is available to the

application. This value is set in OS_CFG.H.

This variable indicates the RAM footprint (in number of bytes) of an OS_Q data type.

When 1, this variable indicates that the μC/OS-III round robin scheduling feature is available

to the application. This value is set in OS_CFG.H.

ROM Variable Data Type Value

OSDbg_QDelEn CPU_INT08U OS_CFG_Q_DEL_EN

ROM Variable Data Type Value

OSDbg_QFlushEn CPU_INT08U OS_CFG_Q_FLUSH_EN

ROM Variable Data Type Value

OSDbg_QPendAbortEn CPU_INT08U OS_CFG_Q_PEND_ABORT_EN

ROM Variable Data Type Value

OSDbg_QSize CPU_INT16U

ROM Variable Data Type Value

OSDbg_SchedRoundRobinEn CPU_INT08U OS_CFG_ROUND_ROBIN_EN
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When 1, this variable indicates that μC/OS-III’s semaphore management services are

available to the application. This value is set in OS_CFG.H.

When 1, this variable indicates that the function OSSemDel() is available to the application.

This value is set in OS_CFG.H.

When 1, this variable indicates that the function OSSemPendAbort() is available to the

application. This value is set in OS_CFG.H.

When 1, this variable indicates that the function OSSemSet() is available to the application.

This value is set in OS_CFG.H.

This variable indicates the RAM footprint (in bytes) of an OS_RDY_LIST data type.

ROM Variable Data Type Value

OSDbg_SemEn CPU_INT08U OS_CFG_SEM_EN

ROM Variable Data Type Value

OSDbg_SemDelEn CPU_INT08U OS_CFG_SEM_DEL_EN

ROM Variable Data Type Value

OSDbg_SemPendAbortEn CPU_INT08U OS_CFG_SEM_PEND_ABORT_EN

ROM Variable Data Type Value

OSDbg_SemSetEn CPU_INT08U OS_CFG_SEM_SET_EN

ROM Variable Data Type Value

OSDbg_RdyList CPU_INT16U sizeof(OS_RDY_LIST)
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This variable indicates the RAM footprint (in bytes) of the ready list.

This variable indicates the word size of a stack entry (in bytes). If a stack entry is declared

as CPU_INT08U, this value will be 1, if a stack entry is declared as CPU_INT16U, the value

will be 2, etc.

When 1, this variable indicates that μC/OS-III’s statistic task is enabled. This value is set in

OS_CFG.H.

When 1, this variable indicates that μC/OS-III will perform run-time stack checking by

walking the stack of each task to determine the usage of each. This value is set in

OS_CFG.H.

When 1, this variable indicates that the function OSTaskChangePrio() is available to the

application. This value is set in OS_CFG.H.

ROM Variable Data Type Value

OSDbg_RdyListSize CPU_INT32U sizeof(OSRdyList)

ROM Variable Data Type Value

OSDbg_StkWidth CPU_INT08U sizeof(CPU_STK)

ROM Variable Data Type Value

OSDbg_StatTaskEn CPU_INT08U OS_CFG_STAT_TASK_EN

ROM Variable Data Type Value

OSDbg_StatTaskStkChkEn CPU_INT08U OS_CFG_STAT_TASK_STK_CHK_EN

ROM Variable Data Type Value

OSDbg_TaskChangePrioEn CPU_INT08U OS_CFG_TASK_CHANGE_PRIO_EN
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When 1, this variable indicates that the function OSTaskDel() is available to the application.

This value is set in OS_CFG.H.

When 1, this variable indicates that OSTaskQ???() services are available to the application.

This value is set in OS_CFG.H.

When 1, this variable indicates that the function OSTaskQPendAbort() is available to the

application. This value is set in OS_CFG.H.

When 1, this variable indicates that task profiling is enabled, and that μC/OS-III will perform

run-time performance measurements on a per-task basis. Specifically, when 1, μC/OS-III

will keep track of how many context switches each task makes, how long a task disables

interrupts, how long a task locks the scheduler, and more. This value is set in OS_CFG.H.

This variable indicates how many entries each task register table can accept.

ROM Variable Data Type Value

OSDbg_TaskDelEn CPU_INT08U OS_CFG_TASK_DEL_EN

ROM Variable Data Type Value

OSDbg_TaskQEn CPU_INT08U OS_CFG_TASK_Q_EN

ROM Variable Data Type Value

OSDbg_TaskQPendAbortEn CPU_INT08U OS_CFG_TASK_Q_PEND_ABORT_EN

ROM Variable Data Type Value

OSDbg_TaskProfileEn CPU_INT08U OS_CFG_TASK_PROFILE_EN

ROM Variable Data Type Value

OSDbg_TaskRegTblSize CPU_INT16U OS_CFG_TASK_REG_TBL_SIZE
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When 1, this variable indicates that the function OSTaskSemPendAbort() is available to the

application. This value is set in OS_CFG.H.

When 1, this variable indicates that the function OSTaskSuspend() is available to the

application. This value is set in OS_CFG.H.

This variable indicates the RAM footprint (in bytes) of an OS_TCB data structure.

This variable indicates the RAM footprint (in bytes) of an OS_TICK_SPOKE data structure.

When 1, this variable indicates that the function OSTimeDlyHMSM() is available to the

application. This value is set in OS_CFG.H.

ROM Variable Data Type Value

OSDbg_TaskSemPendAbortEn CPU_INT08U OS_CFG_TASK_SEM_PEND_ABORT_EN

ROM Variable Data Type Value

OSDbg_TaskSuspendEn CPU_INT08U OS_CFG_TASK_SUSPEND_EN

ROM Variable Data Type Value

OSDbg_TCBSize CPU_INT16U sizeof(OS_TCB)

ROM Variable Data Type Value

OSDbg_TickSpokeSize CPU_INT16U sizeof(OS_TICK_SPOKE)

ROM Variable Data Type Value

OSDbg_TimeDlyHMSMEn CPU_INT08U OS_CFG_TIME_DLY_HMSM_EN
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When 1, this variable indicates that the function OSTimeDlyResume() is available to the

application. This value is set in OS_CFG.H.

When 1, this variable indicates that OSTmr???() services are available to the application.

This value is set in OS_CFG.H.

When 1, this variable indicates that the function OSTmrDel() is available to the application.

This value is set in OS_CFG.H.

This variable indicates the RAM footprint (in bytes) of an OS_TMR data structure.

This variable indicates the RAM footprint (in bytes) of an OS_TMR_SPOKE data structure.

ROM Variable Data Type Value

OSDbg_TimeDlyResumeEn CPU_INT08U OS_CFG_TIME_DLY_RESUME_EN

ROM Variable Data Type Value

OSDbg_TmrEn CPU_INT08U OS_CFG_TMR_EN

ROM Variable Data Type Value

OSDbg_TmrDelEn CPU_INT08U OS_CFG_TMR_DEL_EN

ROM Variable Data Type Value

OSDbg_TmrSize CPU_INT16U sizeof(OS_TMR)

ROM Variable Data Type Value

OSDbg_TmrSpokeSize CPU_INT16U sizeof(OS_TMR_SPOKE)
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This variable indicates the current version of μC/OS-III multiplied by 1000. For example

version 3.00.4 will show as 3004.ZZ

This variable indicates the RAM footprint (in bytes) of the internal μC/OS-III variables for

the current configuration.

19-5  OS_CFG_APP.C – STATIC

As with OS_DBG.C, OS_CFG_APP.C defines a number of ROM variables. These variables,

however, reflect the run-time configuration of an application. Specifically, the user will be able

to know the RAM footprint (in bytes) of μC/OS-III task stacks, the message pool, and more.

Below is a list of ROM variables provided in OS_APP_CFG.C, along with their descriptions.

These variables represent approximately 100 bytes of code space.

Application code can examine these variables and the application does not need to access

them in a critical region since they reside in code space and are therefore not changeable.

This variable indicates the RAM footprint (in bytes) of the μC/OS-III idle task stack.

ROM Variable Data Type Value

OSDbg_VersionNbr CPU_INT16U OS_VERSION

ROM Variable Data Type Value

OSDbg_DataSize CPU_INT32U Size of all RAM variables

ROM Variable Data Type Value

OSCfg_IdleTaskStkSizeRAM CPU_INT32U sizeof(OSCfg_IdleTaskStk)
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This variable indicates the RAM footprint (in bytes) of the μC/OS-III interrupt handler task queue.

This variable indicates the RAM footprint (in bytes) of the μC/OS-III interrupt queue handler

task stack.

This variable indicates the RAM footprint (in bytes) of the dedicated Interrupt Service

Routine (ISR) stack.

This variable indicates the RAM footprint (in bytes) of the message pool.

This variable indicates the RAM footprint (in bytes) of the μC/OS-III statistic task stack.

This variable indicates the RAM footprint (in bytes) of the μC/OS-III tick task stack.

ROM Variable Data Type Value

OSCfg_IntQSizeRAM CPU_INT32U sizeof(OSCfg_IntQ)

ROM Variable Data Type Value

OSCfg_IntQTaskStkSizeRAM CPU_INT32U sizeof(OSCfg_IntQTaskStk)

ROM Variable Data Type Value

OSCfg_ISRStkSizeRAM CPU_INT32U sizeof(OSCfg_ISRStk)

ROM Variable Data Type Value

OSCfg_MsgPoolSizeRAM CPU_INT32U sizeof(OSCfg_MsgPool)

ROM Variable Data Type Value

OSCfg_StatTaskStkSizeRAM CPU_INT32U sizeof(OSCfg_StatTaskStk)

ROM Variable Data Type Value

OSCfg_TickTaskStkSizeRAM CPU_INT32U sizeof(OSCfg_TickTaskStk)
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This variable indicates the RAM footprint (in bytes) of the tick wheel.

This variable indicates the RAM footprint (in bytes) of the timer wheel.

This variable indicates the RAM footprint (in bytes) of all of the configuration variables

declared in OS_CFG_APP.C.

19-6  SUMMARY

This chapter presented a number of variables that can be read by a debugger and/or

μC/Probe.

These variables provide run-time and compile-time (static) information regarding μC/OS-III-based

applications. The μC/OS-III variables allow users to monitor RAM footprint, task stack usage,

context switches, CPU usage, the execution time of many operations, and more.

The application must never change (i.e., write to) any of these variables.

ROM Variable Data Type Value

OSCfg_TickWheelSizeRAM CPU_INT32U sizeof(OSCfg_TickWheel)

ROM Variable Data Type Value

OSCfg_TmrWheelSizeRAM CPU_INT32U sizeof(OSCfg_TmrWheel)

ROM Variable Data Type Value

OSCfg_DataSizeRAM CPU_INT32U Total of all configuration RAM
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This chapter provides a reference to μC/OS-III services. Each of the user-accessible

kernel services is presented in alphabetical order. The following information is provided

for each entry:

■ A brief description of the service

■ The function prototype

■ The filename of the source code

■ The #define constant required to enable code for the service

■ A description of the arguments passed to the function

■ A description of returned value(s)

■ Specific notes and warnings regarding use of the service

■ One or two examples of how to use the function

Many functions return error codes. These error codes should be checked by the application

to ensure that the μC/OS-III function performed its operation as expected.

The next few pages summarizes most of the services provided by μC/OS-III. The function

calls in bold are commonly used.
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A-1  TASK MANAGEMENT

void

OSTaskChangePrio    (OS_TCB       *p_tcb,

                     OS_PRIO       prio,

                     OS_ERR       *p_err);

void

OSTaskCreate        (OS_TCB       *p_tcb,

                     CPU_CHAR     *p_name,

                     OS_TASK_PTR  *p_task,

                     void         *p_arg,

                     OS_PRIO       prio,

                     CPU_STK      *p_stk_base,

                     CPU_STK_SIZE  stk_limit,

                     CPU_STK_SIZE  stk_size,

                     OS_MSG_QTY    q_size,

                     OS_TICK       time_quanta,

                     void         *p_ext,

                     OS_OPT        opt,

                     OS_ERR       *p_err);

Values for �opt�:

    OS_OPT_TASK_NONE

    OS_OPT_TASK_STK_CHK

    OS_OPT_TASK_STK_CLR

    OS_OPT_TASK_SAVE_FP

void

OSTaskDel           (OS_TCB       *p_tcb,

                     OS_ERR       *p_err);

OS_REG

OSTaskRegGet        (OS_TCB       *p_tcb,

                     OS_REG_ID     id,

                     OS_ERR       *p_err);

void

OSTaskRegSet        (OS_TCB       *p_tcb,

                     OS_REG_ID     id,

                     OS_REG        value,

                     OS_ERR       *p_err);

void

OSTaskResume        (OS_TCB       *p_tcb,

                     OS_ERR       *p_err);

void

OSTaskSuspend       (OS_TCB       *p_tcb,

                     OS_ERR       *p_err);

void

OSTaskStkChk        (OS_TCB       *p_tcb,

                     CPU_STK_SIZE *p_free,

                     CPU_STK_SIZE *p_used,

                     OS_ERR       *p_err);
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void

OSTaskTimeQuantaSet (OS_TCB       *p_tcb,

                     OS_TICK       time_quanta,

                     OS_ERR       *p_err);
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A-2  TIME MANAGEMENT

void

OSTimeDly       (OS_TICK     dly,

                 OS_OPT      opt,

                 OS_ERR     *p_err);

void

OSTimeDlyHMSM   (CPU_INT16U  hours,

                 CPU_INT16U  minutes,

                 CPU_INT16U  seconds

                 CPU_INT32U  milli,

                 OS_OPT      opt,

                 OS_ERR     *p_err);

Values for �opt�:

    OS_OPT_TIME_HMSM_STRICT

    OS_OPT_TIME_HMSM_NON_STRICT

void

OSTimeDlyResume (OS_TCB     *p_tcb,

                 OS_ERR     *p_err);

OS_TICK

OSTimeGet       (OS_ERR     *p_err);

void

OSTimeSet       (OS_TICK     ticks,

                 OS_ERR     *p_err);
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A-3  MUTUAL EXCLUSION SEMAPHORES – RESOURCE 
MANAGEMENT

void

OSMutexCreate    (OS_MUTEX   *p_mutex,

                  CPU_CHAR   *p_name,

                  OS_ERR     *p_err);

void

OSMutexDel       (OS_MUTEX   *p_mutex,

                  OS_OPT      opt,

                  OS_ERR     *p_err);

Values for �opt�:

    OS_OPT_DEL_NO_PEND

    OS_OPT_DEL_ALWAYS

void

OSMutexPend      (OS_MUTEX   *p_mutex,

                  OS_TICK     timeout,

                  OS_OPT      opt,

                  CPU_TS     *p_ts,

                  OS_ERR     *p_err);

Values for �opt�:

    OS_OPT_PEND_BLOCKING

    OS_OPT_PEND_NON_BLOCKING

OS_OBJ_QTY

OSMutexPendAbort (OS_MUTEX   *p_mutex,

                  OS_OPT      opt,

                  OS_ERR     *p_err);

Values for �opt�:

    OS_OPT_PEND_ABORT_1

    OS_OPT_PEND_ABORT_ALL

    OS_OPT_POST_NO_SCHED (additive)

void

OSMutexPost      (OS_MUTEX   *p_mutex,

                  OS_OPT      opt,

                  OS_ERR     *p_err);

Values for �opt�:

    OS_OPT_POST_NONE

    OS_OPT_POST_NO_SCHED
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A-4  EVENT FLAGS – SYNCHRONIZATION

void

OSFlagCreate          (OS_FLAG_GRP   *p_grp,

                       CPU_CHAR      *p_name,

                       OS_FLAGS       flags,

                       OS_ERR        *p_err);

OS_OBJ_QTY

OSFlagDel             (OS_FLAG_GRP   *p_grp,

                       OS_OPT         opt,

                       OS_ERR        *p_err);

Values for �opt�:

    OS_OPT_DEL_NO_PEND

    OS_OPT_DEL_ALWAYS

OS_FLAGS

OSFlagPend            (OS_FLAG_GRP   *p_grp,

                       OS_FLAGS       flags,

                       OS_TICK        timeout,

                       OS_OPT         opt,

                       CPU_TS        *p_ts,

                       OS_ERR        *p_err);

Values for �opt�:

    OS_OPT_PEND_FLAG_CLR_ALL

    OS_OPT_PEND_FLAG_CLR_ANY

    OS_OPT_PEND_FLAG_SET_ALL

    OS_OPT_PEND_FLAH_SET_ANY

OS_OBJ_QTY

OSFlagPendAbort       (OS_FLAG_GRP   *p_grp,

                       OS_OPT         opt,

                       OS_ERR        *p_err);

Values for �opt�:

    OS_OPT_PEND_ABORT_1

    OS_OPT_PEND_ABORT_ALL

    OS_OPT_POST_NO_SCHED (additive)

OS_FLAGS

OSFlagPendGetFlagsRdy (OS_ERR        *p_err);

OS_FLAGS

OSFlagPost            (OS_FLAG_GRP   *p_grp,

                       OS_FLAGS       flags,

                       OS_OPT         opt,

                       OS_ERR        *p_err);

Values for �opt�:

    OS_OPT_POST_FLAG_SET

    OS_OPT_POST_FLAG_CLR
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A-5  SEMAPHORES – SYNCHRONIZATION

void

OSSemCreate    (OS_SEM       *p_sem,

                CPU_CHAR     *p_name,

                OS_SEM_CTR    cnt,

                OS_ERR       *p_err);

OS_OBJ_QTY

OSSemDel       (OS_SEM       *p_sem,

                OS_OPT        opt,

                OS_ERR       *p_err);

Values for �opt�:

    OS_OPT_DEL_NO_PEND

    OS_OPT_DEL_ALWAYS

OS_SEM_CTR

OSSemPend      (OS_SEM       *p_sem,

                OS_TICK       timeout,

                OS_OPT        opt,

                CPU_TS       *p_ts,

                OS_ERR       *p_err);

Values for �opt�:

    OS_OPT_PEND_BLOCKING

    OS_OPT_PEND_NON_BLOCKING

OS_OBJ_QTY

OSSemPendAbort  (OS_SEM       *p_sem,

                 OS_OPT        opt,

                 OS_ERR       *p_err);

Values for �opt�:

    OS_OPT_PEND_ABORT_1

    OS_OPT_PEND_ABORT_ALL

    OS_OPT_POST_NO_SCHED (additive)

void

OSSemPost      (OS_SEM       *p_sem,

                OS_OPT        opt,

                OS_ERR       *p_err);

Values for �opt�:

    OS_OPT_POST_1

    OS_OPT_POST_ALL

    OS_OPT_POST_NO_SCHED (additive)

void

OSSemSet       (OS_SEM       *p_sem,

                OS_SEM_CTR    cnt,

                OS_ERR       *p_err);
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A-6  TASK SEMAPHORES – SYNCHRONIZATION

OS_SEM_CTR

OSTaskSemPend      (OS_TICK      timeout,

                    OS_OPT       opt,

                    CPU_TS      *p_ts,

                    OS_ERR      *p_err);

Values for �opt�:

    OS_OPT_PEND_BLOCKING

    OS_OPT_PEND_NON_BLOCKING

CPU_BOOLEAN

OSTaskSemPendAbort (OS_TCB      *p_tcb,

                    OS_OPT       opt,

                    OS_ERR      *p_err);

Values for �opt�:

    OS_OPT_POST_NONE

    OS_OPT_POST_NO_SCHED

OS_SEM_CTR

OSTaskSemPost      (OS_TCB      *p_tcb,

                    OS_OPT       opt,

                    OS_ERR      *p_err);

Values for �opt�:

    OS_OPT_POST_NONE

    OS_OPT_POST_NO_SCHED

OS_SEM_CTR

OSTaskSemSet       (OS_TCB      *p_tcb,

                    OS_SEM_CTR   cnt,

                    OS_ERR      *p_err);
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A-7  MESSAGE QUEUES – MESSAGE PASSING

void

OSQCreate    (OS_Q         *p_q,

              CPU_CHAR     *p_name,

              OS_MSG_QTY    max_qty,

              OS_ERR       *p_err);

OS_OBJ_QTY,

OSQDel       (OS_Q         *p_q,

              OS_OPT        opt,

              OS_ERR       *p_err);

Values for �opt�:

    OS_OPT_DEL_NO_PEND

    OS_OPT_DEL_ALWAYS

OS_MSG_QTY

OSQFlush     (OS_Q         *p_q,

              OS_ERR       *p_err);

void *

OSQPend      (OS_Q         *p_q,

              OS_TICK       timeout,

              OS_OPT        opt,

              OS_MSG_SIZE  *p_msg_size,

              CPU_TS       *p_ts,

              OS_ERR       *p_err);

Values for �opt�:

    OS_OPT_PEND_BLOCKING

    OS_OPT_PEND_NON_BLOCKING

OS_OBJ_QTY

OSQPendAbort (OS_Q         *p_q,

              OS_OPT        opt,

              OS_ERR       *p_err);

Values for �opt�:

    OS_OPT_PEND_ABORT_1

    OS_OPT_PEND_ABORT_ALL

    OS_OPT_POST_NO_SCHED (additive)

void

OSQPost      (OS_Q         *p_q,

              void         *p_void,

              OS_MSG_SIZE   msg_size,

              OS_OPT        opt,

              OS_ERR       *p_err);

Values for �opt�:

    OS_OPT_POST_ALL

    OS_OPT_POST_FIFO

    OS_OPT_POST_LIFO

    OS_OPT_POST_NO_SCHED (additive)

�	�

�	�

0��

��7���
�!#

���	�
 ��

��71�/	�!#

�������������

��7��	
!#

��7��	
!#

��7����!#

��*��/


���7

8 )�		��



384

Appendix A

A-8  TASK MESSAGE QUEUES – MESSAGE PASSING

OS_MSG_QTY

OSTaskQFlush     (OS_TCB       *p_tcb,

                  OS_ERR       *p_err);

void *

OSTaskQPend      (OS_TICK      timeout,

                  OS_OPT       opt,

                  OS_MSG_SIZE *p_msg_size,

                  CPU_TS      *p_ts,

                  OS_ERR      *p_err);

Values for �opt�:

    OS_OPT_PEND_BLOCKING

    OS_OPT_PEND_NON_BLOCKING

CPU_BOOLEAN

OSTaskQPendAbort (OS_TCB      *p_tcb,

                  OS_OPT       opt,

                  OS_ERR      *p_err);

Values for �opt�:

    OS_OPT_POST_NONE

    OS_OPT_POST_NO_SCHED

void

OSTaskQPost      (OS_TCB      *p_tcb,

                  void        *p_void,

                  OS_MSG_SIZE  msg_size,

                  OS_OPT       opt,

                  OS_ERR      *p_err);

Values for �opt�:

    OS_OPT_POST_FIFO

    OS_OPT_POST_LIFO

    OS_OPT_POST_NO_SCHED (additive)
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A-9  PENDING ON MULTIPLE OBJECTS

OS_OBJ_QTY

OSPendMulti (OS_PEND_DATA  *p_pend_data_tbl,

             OS_OBJ_QTY     tbl_size,

             OS_TICK        timeout,

             OS_OPT         opt,

             OS_ERR        *p_err);

Values for �opt�:

    OS_OPT_PEND_BLOCKING

    OS_OPT_PEND_NON_BLOCKING
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A-10  TIMERS

void

OSTmrCreate    (OS_TMR              *p_tmr,

                CPU_CHAR            *p_name,

                OS_TICK              dly,

                OS_TICK              period,

                OS_OPT               opt,

                OS_TMR_CALLBACK_PTR *p_callback,

                void                *p_callback_arg,

                OS_ERR              *p_err);

Values for �opt�:

    OS_OPT_TMR_ONE_SHOT

    OS_OPT_TMR_PERIODIC

CPU_BOOLEAN

OSTmrDel       (OS_TMR              *p_tmr,

                OS_ERR              *p_err);

OS_TICK

OSTmrRemainGet (OS_TMR              *p_tmr,

                OS_ERR              *p_err);

OS_STATE

OSTmrStateGet  (OS_TMR              *p_tmr,

                OS_ERR              *p_err);

CPU_BOOLEAN

OSTmrStart     (OS_TMR              *p_tmr,

                OS_ERR              *p_err);

CPU_BOOLEAN

OSTmrStop      (OS_TMR              *p_tmr,

                OS_OPT               opt,

                void                *p_callback_arg,

                OS_ERR              *p_err);
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A-11  FIXED-SIZE MEMORY PARTITIONS – MEMORY 
MANAGEMENT

void

OSMemCreate (OS_MEM      *p_mem,

             CPU_CHAR    *p_name,

             void        *p_addr,

             OS_MEM_QTY   n_blks,

             OS_MEM_SIZE  blk_size,

             OS_ERR      *p_err);

void *

OSMemGet    (OS_MEM      *p_mem,

             OS_ERR      *p_err);

void

OSMemPut    (OS_MEM      *p_mem,

             void        *p_blk,

             OS_ERR      *p_err);
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OSCtxSw()

void  OSCtxSw (void)

OSCtxSw() is called from the macro OS_TASK_SW(), which in turn is called from OSSched()

to perform a task-level context switch. Interrupts are disabled when OSCtxSw() is called.

Prior to calling OSCtxSw(), OSSched() sets OSTCBCurPtr to point at the OS_TCB of the task

that is being switched out, and OSTCBHighRdyPtr to point at the OS_TCB of the task being

switched in.

Arguments

None

Returned Values

None

Notes/Warnings

None

Example

The pseudocode for OSCtxSw() follows:

File Called from Code enabled by

OS_CPU_A.ASM OSSched() N/A

void  OSCtxSw (void)

{

    Save all CPU registers;                         (1)

    OSTCBCurPtr->StkPtr = SP;                       (2)

    OSTaskSwHook();                                 (3)

    OSPrioCur           = OSPrioHighRdy;            (4)

    OSTCBCurPtr         = OSTCBHighRdyPtr;          (5)

    SP                  = OSTCBHighRdyPtr->StkPtr;  (6)

    Restore all CPU registers;                      (7)

    Return from interrupt;                          (8)

}
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(1) OSCtxSw() must save all of the CPU registers onto the current task’s stack.

OSCtxSw() is called from the context of the task being switched out. Therefore,

the CPU stack pointer is pointing to the proper stack. The user must save all of

the registers in the same order as if an ISR started and all the CPU registers

were saved on the stack. The stacking order should therefore match that of

OSTaskStkInit().

(2) Save the current task’s stack pointer into the current task’s OS_TCB.

(3) Next, OSCtxSw() must call OSTaskSwHook().

(4) Copy OSPrioHighRdy to OSPrioCur.

(5) Copy OSTCBHighRdyPtr to OSTCBCurPtr since the current task is now the task

being switched in.

(6) Restore the stack pointer of the new task, which is found in the OS_TCB of the

new task.

(7) Restore all the CPU registers from the new task’s stack.

(8) Finally, OSCtxSw() must execute a return from interrupt instruction.
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OSFlagCreate()

void  OSFlagCreate (OS_FLAG_GRP  *p_grp,

                    CPU_CHAR     *p_name,

                    OS_FLAGS      flags,

                    OS_ERR       *p_err)

OSFlagCreate() is used to create and initialize an event flag group. μC/OS-III allows the

user to create an unlimited number of event flag groups (limited only by the amount of

RAM in the system).

Arguments

p_grp is a pointer to an event flag group that must be allocated in the application.

The user will need to declare a “global” variable as shown, and pass a pointer

to this variable to OSFlagCreate():

OS_FLAG_GRP  MyEventFlag;

p_name is a pointer to an ASCII string used for the name of the event flag group. The

name can be displayed by debuggers or by μC/Probe.

flags contains the initial value of the flags to store in the event flag group.

p_err is a pointer to a variable that is used to hold an error code. The error code can

be one of the following:

OS_ERR_NONE if the call is successful and the event flag

group has been created.

OS_ERR_CREATE_ISR if attempting to create an event flag group

from an ISR, w is not allowed.

OS_ERR_NAME if p_name is a NULL pointer.

OS_ERR_OBJ_CREATED if the object passed has already been created.

OS_ERR_OBJ_PTR_NULL if p_grp is a NULL pointer.

File Called from Code enabled by

OS_FLAG.C Task or startup code OS_CFG_FLAG_EN
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Returned Values

None

Notes/Warnings

1. Event flag groups must be created by this function before they can be used by the other

event flag group services.

Example

OS_FLAG_GRP  EngineStatus;

void main (void)

{

    OS_ERR  err;

   

    OSInit(&err);                    /* Initialize μC/OS-III                             */
    :

    :

    OSFlagCreate(&EngineStatus,

                 �Engine Status�,

                 (OS_FLAGS)0,

                 &err);              /* Create a flag grp containing the engine�s status */

    /* Check �err� */

    :

    :

    OSStart();                       /* Start Multitasking                               */

}
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OSFlagDel()

void OSFlagDel (OS_FLAG_GRP *p_grp,

                OS_OPT       opt,

                OS_ERR      *p_err);

OSFlagDel() is used to delete an event flag group. This function should be used with care

since multiple tasks may be relying on the presence of the event flag group. Generally,

before deleting an event flag group, first delete all of the tasks that access the event flag

group. Also, it is recommended that the user not delete kernel objects at run time.

Arguments

p_grp is a pointer to the event flag group to delete.

opt specifies whether the user wants to delete the event flag group only if there are

no pending tasks (OS_OPT_DEL_NO_PEND), or whether the event flag group

should always be deleted regardless of whether or not tasks are pending

(OS_OPT_DEL_ALWAYS). In this case, all pending task are readied.

p_err is a pointer to a variable used to hold an error code. The error code can be one

of the following:

OS_ERR_NONE if the call is successful and the event flag

group has been deleted.

OS_ERR_DEL_ISR if the user attempts to delete an event flag

group from an ISR.

OS_ERR_OBJ_PTR_NULL if p_grp is a NULL pointer.

OS_ERR_OBJ_TYPE if p_grp is not pointing to an event flag

group.

OS_ERR_OPT_INVALID if the user does not specify one of the options

mentioned in the opt argument.

OS_ERR_TASK_WAITING if one or more tasks are waiting on the event flag

group and OS_OPT_DEL_NO_PEND is specified.

File Called from Code enabled by

OS_FLAG.C Task OS_CFG_FLAG_EN and 

OS_CFG_FLAG_DEL_EN
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Returned Values

0 if no task was waiting on the event flag group, or an error occurs.

> 0 if one or more tasks waiting on the event flag group are now readied and informed

Notes/Warnings

1. Use this call with care as other tasks might expect the presence of the event flag group.

Example

OS_FLAG_GRP  EngineStatusFlags;

void Task (void *p_arg)

{

    OS_ERR      err;

    OS_OBJ_QTY  qty;

    (void)&p_arg;

    while (DEF_ON) {

        :

        :

        qty = OSFlagDel(&EngineStatusFlags,

                        OS_OPT_DEL_ALWAYS,

                        &err);

        /* Check �err� */

        :

        :

    }

}
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OSFlagPend()

OS_FLAGS  OSFlagPend (OS_FLAG_GRP *p_grp,

                      OS_FLAGS     flags,

                      OS_TICK      timeout,

                      OS_OPT       opt,

                      CPU_TS      *p_ts,

                      OS_ERR      *p_err)

OSFlagPend() allows the task to wait for a combination of conditions (i.e., events or bits) to

be set (or cleared) in an event flag group. The application can wait for any condition to be set

or cleared, or for all conditions to be set or cleared. If the events that the calling task desires are

not available, the calling task is blocked (optional) until the desired conditions are satisfied, the

specified timeout expires, the event flag is deleted, or the pend is aborted by another task.

Arguments

p_grp is a pointer to the event flag group.

flags is a bit pattern indicating which bit(s) (i.e., flags) to check. The bits wanted are

specified by setting the corresponding bits in flags. If the application wants to

wait for bits 0 and 1 to be set, specify 0x03.

timeout allows the task to resume execution if the desired flag(s) is(are) not received

from the event flag group within the specified number of clock ticks. A timeout

value of 0 indicates that the task wants to wait forever for the flag(s). The

timeout value is not synchronized with the clock tick. The timeout count begins

decrementing on the next clock tick, which could potentially occur

immediately.

opt specifies whether all bits are to be set/cleared or any of the bits are to be

set/cleared. Specify the following arguments:

OS_OPT_PEND_FLAG_CLR_ALL Check all bits in flags to be clear (0)

OS_OPT_PEND_FLAG_CLR_ANY Check any bit in flags to be clear (0)

File Called from Code enabled by

OS_FLAG.C Task OS_CFG_FLAG_EN
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OS_OPT_PEND_FLAG_SET_ALL Check all bits in flags to be set (1)

OS_OPT_PEND_FLAG_SET_ANY Check any bit in flags to be set (1)

The user may also specify whether the flags are consumed by “adding”

OS_OPT_PEND_FLAG_CONSUME to the opt argument. For example, to wait for any

flag in a group and then clear the flags that satisfy the condition, set opt to:

OS_OPT_PEND_FLAG_SET_ANY + OS_OPT_PEND_FLAG_CONSUME

Finally, you can specify whether the user wants to block if the flag(s) are

available or not. The user must “add” the following options:

OS_OPT_PEND_BLOCKING

OS_OPT_PEND_NON_BLOCKING

Note that the timeout argument should be set to 0 when specifying

OS_OPT_PEND_NON_BLOCKING, since the timeout value is irrelevant using this

option.

p_ts is a pointer to a timestamp indicating when the flags were posted, the pend

was aborted, or the event flag group was deleted. If passing a NULL pointer

(i.e., (CPU_TS *)0), the user will not obtain the timestamp. Passing a NULL

pointer is valid, and indicates that the user does not need the timestamp.

A timestamp is useful when the task desires to know when the event flag group

was posted or how long it took for the task to resume after the event flag group

was posted. In the latter case, the user must call OS_TS_GET() and compute the

difference between the current value of the timestamp and *p_ts, as shown:

delta = OS_TS_GET() - *p_ts;

p_err is a pointer to an error code and can be:

OS_ERR_NONE No error.

OS_ERR_OBJ_PTR_NULL if p_grp is a NULL pointer.

OS_ERR_OBJ_TYPE p_grp is not pointing to an event flag group.

OS_ERR_OPT_INVALID the user specified an invalid option.

OS_ERR_PEND_ABORT the wait on the flags was aborted by another

task that called OSFlagPendAbort().
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OS_ERR_PEND_ISR An attempt was made to call OSFlagPend

from an ISR, which is not allowed.

OS_ERR_SCHED_LOCKED When calling this function while the

scheduler was locked.

OS_ERR_PEND_WOULD_BLOCK if specifying non-blocking but the flags were

not available and the call would block if the

user had specified OS_OPT_PEND_BLOCKING.

OS_ERR_TIMEOUT the flags are not available within the specified

amount of time.

Returned Values

The flag(s) that cause the task to be ready, 0 if either none of the flags are ready, or indicate

an error occurred.

Notes/Warnings

1. The event flag group must be created before it is used.
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Example

#define  ENGINE_OIL_PRES_OK   0x01

#define  ENGINE_OIL_TEMP_OK   0x02

#define  ENGINE_START         0x04

OS_FLAG_GRP  EngineStatus;

void Task (void *p_arg)

{

    OS_ERR    err;

    OS_FLAGS  value;

    CPU_TS    ts;

    (void)&p_arg;

    while (DEF_ON) {

        value = OSFlagPend(&EngineStatus,

                           ENGINE_OIL_PRES_OK   + ENGINE_OIL_TEMP_OK,

                           OS_FLAG_WAIT_SET_ALL + OS_FLAG_CONSUME,

                           10,

                           OS_OPT_PEND_BLOCKING,

                           &ts,

                           &err);

        /* Check �err� */

        :

        :

    }

}
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OSFlagPendAbort()

OS_OBJ_QTY  OSFlagPendAbort (OS_SEM  *p_grp,

                             OS_OPT   opt,

                             OS_ERR  *p_err)

OSFlagPendAbort() aborts and readies any tasks currently waiting on an event flag group.

This function should be used by another task to fault abort the wait on the event flag group,

rather than to normally signal the event flag group via OSFlagPost().

Arguments

p_grp is a pointer to the event flag group for which pend(s) must be aborted.

opt determines the type of abort performed.

OS_OPT_PEND_ABORT_1 Aborts the pend of only the highest priority

task waiting on the event flag group.

OS_OPT_PEND_ABORT_ALL Aborts the pend of all the tasks waiting on

the event flag group.

OS_OPT_POST_NO_SCHED Specifies that the scheduler should not be

called even if the pend of a higher priority

task is aborted. Scheduling will need to occur

from another function.

Use this option if the task calling

OSFlagPendAbort() will perform additional

pend aborts, rescheduling will take place at

completion, and when multiple pend aborts

are to take effect simultaneously.

File Called from Code enabled by

OS_FLAG.C Task OS_CFG_FLAG_EN and 

OS_CFG_FLAG_PEND_ABORT_EN
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p_err is a pointer to a variable that holds an error code. OSFlagPendAbort() sets

*p_err to one of the following:

OS_ERR_NONE at least one task waiting on the event flag

group was readied and informed of the

aborted wait. Check the return value for the

number of tasks where a wait on the event

flag group was aborted.

OS_ERR_OBJ_PTR_NULL if p_grp is a NULL pointer.

OS_ERR_OBJ_TYPE if p_grp is not pointing to an event flag

group.

OS_ERR_OPT_INVALID if specifying an invalid option.

OS_ERR_PEND_ABORT_ISR This function cannot be called from an ISR.

OS_ERR_PEND_ABORT_NONE No task was aborted since no task was

waiting.

Returned Value

OSFlagPendAbort() returns the number of tasks made ready to run by this function. Zero

indicates that no tasks were pending on the event flag group and thus this function had no

effect.

Notes/Warnings

1. Event flag groups must be created before they are used.
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Example

OS_FLAG_GRP  EngineStatus;

void Task (void *p_arg)

{

    OS_ERR      err;

    OS_OBJ_QTY  nbr_tasks;

    (void)&p_arg;

    while (DEF_ON) {

        :

        :

        nbr_tasks = OSFlagPendAbort(&EngineStatus,

                                    OS_OPT_PEND_ABORT_ALL,

                                    &err);

        /* Check �err� */

        :

        :

    }

}
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OSFlagPendGetFlagsRdy()

OS_FLAGS  OSFlagPendGetFlagsRdy (OS_ERR  *p_err)

OSFlagPendGetFlagsRdy() is used to obtain the flags that caused the current task to be

ready to run. This function allows the user to know "Who done it!"

Arguments

p_err is a pointer to an error code and can be:

OS_ERR_NONE No error.

OS_ERR_PEND_ISR When attempting to call this function from an

ISR.

Returned Value

The value of the flags that caused the current task to become ready to run.

Notes/Warnings

1. The event flag group must be created before it is used.

File Called from Code enabled by

OS_FLAG.C Task OS_CFG_FLAG_EN
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Example

#define  ENGINE_OIL_PRES_OK   0x01

#define  ENGINE_OIL_TEMP_OK   0x02

#define  ENGINE_START         0x04

OS_FLAG_GRP  EngineStatus;

void Task (void *p_arg)

{

    OS_ERR    err;

    OS_FLAGS  value;

    OS_FLAGS  flags_rdy;

    (void)&p_arg;

    while (DEF_ON) {

        value     = OSFlagPend(&EngineStatus,

                               ENGINE_OIL_PRES_OK   + ENGINE_OIL_TEMP_OK,

                               OS_FLAG_WAIT_SET_ALL + OS_FLAG_CONSUME,

                               10,

                               &err);

        /* Check �err� */

        flags_rdy = OSFlagPendGetFlagsRdy(&err);

        /* Check �err� */

        :

        :

   }

}



403

µC/OS-III API Reference Manual

OSFlagPost()

OS_FLAGS  OSFlagPost (OS_FLAG_GRP  *p_grp,

                      OS_FLAGS      flags,

                      OS_OPT        opt,

                      OS_ERR       *p_err)

Set or clear event flag bits by calling OSFlagPost(). The bits set or cleared are specified in

a bit mask (i.e., the flags argument). OSFlagPost() readies each task that has its desired

bits satisfied by this call. The user can set or clear bits that are already set or cleared.

Arguments

p_grp is a pointer to the event flag group.

flags specifies which bits to be set or cleared. If opt is OS_OPT_POST_FLAG_SET, each

bit that is set in flags will set the corresponding bit in the event flag group. For

example to set bits 0, 4, and 5, set flags to 0x31 (note that bit 0 is the least

significant bit). If opt is OS_OPT_POST_FLAG_CLR, each bit that is set in flags

will clear the corresponding bit in the event flag group. For example to clear

bits 0, 4, and 5, specify flags as 0x31 (again, bit 0 is the least significant bit).

opt indicates whether the flags are set (OS_OPT_POST_FLAG_SET) or cleared

(OS_OPT_POST_FLAG_CLR).

The user may also “add” OS_OPT_POST_NO_SCHED so that μC/OS-III will not call

the scheduler after the post.

p_err is a pointer to an error code and can be:

OS_ERR_NONE the call is successful.

OS_ERR_FLAG_INVALID_OPT specify an invalid option.

OS_ERR_OBJ_PTR_NULL the user passed a NULL pointer.

OS_ERR_OBJ_TYPE the user is not pointing to an event flag

group.

File Called from Code enabled by

OS_FLAG.C Task or ISR OS_CFG_FLAG_EN
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Returned Value

The new value of the event flags.

Notes/Warnings

1 Event flag groups must be created before they are used.

2 The execution time of this function depends on the number of tasks waiting on the

event flag group. However, the execution time is still deterministic.

3 Although the example below shows that we are posting from a task, OSFlagPost() can

also be called from an ISR.

Example

#define  ENGINE_OIL_PRES_OK   0x01

#define  ENGINE_OIL_TEMP_OK   0x02

#define  ENGINE_START         0x04

OS_FLAG_GRP  EngineStatusFlags;

void  TaskX (void *p_arg)

{

    OS_ERR    err;

    OS_FLAGS  flags;

    (void)&p_arg;

    while (DEF_ON) {

        :

        :

        flags = OSFlagPost(&EngineStatusFlags,

                           ENGINE_START,

                           OS_OPT_POST_FLAG_SET,

                           &err);

        /* Check �err� */

        :

        :

    }

}
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OSIdleTaskHook()

void  OSIdleTaskHook (void);

This function is called by OS_IdleTask().

OSIdleTaskHook() is part of the CPU port code and this function must not be called by the

application code. OSIdleTaskHook() is used by the μC/OS-III port developer.

OSIdleTaskHook() runs in the context of the idle task so that it is important to make sure

there is sufficient stack space in the idle task. OSIdleTaskHook() must not make any

OS???Pend() calls, call OSTaskSuspend() or OSTimeDly???(). In other words, this

function must never be allowed to make a blocking call.

Arguments

None

Returned Value

None

Notes/Warnings

1. Never make blocking calls from OSIdleTaskHook().

2. Do not call this function from you application.

Example

The code below calls an application-specific hook that the application programmer can

define. The user can simply set the value of OS_AppIdleTaskHookPtr to point to the

desired hook function which in this case assumes s defined in OS_APP_HOOKS.C. The idle

task calls OSIdleTaskHook() which in turns calls App_OS_IdleTaskHook() through

OS_AppIdleTaskHookPtr.

File Called from Code enabled by

OS_CPU_C.C OS_IdleTask() ONLY N/A
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This feature is very useful when there is a processor that can enter low-power mode. When

μC/OS-III has no other task to run, the processor can be put to sleep waiting for an

interrupt to wake it up.

void  App_OS_IdleTaskHook (void)                          /* See OS_APP_HOOKS.C    */

{

    /* Your code goes here! */

    /* Put the CPU in low power mode (optional) */

}

void App_OS_SetAllHooks (void)                            /* OS_APP_HOOKS.C        */

{

    CPU_SR_ALLOC();

    CPU_CRITICAL_ENTER();

    :

    OS_AppIdleTaskHookPtr = App_OS_IdleTaskHook;

    :

    CPU_CRITICAL_EXIT();

}

void  OSIdleTaskHook (void)                                /* See OS_CPU_C.C        */

{

#if OS_CFG_APP_HOOKS_EN > 0u

    if (OS_AppIdleTaskHookPtr != (OS_APP_HOOK_VOID)0) {   /* Call application hook */

        (*OS_AppIdleTaskHookPtr)();

    }

#endif

}



407

µC/OS-III API Reference Manual

OSInit()

void OSInit (OS_ERR *p_err);

OSInit() initializes μC/OS-III and it must be called prior to calling any other μC/OS-III

function. Including OSStart()which will start multitasking.

Arguments

p_err is a pointer to an error code and can be:

OS_ERR_NONE initialization was successful.

OS_ERR_???? some other OS_ERR_???? value returned by a

sub-function of OSInit().

Returned Values

None

Notes/Warnings

1. OSInit() must be called before OSStart().

2. OSInit() returns as soon as it detects an error in any of the sub-functions it calls. For

example, if OSInit() encounters a problem initializing the task manager, an appropriate

error code will be returned and OSInit() will not go any further. It is therefore important

that the user checks the error code before starting multitasking.

File Called from Code enabled by

OS_CORE.C Startup code only N/A
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Example

void main (void)

{

    OS_ERR  err;

   

       : 

    OSInit(&err);                   /* Initialize μC/OS-III              */
    /* Check �err� */

    :

    :

    OSStart(&err);                  /* Start Multitasking                */

    /* Check �err� */               /* Code not supposed to end up here! */

}
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OSInitHook()

void OSInitHook (void);

OSInitHook() is a function that is called by μC/OS-III’s initialization code, OSInit().

OSInitHook() is typically implemented by the port implementer for the processor used.

This hook allows the port to be extended to do such tasks as setup exception stacks,

floating-point registers, and more. OSInitHook() is called at the beginning of OSInit(),

before any μC/OS-III task and data structure have been initialized.

Arguments

None

Returned Values

None

Notes/Warnings

None

Example

File Called from Code enabled by

OS_CPU_C.C OSInit() Always enabled

void  OSInitHook (void)                                /* See OS_CPU_C.C         */

{

    /* Perform any initialization code necessary by the port */

}
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OSIntCtxSw()

void  OSIntCtxSw (void)

OSIntCtxSw() is called from OSIntExit() to perform a context switch when all nested

interrupts have returned.

Interrupts are disabled when OSIntCtxSw() is called.

OSIntExit() sets OSTCBCurPtr to point at the OS_TCB of the task that is switched out and

OSTCBHighRdyPtr to point at the OS_TCB of the task that is switched in.

Arguments

None

Returned Values

None

Notes/Warnings

None

File Called from Code enabled by

OS_CPU_A.ASM OSIntExit() N/A
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Example

The pseudocode for OSIntCtxSw() is shown below. Notice that the code does only half of

what OSCtxSw() did. The reason is that OSIntCtxSw() is called from an ISR and it is

assumed that all of the CPU registers of the interrupted task were saved at the beginning of

the ISR. OSIntCtxSw() therefore only must restore the context of the new, high-priority

task.

(1) OSIntCtxSw() must call OSTaskSwHook().

(2) Copy OSPrioHighRdy to OSPrioCur.

(3) Copy OSTCBHighRdyPtr to OSTCBCurPtr because the current task will now be

the new task.

(4) Restore the stack pointer of the new task, which is found in the OS_TCB of the

new task.

(5) Restore all the CPU registers from the new task’s stack.

(6) Execute a return from interrupt instruction.

void  OSIntCtxSw (void)

{

    OSTaskSwHook();                                 (1)

    OSPrioCur           = OSPrioHighRdy;            (2)

    OSTCBCurPtr         = OSTCBHighRdyPtr;          (3)

    SP                  = OSTCBHighRdyPtr->StkPtr;  (4)

    Restore all CPU registers;                      (5)

    Return from interrupt;                          (6)

}
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OSIntEnter()

void OSIntEnter (void);

OSIntEnter() notifies μC/OS-III that an ISR is being processed, which allows μC/OS-III to

keep track of interrupt nesting. OSIntEnter() is used in conjunction with OSIntExit().

This function is generally called at the beginning of ISRs. Note that on some CPU

architectures, it must be written in assembly language (shown below in pseudo code):

Arguments

None

Returned Values

None

Notes/Warnings

1. This function must not be called by task-level code.

2. Iincrement the interrupt-nesting counter (OSIntNestingCtr) directly in the ISR to avoid the

overhead of the function call/return. It is safe to increment OSIntNestingCtr in the ISR since

interrupts are assumed to be disabled when OSIntNestingCtr is incremented. However, that

is not true for all CPU architectures. Make sure interrupts are disabled in the ISR before

directly incrementing OSIntNestingCtr.

3. It is possible to nest interrupts up to 250 levels deep.

File Called from Code enabled by

OS_CORE.C ISR only N/A

MyISR:

    Save CPU registers;

    OSIntEnter();               /* Or, OSIntNestingCtr++ */

        :

    Process ISR;

        :

    OSIntExit();

    Restore CPU registers;

    Return from interrupt;
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OSIntExit()

void OSIntExit (void);

OSIntExit() notifies μC/OS-III that an ISR is complete, which allows μC/OS-III to keep

track of interrupt nesting. OSIntExit() is used in conjunction with OSIntEnter(). When

the last nested interrupt completes, OSIntExit() determines if a higher priority task is

ready to run. If so, the interrupt returns to the higher priority task instead of the interrupted

task.

This function is typically called at the end of ISRs as follows, and on some CPU

architectures, it must be written in assembly language (shown below in pseudo code):

Arguments

None

Returned Value

None

Notes/Warnings

1. This function must not be called by task-level code. Also, if directly incrementing

OSIntNestingCtr, instead of calling OSIntEnter(), the user must still call OSIntExit().

File Called from Code enabled by

OS_CORE.C ISR only N/A

MyISR:

    Save CPU registers;

    OSIntEnter();

        :

    Process ISR;

        :

    OSIntExit();

    Restore CPU registers;

    Return from interrupt;
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OSMemCreate()

void  OSMemCreate (OS_MEM      *p_mem,

                   CPU_CHAR    *p_name,

                   void        *p_addr,

                   OS_MEM_QTY   n_blks,

                   OS_MEM_SIZE  blk_size,

                   OS_ERR      *p_err)

OSMemCreate() creates and initializes a memory partition. A memory partition contains a

user-specified number of fixed-size memory blocks. An application may obtain one of these

memory blocks and, when completed, release the block back to the same partition where

the block originated.

Arguments

p_mem is a pointer to a memory partition control block that must be allocated in the

application. It is assumed that storage will be allocated for the memory control

blocks in the application. In other words, the user will declare a “global”

variable as follows, and pass a pointer to this variable to OSMemCreate():

OS_MEM  MyMemPartition;

p_name is a pointer to an ASCII string to provide a name to the memory partition. The

name can be displayed by debuggers or μC/Probe.

p_addr is the address of the start of a memory area used to create fixed-size memory

blocks. Memory partitions may be created either using static arrays or malloc()

during startup. Note that the partition must align on a pointer boundary. Thus, if

a pointer is 16-bits wide. the partition must start on a memory location with an

address that ends with 0, 2, 4, 6, 8, etc. If a pointer is 32-bits wide, the partition

must start on a memory location with an address that ends in 0, 4, 8 of C. The

easiest way to ensure this is to create a static array as follows:

void *MyMemArray[N][M * sizeof(void *)]

File Called from Code enabled by

OS_MEM.C Task or startup code OS_CFG_MEM_EN
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Never deallocate memory blocks that were allocated from the heap to prevent

fragmentation of your heap. It is quite acceptable to allocate memory blocks

from the heap as long as the user does not deallocate them.

n_blks contains the number of memory blocks available from the specified partition.

Specify at least two memory blocks per partition.

blk_size specifies the size (in bytes) of each memory block within a partition. A memory

block must be large enough to hold at least a pointer. Also, the size of a

memory block must be a multiple of the size of a pointer. If a pointer is 32-bits

wide then the block size must be 4, 8, 12, 16, 20, etc. bytes (i.e., a multiple of 4

bytes).

p_err is a pointer to a variable that holds an error code:

OS_ERR_NONE if the memory partition is created successfully

OS_ERR_MEM_INVALID_BLKS if the user does not specify at least two

memory blocks per partition

OS_ERR_MEM_INVALID_P_ADDR if specifying an invalid address (i.e., p_addr is

a NULL pointer) or the partition is not

properly aligned.

OS_ERR_MEM_INVALID_SIZE if the user does not specify a block size that

can contain at least a pointer variable, and if

it is not a multiple of a pointer-size variable.

Returned Value

None

Notes/Warnings

1. Memory partitions must be created before they are used.
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Example

OS_MEM       CommMem;

CPU_INT32U  *CommBuf[16][32];          /* 16 buffers of 32 words of 32 bits */

void  main (void)

{

    OS_ERR  err;

    OSInit(&err);                      /* Initialize μC/OS-III             */
    :

    :

    OSMemCreate(&CommMem,

                �Comm Buffers�,

                &CommBuf[0][0],

                16,

                32 * sizeof(CPU_INT32U),

                &err);

    /* Check �err� */

    :

    :

    OSStart(&err);                     /* Start Multitasking              */

}
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OSMemGet()

void  *OSMemGet (OS_MEM  *p_mem,

                 OS_ERR  *p_err)

OSMemGet() obtains a memory block from a memory partition. It is assumed that the

application knows the size of each memory block obtained. Also, the application must return

the memory block [using OSMemPut()] to the same memory partition when it no longer

requires it. OSMemGet() may be called more than once until all memory blocks are allocated.

Arguments

p_mem is a pointer to the desired memory partition control block.

p_err is a pointer to a variable that holds an error code:

OS_ERR_NONE if a memory block is available and returned to

the application.

OS_ERR_MEM_INVALID_P_MEM if p_mem is a NULL pointer.

OS_ERR_MEM_NO_FREE_BLKS if the memory partition does not contain

additional memory blocks to allocate.

Returned Value

OSMemGet() returns a pointer to the allocated memory block if one is available. If a

memory block is not available from the memory partition, OSMemGet() returns a NULL

pointer. It is up to the application to “cast” the pointer to the proper data type since

OSMemGet() returns a void *.

Notes/Warnings

1. Memory partitions must be created before they are used.

2. This is a non-blocking call and this function can be called from an ISR.

File Called from Code enabled by

OS_MEM.C Task or ISR OS_CFG_MEM_EN
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Example

OS_MEM  CommMem;

void Task (void *p_arg)

{

    OS_ERR       err;

    CPU_INT08U  *p_msg;

    (void)&p_arg;

    while (DEF_ON) {

        p_msg = (CPU_INT08U *)OSMemGet(&CommMem,

                                       &err);

        /* Check �err� */

        :

        :

    }

}
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OSMemPut()

void  OSMemPut (OS_MEM  *p_mem,

                void    *p_blk,

                OS_ERR  *p_err)

OSMemPut() returns a memory block back to a memory partition. It is assumed that the user

will return the memory block to the same memory partition from which it was allocated.

Arguments

p_mem is a pointer to the memory partition control block.

p_blk is a pointer to the memory block to be returned to the memory partition.

p_err is a pointer to a variable that holds an error code:

OS_ERR_NONE if a memory block is available and returned to

the application.

OS_ERR_MEM_INVALID_P_BLK if the user passed a NULL pointer for the memory

block being returned to the memory partition.

OS_ERR_MEM_INVALID_P_MEM if p_mem is a NULL pointer.

OS_ERR_MEM_MEM_FULL if returning a memory block to an already full

memory partition. This would indicate that

the user freed more blocks that were

allocated and potentially did not return some

of the memory blocks to the proper memory

partition.

Returned Value

None

File Called from Code enabled by

OS_MEM.C Task or ISR OS_CFG_MEM_EN
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Notes/Warnings

1. Memory partitions must be created before they are used.

2. Return a memory block to the proper memory partition.

3. Call this function from an ISR or a task.

Example

OS_MEM       CommMem;

CPU_INT08U  *CommMsg;

void Task (void *p_arg)

{

    OS_ERR err;

    (void)&p_arg;

    while (DEF_ON) {

        OSMemPut(&CommMem,

                 (void *)CommMsg,

                 &err);

        /* Check �err� */

        :

        :

    }

}
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OSMutexCreate()

void  OSMutexCreate (OS_MUTEX    *p_mutex,

                     CPU_CHAR    *p_name,

                     OS_ERR      *p_err)

OSMutexCreate() is used to create and initialize a mutex. A mutex is used to gain exclusive

access to a resource.

Arguments

p_mutex is a pointer to a mutex control block that must be allocated in the application.

The user will need to declare a “global” variable as follows, and pass a pointer

to this variable to OSMutexCreate():

OS_MUTEX MyMutex;

p_name is a pointer to an ASCII string used to assign a name to the mutual exclusion

semaphore. The name may be displayed by debuggers or μC/Probe.

p_err is a pointer to a variable that is used to hold an error code:

OS_ERR_NONE if the call is successful and the mutex has

been created.

OS_ERR_CREATE_ISR if attempting to create a mutex from an ISR.

OS_ERR_OBJ_CREATED if p_mutex already points to a mutex. This

indicates that the mutex is already created.

OS_ERR_OBJ_PTR_NULL if p_mutex is a NULL pointer.

OS_ERR_OBJ_TYPE if p_mutex points to a different type of object

(semaphore, message queue or timer).

Returned Value

None

Notes/Warnings

1. Mutexes must be created before they are used.

File Called from Code enabled by

OS_MUTEX.C Task or startup code OS_CFG_MUTEX_EN
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Example

OS_MUTEX  DispMutex;

void main (void)

{

    OS_ERR  err;

  

    :

    OSInit(&err);                         /* Initialize μC/OS-III         */
    :

    :

    OSMutexCreate(&DispMutex,             /* Create Display Mutex         */

                  �Display Mutex�,

                  &err);

    /* Check �err� */

    :

    :

    OSStart(&err);                        /* Start Multitasking           */

}



423

µC/OS-III API Reference Manual

OSMutexDel()

void  OSMutexDel (OS_MUTEX  *p_mutex,

                  OS_OPT     opt,

                  OS_ERR    *p_err)

OSMutexDel() is used to delete a mutex. This function should be used with care because

multiple tasks may rely on the presence of the mutex. Generally speaking, before deleting a

mutex, first delete all the tasks that access the mutex. However, as a general rule, do not

delete kernel objects at run-time.

Arguments

p_mutex is a pointer to the mutex to delete.

opt specifies whether to delete the mutex only if there are no pending tasks

(OS_OPT_DEL_NO_PEND), or whether to always delete the mutex regardless of

whether tasks are pending or not (OS_OPT_DEL_ALWAYS). In this case, all

pending task are readied.

p_err is a pointer to a variable that is used to hold an error code:

OS_ERR_NONE if the call is successful and the mutex has

been deleted.

OS_ERR_DEL_ISR if attempting to delete a mutex from an ISR.

OS_ERR_OBJ_PTR_NULL if p_mutex is a NULL pointer.

OS_ERR_OBJ_TYPE if p_mutex is not pointing to a mutex.

OS_ERR_OPT_INVALID if the user does not specify one of the two

options mentioned in the opt argument.

OS_ERR_TASK_WAITING if one or more task are waiting on the mutex

and OS_OPT_DEL_NO_PEND is specified.

Returned Value

The number of tasks that were waiting for the mutex and 0 if an error occurred.

File Called from Code enabled by

OS_MUTEX.C Task OS_CFG_MUTEX_EN and 

OS_CFG_MUTEX_DEL_EN



424

Appendix A

Notes/Warnings

1. Use this call with care as other tasks may expect the presence of the mutex.

Example

OS_MUTEX  DispMutex;

void Task (void *p_arg)

{

    OS_ERR  err;

    (void)&p_arg;

    while (DEF_ON) {

        :

        :

        OSMutexDel(&DispMutex,

                   OS_OPT_DEL_ALWAYS,

                   &err);

        /* Check �err� */

        :

        :

    }

}
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OSMutexPend()

void  OSMutexPend (OS_MUTEX   *p_mutex,

                   OS_TICK     timeout,

                   OS_OPT      opt,

                   CPU_TS     *p_ts,

                   OS_ERR     *p_err)

OSMutexPend() is used when a task requires exclusive access to a resource. If a task calls

OSMutexPend() and the mutex is available, OSMutexPend() gives the mutex to the caller

and returns to its caller. Note that nothing is actually given to the caller except that if p_err

is set to OS_ERR_NONE, the caller can assume that it owns the mutex.

However, if the mutex is already owned by another task, OSMutexPend() places the calling

task in the wait list for the mutex. The task waits until the task that owns the mutex releases

the mutex and therefore the resource, or until the specified timeout expires. If the mutex is

signaled before the timeout expires, μC/OS-III resumes the highest-priority task that is

waiting for the mutex.

Note that if the mutex is owned by a lower-priority task, OSMutexPend() raises the priority

of the task that owns the mutex to the same priority as the task requesting the mutex. The

priority of the owner will be returned to its original priority when the owner releases the

mutex (see OSMutexPost()).

OSMutexPend() allows nesting. The same task can call OSMutexPend() multiple times.

However, the same task must then call OSMutexPost() an equivalent number of times to

release the mutex.

Arguments

p_mutex is a pointer to the mutex.

File Called from Code enabled by

OS_MUTEX.C Task only OS_CFG_MUTEX_EN
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timeout specifies a timeout value (in clock ticks) and is used to allow the task to resume

execution if the mutex is not signaled (i.e., posted to) within the specified timeout.

A timeout value of 0 indicates that the task wants to wait forever for the mutex. The

timeout value is not synchronized with the clock tick. The timeout count is

decremented on the next clock tick, which could potentially occur immediately.

opt determines whether the user wants to block if the mutex is not available or not.

This argument must be set to either:

OS_OPT_PEND_BLOCKING, or

OS_OPT_PEND_NON_BLOCKING

Note that the timeout argument should be set to 0 when specifying

OS_OPT_PEND_NON_BLOCKING since the timeout value is irrelevant using this

option.

p_ts is a pointer to a timestamp indicating when the mutex was posted, the pend

was aborted, or the mutex was deleted. If passing a NULL pointer (i.e., (CPU_TS

*)0), the user will not receive the timestamp. In other words, passing a NULL

pointer is valid and indicates that the timestamp is not required.

A timestamp is useful when it is important for a task to know when the mutex

was posted, or how long it took for the task to resume after the mutex was

posted. In the latter case, the user must call OS_TS_GET() and compute the

difference between the current value of the timestamp and *p_ts. In other

words:

delta = OS_TS_GET() - *p_ts;

p_err is a pointer to a variable that is used to hold an error code:

OS_ERR_NONE if the call is successful and the mutex is

available.

OS_ERR_MUTEX_NESTING if the calling task already owns the mutex and

it has not posted all nested values.

OS_ERR_MUTEX_OWNER if the calling task already owns the mutex.

OS_ERR_OBJ_PTR_NULL if p_mutex is a NULL pointer.
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OS_ERR_OBJ_TYPE if the user did not pass a pointer to a mutex.

OS_ERR_OPT_INVALID if a valid option is not specified.

OS_ERR_PEND_ISR if attempting to acquire the mutex from an

ISR.

OS_ERR_SCHED_LOCKED if calling this function when the scheduler is

locked

OS_ERR_TIMEOUT if the mutex is not available within the

specified timeout.

Returned Value

None

Notes/Warnings

1. Mutexes must be created before they are used.

2. Do not suspend the task that owns the mutex. Also, do not have the mutex owner wait

on any other μC/OS-III objects (i.e., semaphore, event flag, or queue), and delay the task

that owns the mutex. The code should release the resource as quickly as possible.

Example

OS_MUTEX  DispMutex;

void  DispTask (void *p_arg)

{

    OS_ERR  err;

    CPU_TS  ts;

    (void)&p_arg;

    while (DEF_ON) {

        :

        OSMutexPend(&DispMutex,

                    0,

                    OS_OPT_PEND_BLOCKING,

                    &ts,

                    &err);

        /* Check �err� */

    }

}
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OSMutexPendAbort()

void OSMutexPendAbort (OS_MUTEX  *p_mutex,

                       OS_OPT     opt,

                       OS_ERR    *p_err)

OSMutexPendAbort() aborts and readies any tasks currently waiting on a mutex. This

function should be used to fault-abort the wait on the mutex rather than to normally signal

the mutex via OSMutexPost().

Arguments

p_mutex is a pointer to the mutex.

opt specifies whether to abort only the highest-priority task waiting on the mutex

or all tasks waiting on the mutex:

OS_OPT_PEND_ABORT_1 to abort only the highest-priority task waiting

on the mutex.

OS_OPT_PEND_ABORT_ALL to abort all tasks waiting on the mutex.

OS_OPT_POST_NO_SCHED specifies that the scheduler should not be

called even if the pend of a higher-priority

task has been aborted. Scheduling will need

to occur from another function.

The user would select this option if the task

calling OSMutexPendAbort() will be doing

additional pend aborts, rescheduling should

not take place until all tasks are completed,

and multiple pend aborts should take place

simultaneously.

p_err is a pointer to a variable that is used to hold an error code:

File Called from Code enabled by

OS_MUTEX.C Task OS_CFG_MUTEX_EN and 

OS_CFG_MUTEX_PEND_ABORT_EN
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OS_ERR_NONE if at least one task was aborted. Check the

return value for the number of tasks aborted.

OS_ERR_OBJ_PTR_NULL if p_mutex is a NULL pointer.

OS_ERR_OBJ_TYPE if the user does not pass a pointer to a mutex.

OS_ERR_OPT_INVALID if the user specified an invalid option.

OS_ERR_PEND_ABORT_ISR if attempting to call this function from an ISR

OS_ERR_PEND_ABORT_NONE if no tasks were aborted.

Returned Value

OSMutexPendAbort() returns the number of tasks made ready to run by this function. Zero

indicates that no tasks were pending on the mutex and therefore this function had no effect.

Notes/Warnings

1. Mutexes must be created before they are used.

Example

OS_MUTEX  DispMutex;

void  DispTask (void *p_arg)

{

    OS_ERR      err;

    OS_OBJ_QTY  qty;

    (void)&p_arg;

    while (DEF_ON) {

        :

        :

        qty = OSMutexPendAbort(&DispMutex,

                               OS_OPT_PEND_ABORT_ALL,

                               &err);

        /* Check �err� */

    }

}
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OSMutexPost()

void OSMutexPost (OS_MUTEX  *p_mutex,

                  OS_OPT     opt,

                  OS_ERR    *p_err);

A mutex is signaled (i.e., released) by calling OSMutexPost(). Call this function only if

acquiring the mutex by first calling OSMutexPend(). If the priority of the task that owns the

mutex has been raised when a higher priority task attempted to acquire the mutex, at that

point, the original task priority of the task is restored. If one or more tasks are waiting for

the mutex, the mutex is given to the highest-priority task waiting on the mutex. The

scheduler is then called to determine if the awakened task is now the highest-priority task

ready to run, and if so, a context switch is done to run the readied task. If no task is waiting

for the mutex, the mutex value is simply set to available (DEF_TRUE).

Arguments

p_mutex is a pointer to the mutex.

opt determines the type of POST performed.

OS_OPT_POST_NONE No special option selected.

OS_OPT_POST_NO_SCHED Do not call the scheduler after the post,

therefore the caller is resumed even if the

mutex was posted and tasks of higher priority

are waiting for the mutex.

Use this option if the task calling

OSMutexPost() will be doing additional

posts, if the user does not want to reschedule

until all is complete, and multiple posts

should take effect simultaneously.

File Called from Code enabled by

OS_MUTEX.C Task OS_CFG_MUTEX_EN
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p_err is a pointer to a variable that is used to hold an error code:

OS_ERR_NONE if the call is successful and the mutex is

available.

OS_ERR_MUTEX_NESTING if the owner of the mutex has the mutex

nested and it has not fully un-nested the

mutex yet.

OS_ERR_MUTEX_NOT_OWNER if the caller is not the owner of the mutex and

therefore is not allowed to release it.

OS_ERR_OBJ_PTR_NULL if p_mutex is a NULL pointer.

OS_ERR_OBJ_TYPE if not passing a pointer to a mutex.

OS_ERR_POST_ISR if attempting to post the mutex from an ISR.

Returned Value

None

Notes/Warnings

1. Mutexes must be created before they are used.

2. Do not call this function from an ISR.

Example

OS_MUTEX  DispMutex;

void  TaskX (void *p_arg)

{

    OS_ERR  err;

    (void)&p_arg;

    while (DEF_ON) {

        :

        OSMutexPost(&DispMutex,

                    OS_OPT_POST_NONE,

                    &err);

        /* Check �err� */

        :

    }

}
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OSPendMulti()

OS_OBJ_QTY  OSPendMulti(OS_PEND_DATA  *p_pend_data_tbl,

                        OS_OBJ_QTY     tbl_size,

                        OS_TICK        timeout,

                        OS_OPT         opt,

                        OS_ERR        *p_err);

OSPendMulti() is used when a task expects to wait on multiple kernel objects, specifically

semaphores or message queues. If more than one such object is ready when OSPendMulti()

is called, then all available objects and messages, if any, are returned as ready to the caller.

If no objects are ready, OSPendMulti() suspends the current task until either:

■ an object becomes ready,

■ a timeout occurs,

■ one or more of the tasks are deleted or pend aborted or,

■ one or more of the objects are deleted.

If an object becomes ready, and multiple tasks are waiting for the object, μC/OS-III resumes

the highest-priority task waiting on that object.

A pended task suspended with OSTaskSuspend() can still receive a message from a

multi-pended message queue, or obtain a signal from a multi-pended semaphore. However,

the task remains suspended until it is resumed by calling OSTaskResume().

Arguments

p_pend_data_tbl is a pointer to an OS_PEND_DATA table. This table will be used by

the caller to understand the outcome of this call. Also, the caller

must initialize the .PendObjPtr field of the OS_PEND_DATA field for

each object that the caller wants to pend on (see example below).

File Called from Code enabled by

OS_PEND_MULTI.C Task OS_CFG_PEND_MULTI_EN &&

(OS_CFG_Q_EN || OS_CFG_SEM_EN)
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tbl_size is the number of entries in the OS_PEND_DATA table pointed to by

p_pend_data_tbl. This value indicates how many objects the task will be

pending on.

timeout specifies the amount of time (in clock ticks) that the calling task is willing to

wait for objects to be posted. A timeout value of 0 indicates that the task wants

to wait forever for any of the multi-pended objects. The timeout value is not

synchronized with the clock tick. The timeout count begins decrementing on

the next clock tick, which could potentially occur immediately.

p_err is a pointer to a variable that holds an error code:

OS_ERR_NONE if any of the multi-pended objects are ready.

OS_ERR_OBJ_TYPE if any of the .PendObjPtr in the

p_pend_data_tbl is a NULL pointer, not a

semaphore, or not a message queue.

OS_ERR_OPT_INVALID if specifying an invalid option.

OS_ERR_PEND_ABORT indicates that a multi-pended object was

aborted; check the .RdyObjPtr of the

p_pend_data_tbl to know which object was

aborted. The first non-NULL .RdyObjPtr is

the object that was aborted.

OS_ERR_PEND_DEL indicates that a multi-pended object was

deleted; check the .RdyObjPtr of the

p_pend_data_tbl to know which object was

deleted. The first non-NULL .RdyObjPtr is the

object that was deleted.

OS_ERR_PEND_ISR if calling this function from an ISR.

OS_ERR_PEND_LOCKED if calling this function when the scheduler is

locked.

OS_ERR_PEND_WOULD_BLOCK if the caller does not want to block and no

object is ready.

OS_ERR_PTR_INVALID if p_pend_data_tbl is a NULL pointer.

OS_ERR_TIMEOUT if no multi-pended object is ready within the

specified timeout.
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Returned Value

OSPendMulti() returns the number of multi-pended objects that are ready. If an object is

pend aborted or deleted, the return value will be 1. Examine the value of *p_err to know

the exact outcome of this call. If no multi-pended object is ready within the specified

timeout period, or because of any error, the .RdyObjPtr in the p_pend_data_tbl array will

all be NULL.

When objects are posted, the OS_PEND_DATA fields of p_pend_data_tbl contains additional

information about the posted objects:

.RdyObjPtr Contains a pointer to the object ready or posted to, or NULL

pointer if the object was not ready or posted to.

.RdyMsgPtr If the object pended on was a message queue and the queue was

posted to, this field contains the message.

.RdyMsgSize If the object pended on was a message queue and the queue was

posted to, this field contains the size of the message (in number of

bytes).

.RdyTS If the object pended on was posted to, this field contains the

timestamp as to when the object was posted. Note that if the

object is deleted or pend-aborted, this field contains the timestamp

of when the condition occurred.

Notes/Warnings

1. Message queue or semaphore objects must be created before they are used.

2. Do call OSPendMulti() from an ISR.

3. The user cannot multi-pend on event flags and mutexes.
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Example

OS_SEM  Sem1;

OS_SEM  Sem2;

OS_Q    Q1;

OS_Q    Q2;

void Task(void *p_arg)

{

    OS_PEND_DATA  pend_data_tbl[4];

    OS_ERR        err;

    OS_OBJ_QTY    nbr_rdy;

    (void)&p_arg;

    while (DEF_ON) {

        :

        pend_data_tbl[0].PendObjPtr = (OS_PEND_OBJ *)Sem1;

        pend_data_tbl[1].PendObjPtr = (OS_PEND_OBJ *)Sem2;

        pend_data_tbl[2].PendObjPtr = (OS_PEND_OBJ *)Q1;

        pend_data_tbl[3].PendObjPtr = (OS_PEND_OBJ *)Q2;

        nbr_rdy = OSPendMulti(&pend_data_tbl[0],

                              4,

                              0,

                              OS_OPT_PEND_BLOCKING,

                              &err);

        /* Check �err� */

        :

        :

      }

}
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OSQCreate()

void  OSQCreate (OS_Q        *p_q,

                 CPU_CHAR    *p_name,

                 OS_MSG_QTY   max_qty,

                 OS_ERR      *p_err)

OSQCreate() creates a message queue. A message queue allows tasks or ISRs to send

pointer-sized variables (messages) to one or more tasks. The meaning of the messages sent

are application specific.

Arguments

p_q is a pointer to the message queue control block. It is assumed that storage for

the message queue will be allocated in the application. The user will need to

declare a “global” variable as follows, and pass a pointer to this variable to

OSQCreate():

OS_Q MyMsgQ;

p_name is a pointer to an ASCII string used to name the message queue. The name can

be displayed by debuggers or μC/Probe.

msg_size indicates the maximum size of the message queue (must be non-zero). If the

user intends to not limit the size of the queue, simply pass a very large number.

Of course, if there are not enough OS_MSGs in the pool of OS_MSGs, the post

call (i.e., OSQPost()) will simply fail and an error code will indicate that there

are no more OS_MSGs to use.

p_err is a pointer to a variable that is used to hold an error code:

File Called from Code enabled by

OS_Q.C Task or startup code OS_CFG_Q_EN and OS_CFG_MSG_EN
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OS_ERR_NONE if the call is successful and the mutex has

been created.

OS_ERR_CREATE_ISR if attempting to create the message queue

from an ISR.

OS_ERR_NAME if p_name is a NULL pointer.

OS_ERR_OBJ_CREATED if p_q is already pointing to a message queue.

In other words, the user is trying to create a

message queue that has already been created.

OS_ERR_OBJ_PTR_NULL if p_q is a NULL pointer.

OS_ERR_Q_SIZE if the size specified is 0.

Returned Value

None

Notes/Warnings

1. Queues must be created before they are used.

Example

OS_Q   CommQ;

void main (void)

{

    OS_ERR   err;

    OSInit(&err);                          /* Initialize μC/OS-III  */
    :

    :

    OSQCreate(&CommQ,

              �Comm Queue�,

              10,

              &err);                       /* Create COMM Q         */

    /* Check �err� */

    :

    :

    OSStart();                             /* Start Multitasking    */

}
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OSQDel()

OS_OBJ_QTY  OSQDel (OS_Q    *p_q,

                    OS_OPT   opt,

                    OS_ERR  *p_err)

OSQDel() is used to delete a message queue. This function should be used with care since

multiple tasks may rely on the presence of the message queue. Generally speaking, before

deleting a message queue, first delete all the tasks that can access the message queue.

However, it is highly recommended that you do not delete kernel objects at run time.

Arguments

p_q is a pointer to the message queue to delete.

opt specifies whether to delete the queue only if there are no pending tasks

(OS_OPT_DEL_NO_PEND), or always delete the queue regardless of whether

tasks are pending or not (OS_OPT_DEL_ALWAYS). In this case, all pending task

are readied.

p_err is a pointer to a variable that is used to hold an error code. The error code can

be one of the following:

OS_ERR_NONE if the call is successful and the message

queue has been deleted.

OS_ERR_DEL_ISR if the user attempts to delete the message

queue from an ISR.

OS_ERR_OBJ_PTR_NULL if passing a NULL pointer for p_q.

OS_ERR_OBJ_TYPE if p_q is not pointing to a queue.

OS_ERR_OPT_INVALID if not specifying one of the two options

mentioned in the opt argument.

OS_ERR_TASK_WAITING if one or more tasks are waiting for messages

at the message queue and it is specified to

only delete if no task is pending.

File Called from Code enabled by

OS_Q.C Task OS_CFG_Q_EN and 

OS_CFG_Q_DEL_EN
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Returned Value

The number of tasks that were waiting on the message queue and 0 if an error is detected.

Notes/Warnings

1. Message queues must be created before they can be used.

2. This function must be used with care. Tasks that would normally expect the presence of

the queue must check the return code of OSQPend().

Example

OS_Q  DispQ;

void Task (void *p_arg)

{

    OS_ERR  err;

    (void)&p_arg;

    while (DEF_ON) {

        :

        :

        OSQDel(&DispQ,

               OS_OPT_DEL_ALWAYS,

               &err);

        /* Check �err� */

        :

        :

    }

}
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OSQFlush()

OS_MSG_QTY  OSQFlush (OS_Q    *p_q,

                      OS_ERR  *p_err)

OSQFlush() empties the contents of the message queue and eliminates all messages sent to

the queue. This function takes the same amount of time to execute regardless of whether

tasks are waiting on the queue (and thus no messages are present), or the queue contains

one or more messages. OS_MSGs from the queue are simply returned to the free pool of

OS_MSGs.

Arguments

p_q is a pointer to the message queue.

p_err is a pointer to a variable that will contain an error code returned by this

function.

OS_ERR_NONE if the message queue is flushed.

OS_ERR_FLUSH_ISR if calling this function from an ISR

OS_ERR_OBJ_PTR_NULL if p_q is a NULL pointer.

OS_ERR_OBJ_TYPE if you attempt to flush an object other than a

message queue.

Returned Value

The number of OS_MSG entries freed from the message queue. Note that the OS_MSG entries

are returned to the free pool of OS_MSGs.

Notes/Warnings

1. Queues must be created before they are used.

File Called from Code enabled by

OS_Q.C Task OS_CFG_Q_EN and 

OS_CFG_Q_FLUSH_EN
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2. Use this function with great care. When flushing a queue, you lose the references to what

the queue entries are pointing to, potentially causing 'memory leaks'. The data that the user

is pointing to that is referenced by the queue entries should, most likely, be de-allocated

(i.e., freed). To flush a queue that contains entries, instead use OSQPend() with the

OS_OPT_PEND_NON_BLOCKING option.

Example

OS_Q  CommQ;

void Task (void *p_arg)

{

    OS_ERR  err;

    (void)&p_arg;

    while (DEF_ON) {

        :

        :

        entries = OSQFlush(&CommQ,

                           &err);

        /* Check �err� */

        :

        :

    }

}
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OSQPend()

void  *OSQPend (OS_Q         *p_q,

                OS_TICK       timeout,

                OS_OPT        opt,

                OS_MSG_SIZE  *p_msg_size,

                CPU_TS       *p_ts,

                OS_ERR       *p_err)

OSQPend() is used when a task wants to receive messages from a message queue. The

messages are sent to the task via the message queue either by an ISR, or by another task

using the OSQPost() call. The messages received are pointer-sized variables, and their use

is application specific. If at least one message is already present in the message queue when

OSQPend() is called, the message is retrieved and returned to the caller.

If no message is present in the message queue and OS_OPT_PEND_BLOCKING is specified for

the opt argument, OSQPend() suspends the current task (assuming the scheduler is not

locked) until either a message is received, or a user-specified timeout expires. If a message

is sent to the message queue and multiple tasks are waiting for such a message, μC/OS-III

resumes the highest priority task that is waiting.

A pended task suspended with OSTaskSuspend() can receive a message. However, the task

remains suspended until it is resumed by calling OSTaskResume().

If no message is present in the queue and OS_OPT_PEND_NON_BLOCKING is specifed for the

opt argument, OSQPend() returns to the caller with an appropriate error code, and returns a

NULL pointer.

File Called from Code enabled by

OS_Q.C Task OS_CFG_Q_EN and OS_CFG_MSG_EN
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Arguments

p_q is a pointer to the queue from which the messages are received.

timeout allows the task to resume execution if a message is not received from the

message queue within the specified number of clock ticks. A timeout value of 0

indicates that the task is willing to wait forever for a message. The timeout

value is not synchronized with the clock tick. The timeout count starts

decrementing on the next clock tick, which could potentially occur

immediately.

opt determines whether or not to block if a message is not available in the queue.

This argument must be set to either:

OS_OPT_PEND_BLOCKING, or

OS_OPT_PEND_NON_BLOCKING

Note that the timeout argument should be set to 0 when specifying

OS_OPT_PEND_NON_BLOCKING, since the timeout value is irrelevant using this

option.

p_msg_size is a pointer to a variable that will receive the size of the message (in number of

bytes).

p_ts is a pointer to a variable that will receive the timestamp of when the message

was received. If passing a NULL pointer (i.e., (CPU_TS *)0), the timestamp will

not be returned. Passing a NULL pointer is valid, and indicates that the user

does not need the timestamp.

A timestamp is useful when the user wants the task to know when the message

queue was posted, or how long it took for the task to resume after the message

queue was posted. In the latter case, call OS_TS_GET() and compute the

difference between the current value of the timestamp and *p_ts. In other

words:

delta = OS_TS_GET() - *p_ts;
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p_err is a pointer to a variable used to hold an error code.

OS_ERR_NONE if a message is received.

OS_ERR_OBJ_PTR_NULL if p_q is a NULL pointer.

OS_ERR_OBJ_TYPE if p_q is not pointing to a message queue.

OS_ERR_PEND_ABORT if the pend was aborted because another task

called OSQPendAbort().

OS_ERR_PEND_ISR if the function is called from an ISR.

OS_ERR_PEND_WOULD_BLOCK if this function is called with the opt argument set

to OS_OPT_PEND_NON_BLOCKING, and no

message is in the queue.

OS_ERR_SCHED_LOCKED if calling this function when the scheduler is

locked.

OS_ERR_TIMEOUT if a message is not received within the

specified timeout.

Returned Value

The message (i.e., a pointer) or a NULL pointer if no messages has been received. Note that

it is possible for the actual message to be NULL pointers, so check the returned error code

instead of relying on the returned value.

Notes/Warnings

1. Queues must be created before they are used.

2. The user cannot call OSQPend() from an ISR.
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Example

OS_Q  CommQ;

void CommTask (void *p_arg)

{

    OS_ERR       err;

    void        *p_msg;

    OS_MSG_SIZE  msg_size;

    CPU_TS       ts;

    (void)&p_arg;

    while (DEF_ON) {

        :

        :

        p_msg = OSQPend(CommQ,

                        100,

                        OS_OPT_PEND_BLOCKING,

                        &msg_size,

                        &ts,

                        &err);

        /* Check �err� */

        :

        :

    }

}
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OSQPendAbort()

OS_OBJ_QTY  OSQPendAbort (OS_Q    *p_q,

                          OS_OPT   opt,

                          OS_ERR  *p_err)

OSQPendAbort() aborts and readies any tasks currently waiting on a message queue. This

function should be used to fault-abort the wait on the message queue, rather than to signal

the message queue via OSQPost().

Arguments

p_q is a pointer to the queue for which pend(s) need to be aborted.

opt determines the type of abort to be performed.

OS_OPT_PEND_ABORT_1 Aborts the pend of only the highest-priority

task waiting on the message queue.

OS_OPT_PEND_ABORT_ALL Aborts the pend of all tasks waiting on the

message queue.

OS_OPT_POST_NO_SCHED specifies that the scheduler should not be

called, even if the pend of a higher-priority

task has been aborted. Scheduling will need

to occur from another function.

Use this option if the task calling

OSQPendAbort() is doing additional pend

aborts, rescheduling is not performed until

completion, and multiple pend aborts are to

take effect simultaneously.

p_err is a pointer to a variable that holds an error code:

File Called from Code enabled by

OS_Q.C Task only OS_CFG_Q_EN and 

OS_CFG_Q_PEND_ABORT_EN
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OS_ERR_NONE at least one task waiting on the message

queue was readied and informed of the

aborted wait. Check the return value for the

number of tasks whose wait on the message

queue was aborted.

OS_ERR_PEND_ABORT_ISR if called from an ISR

OS_ERR_PEND_ABORT_NONE if no task was pending on the message queue

OS_ERR_OBJ_PTR_NULL if p_q is a NULL pointer.

OS_ERR_OBJ_TYPE if p_q is not pointing to a message queue.

OS_ERR_OPT_INVALID if an invalid option is specified.

Returned Value

OSQPendAbort() returns the number of tasks made ready to run by this function. Zero

indicates that no tasks were pending on the message queue, therefore this function had

no effect.

Notes/Warnings

1. Queues must be created before they are used.

Example

OS_Q  CommQ;

void CommTask(void *p_arg)

{

    OS_ERR      err;

    OS_OBJ_QTY  nbr_tasks;

    (void)&p_arg;

    while (DEF_ON) {

        :

        :

        nbr_tasks = OSQPendAbort(&CommQ,

                                 OS_OPT_PEND_ABORT_ALL,

                                 &err);

        /* Check �err� */

        :

        :

    }

}



448

Appendix A

OSQPost()

void  OSQPost (OS_Q        *p_q,

               void        *p_void,

               OS_MSG_SIZE  msg_size,

               OS_OPT       opt,

               OS_ERR      *p_err)

OSQPost() sends a message to a task through a message queue. A message is a

pointer-sized variable, and its use is application specific. If the message queue is full, an

error code is returned to the caller. In this case, OSQPost() immediately returns to its caller,

and the message is not placed in the message queue.

If any task is waiting for a message to be posted to the message queue, the highest-priority

task receives the message. If the task waiting for the message has a higher priority than the

task sending the message, the higher-priority task resumes, and the task sending the

message is suspended; that is, a context switch occurs. Message queues can be first-in

first-out (OS_OPT_POST_FIFO), or last-in-first-out (OS_OPT_POST_LIFO) depending of the

value specified in the opt argument.

If any task is waiting for a message at the message queue, OSQPost() allows the user to

either post the message to the highest-priority task waiting at the queue (opt set to

OS_OPT_POST_FIFO or OS_OPT_POST_LIFO), or to all tasks waiting at the message queue

(opt is set to OS_OPT_POST_ALL). In either case, scheduling occurs unless opt is also set to

OS_OPT_POST_NO_SCHED.

Arguments

p_q is a pointer to the message queue being posted to.

p_void is the actual message posted. p_void is a pointer-sized variable. Its meaning is

application specific.

msg_size specifies the size of the message (in number of bytes).

File Called from Code enabled by

OS_Q.C Task or ISR OS_CFG_Q_EN
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opt determines the type of POST performed. The last two options may be added

to either OS_OPT_POST_FIFO or OS_OPT_POST_LIFO to create different

combinations:

OS_OPT_POST_FIFO POST message to the end of the queue

(FIFO), or send message to a single waiting

task.

OS_OPT_POST_LIFO POST message to the front of the queue

(LIFO), or send message to a single waiting

task

OS_OPT_POST_ALL POST message to ALL tasks that are waiting on

the queue. This option can be added to either

OS_OPT_POST_FIFO or OS_OPT_POST_LIFO.

OS_OPT_POST_NO_SCHED Do not call the scheduler after the post and

therefore the caller is resumed, even if the

message was posted to a message queue with

tasks having a higher priority than the caller.

Use this option if the task (or ISR) calling

OSQPost() will do additional posts, the user

does not want to reschedule until finished,

and, multiple posts are to take effect

simultaneously.

p_err is a pointer to a variable that will contain an error code returned by this

function.

OS_ERR_NONE if no tasks were waiting on the queue. In this

case, the return value is also 0.

OS_ERR_MSG_POOL_EMPTY if there are no more OS_MSG structures to use

to store the message.

OS_ERR_OBJ_PTR_NULL if p_q is a NULL pointer.

OS_ERR_OBJ_TYPE if p_q is not pointing to a message queue.

OS_ERR_Q_MAX if the queue is full and therefore cannot

accept more messages.

Returned Value

None
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Notes/Warnings

1. Queues must be created before they are used.

2. Possible combinations of options are:

OS_OPT_POST_FIFO

OS_OPT_POST_LIFO

OS_OPT_POST_FIFO + OS_OPT_POST_ALL

OS_OPT_POST_LIFO + OS_OPT_POST_ALL

OS_OPT_POST_FIFO + OS_OPT_POST_NO_SCHED

OS_OPT_POST_LIFO + OS_OPT_POST_NO_SCHED

OS_OPT_POST_FIFO + OS_OPT_POST_ALL + OS_OPT_POST_NO_SCHED

OS_OPT_POST_LIFO + OS_OPT_POST_ALL + OS_OPT_POST_NO_SCHED

3. Although the example below shows calling OSQPost() from a task, it can also be called

from an ISR.

Example

OS_Q         CommQ;

CPU_INT08U   CommRxBuf[100];

void CommTaskRx (void *p_arg)

{

    OS_ERR  err;

    (void)&p_arg;

    while (DEF_ON) {

        :

        :

        OSQPost(&CommQ,

                &CommRxBuf[0],

                sizeof(CommRxBuf),

                OS_OPT_POST_OPT_FIFO + OS_OPT_POST_ALL + OS_OPT_POST_NO_SCHED,

                &err);

        /* Check �err� */

        :

        :

    }

}
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OSSafetyCriticalStart()

void OSSafetyCriticalStart (void)

OSSafetyCriticalStart() allows your code to notify μC/OS-III that you are done

initializing and creating all kernel objects. After calling OSSafetyCriticalStart(), your

application code will no longer be allowed to create kernel objects.

Arguments

None

Returned Value

None

Notes/Warnings

None

Example

File Called from Code enabled by

OS_CORE.C Task OS_SAFETY_CRITICAL_IEC61508

void AppStartTask (void *p_arg)

{

    (void)&p_arg;

    /* Create tasks and other kernel objects                   */

    OSSafetyCriticalStart();    

    /* Your code is no longer allowed to create kernel objects */

    while (DEF_ON) {

        :

        :

    }

}
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OSSched()

void OSSched (void)

OSSched() allows a task to call the scheduler. Use this function if creating a series of “posts”

and specifing OS_OPT_POST_NO_SCHED as a post option.

OSSched() can only be called by task-level code. Also, if the scheduler is locked (i.e.,

OSSchedLock() was previously called), then OSSched() will have no effect.

If a higher-priority task than the calling task is ready to run, OSSched() will context switch

to that task.

Arguments

None

Returned Value

None

Notes/Warnings

None

File Called from Code enabled by

OS_CORE.C Task N/A
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Example

void TaskX (void *p_arg)

{

    (void)&p_arg;

    while (DEF_ON) {

        :

        OS??Post(�);         /* Posts with OS_OPT_POST_NO_SCHED option         */

        /* Check �err� */

        OS??Post(�);    

        /* Check �err� */

        OS??Post(�);

        /* Check �err� */

        :

        OSSched();           /* Run the scheduler                              */

        :

    }

}
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OSSchedLock()

void OSSchedLock (OS_ERR  *p_err)

OSSchedLock() prevents task rescheduling until its counterpart, OSSchedUnlock(), is called.

The task that calls OSSchedLock() retains control of the CPU, even though other higher-

priority tasks are ready to run. However, interrupts are still recognized and serviced (assuming

interrupts are enabled). OSSchedLock() and OSSchedUnlock() must be used in pairs.

μC/OS-III allows OSSchedLock() to be nested up to 250 levels deep. Scheduling is enabled

when an equal number of OSSchedUnlock() calls have been made.

Arguments

p_err is a pointer to a variable that will contain an error code returned by this

function.

OS_ERR_NONE the scheduler is locked.

OS_ERR_LOCK_NESTING_OVF if the user called this function too many

times.

OS_ERR_OS_NOT_RUNNING if the function is called before calling

OSStart().

Returned Value

None

Notes/Warnings

1. After calling OSSchedLock(), the application must not make system calls that suspend

execution of the current task; that is, the application cannot call OSTimeDly(),

OSTimeDlyHMSM(), OSFlagPend(), OSSemPend(), OSMutexPend(), or OSQPend(). Since the

scheduler is locked out, no other task is allowed to run, and the system will lock up.

File Called from Code enabled by

OS_CORE.C Task or ISR N/A
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Example

void TaskX (void *p_arg)

{

    OS_ERR  err;

    (void)&p_arg;

    while (DEF_ON) {

        :

        OSSchedLock(&err);     /* Prevent other tasks to run         */

        /* Check �err� */

        :                      /* Code protected from context switch */

        OSSchedUnlock(&err);   /* Enable other tasks to run          */

        /* Check �err� */

        :

    }

}
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OSSchedRoundRobinCfg()

void  OSSchedRoundRobinCfg (CPU_BOOLEAN  en,

                            OS_TICK      dflt_time_quanta,

                            OS_ERR      *p_err)

OSSchedRoundRobinCfg() is used to enable or disable round-robin scheduling.

Arguments

en when set to DEF_ENABLED enables round-robin scheduling, and

when set to DEF_DISABLED disables it.

dflt_time_quanta is the default time quanta given to a task. This value is used when

a task was created and specified a value of 0 for the time quanta.

In other words, if the user did not specify a non-zero for the task’s

time quanta, this is the value that will be used. If passing 0 for this

argument, μC/OS-III will assume a time quanta of 1/10 the tick

rate. For example, if the tick rate is 1000 Hz and 0 for

dflt_time_quanta is specified, μC/OS-III will set the time quanta

to 10 milliseconds.

p_err is a pointer to a variable that is used to hold an error code:

OS_ERR_NONE if the call is successful.

Returned Value

None

Notes/Warnings

None

File Called from Code enabled by

OS_CORE.C Task or startup code OS_CFG_SCHED_ROUND_ROBIN_EN
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Example

void main (void)

{

    OS_ERR  err;

    :

    OSInit(&err);                 /* Initialize μC/OS-III             */
    :  

    :

    OSSchedRoundRobinCfg(DEF_ENABLED,

                        10,

                        &err);    

    /* Check �err� */

    :

    :

    OSStart(&err);                /* Start Multitasking              */

}
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OSSchedRoundRobinYield()

void  OSSchedRoundRobinYield (OS_ERR  *p_err);

OSSchedRoundRobinYield() is used to voluntarily give up a task’s time slot, assuming that

there are other tasks running at the same priority.

Arguments

p_err is a pointer to a variable used to hold an error code:

OS_ERR_NONE if the call was successful.

OS_ERR_ROUND_ROBIN_1 if there is only one task at the current priority

level that is ready to run.

OS_ERR_ROUND_ROBIN_DISABLEDif round-robin scheduling has not been

enabled. See OSSchedRoundRobinCfg() to

enable or disable.

OS_ERR_SCHED_LOCKED if the scheduler is locked and μC/OS-III

cannot switch tasks.

OS_ERR_YIELD_ISR if calling this function from an ISR.

Returned Value

None

Notes/Warnings

None

File Called from Code enabled by

OS_CORE.C Task OS_CFG_SCHED_ROUND_ROBIN_EN
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Example

void Task (void *p_arg)

{

    OS_ERR  err;

    (void)&p_arg;

    while (DEF_ON) {

        :

        :

        OSSchedRoundRobinYield(&err); /* Give up the CPU to the next task at same priority */

        /* Check �err� */

        :

        :

    }

}
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OSSchedUnlock()

void OSSchedUnlock(OS_ERR  *p_err);

OSSchedUnlock() re-enables task scheduling whenever it is paired with OSSchedLock().

Arguments

p_err is a pointer to a variable that will contain an error code returned by this

function.

OS_ERR_NONE the call is successful and the scheduler is no

longer locked.

OS_ERR_OS_NOT_RUNNING if calling this function before calling

OSStart().

OS_ERR_SCHED_LOCKED if the scheduler is still locked. This would

indicate that scheduler lock has not fully

unnested

OS_ERR_SCHED_NOT_LOCKED if the user did not call OSSchedLock().

Returned Value

None

Notes/Warnings

None

File Called from Code enabled by

OS_CORE.C Task or ISR N/A
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Example

void TaskX (void *p_arg)

{

    OS_ERR  err;

    (void)&p_arg;

    while (DEF_ON) {

        :

        OSSchedLock(&err);     /* Prevent other tasks to run         */

        /* Check �err� */

        :                      /* Code protected from context switch */

        OSSchedUnlock(&err);   /* Enable other tasks to run          */

        /* Check �err� */

        :

    }

}
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OSSemCreate()

void  OSSemCreate (OS_SEM      *p_sem,

                   CPU_CHAR    *p_name,

                   OS_SEM_CTR   cnt,

                   OS_ERR      *p_err)

OSSemCreate() initializes a semaphore. Semaphores are used when a task wants exclusive

access to a resource, needs to synchronize its activities with an ISR or a task, or is waiting

until an event occurs. Use a semaphore to signal the occurrence of an event to one or

multiple tasks, and use mutexes to guard share resources. However, technically, semaphores

allow for both.

Arguments

p_sem is a pointer to the semaphore control block. It is assumed that storage for the

semaphore will be allocated in the application. In other words, declare a

“global” variable as follows, and pass a pointer to this variable to

OSSemCreate():

OS_SEM MySem;

p_name is a pointer to an ASCII string used to assign a name to the semaphore. The

name can be displayed by debuggers or μC/Probe.

cnt specifies the initial value of the semaphore.

If the semaphore is used for resource sharing, set the initial value of the

semaphore to the number of identical resources guarded by the semaphore. If

there is only one resource, the value should be set to 1 (this is called a binary

semaphore). For multiple resources, set the value to the number of resources

(this is called a counting semaphore).

If using a semaphore as a signaling mechanism, set the initial value to 0.

File Called from Code enabled by

OS_SEM.C Task or startup code OS_CFG_SEM_EN
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p_err is a pointer to a variable used to hold an error code:

OS_ERR_NONE if the call is successful and the semaphore has

been created.

OS_ERR_CREATE_ISR if calling this function from an ISR.

OS_ERR_NAME if p_name is a NULL pointer.

OS_ERR_OBJ_CREATED if the semaphore is already created.

OS_ERR_OBJ_PTR_NULL if p_q is a NULL pointer.

OS_ERR_OBJ_TYPE if p_sem has been initialized to a different

object type.

Returned Value

None

Notes/Warnings

Semaphores must be created before they are used.

Example

OS_SEM  SwSem;

void main (void)

{

    OS_ERR  err;

    :

    OSInit(&err);                 /* Initialize μC/OS-III             */
    :  

    :

    OSSemCreate(&SwSem,           /* Create Switch Semaphore          */

                �Switch Semaphore�,

                0,

                &err);

    /* Check �err� */

    :

    :

    OSStart(&err);                /* Start Multitasking              */

}
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OSSemDel()

void  OSSemDel (OS_SEM  *p_sem,

                OS_OPT   opt,

                OS_ERR  *p_err)

OSSemDel() is used to delete a semaphore. This function should be used with care as

multiple tasks may rely on the presence of the semaphore. Generally speaking, before

deleting a semaphore, first delete all the tasks that access the semaphore. As a rule, it is

highly recommended to not delete kernel objects at run time.

Deleting the semaphore will not de-allocate the object. In other words, storage for the

variable will still remain at the same location unless the semaphore is allocated dynamically

from the heap. The dynamic allocation of objects has its own set of problems. Specifically, it

is not recommended for embedded systems to allocate (and de-allocate) objects from the

heap given the high likelihood of fragmentation.

Arguments

p_sem is a pointer to the semaphore.

opt specifies one of two options: OS_OPT_DEL_NO_PEND or OS_OPT_DEL_ALWAYS.

OS_OPT_DEL_NO_PEND specifies to delete the semaphore only if no task is

waiting on the semaphore. Because no task is “currently” waiting on the

semaphore does not mean that a task will not attempt to wait for the

semaphore later. How would such a task handle the situation waiting for a

semaphore that was deleted? The application code will have to deal with this

eventuality.

OS_OPT_DEL_ALWAYS specifies deleting the semaphore, regardless of whether

tasks are waiting on the semaphore or not. If there are tasks waiting on the

semaphore, these tasks will be made ready to run and informed (through an

appropriate error code) that the reason the task is readied is that the

File Called from Code enabled by

OS_SEM.C Task OS_CFG_SEM_EN and 

OS_CFG_SEM_DEL_EN
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semaphore it was waiting on was deleted. The same reasoning applies with the

other option, how will the tasks handle the fact that the semaphore they want

to wait for is no longer available?

p_err is a pointer to a variable used to hold an error code. The error code may be

one of the following:

OS_ERR_NONE if the call is successful and the semaphore has

been deleted.

OS_ERR_DEL_ISR if attempting to delete the semaphore from an

ISR.

OS_ERR_OBJ_PTR_NULL if p_sem is a NULL pointer.

OS_ERR_OBJ_TYPE if p_sem is not pointing to a semaphore.

OS_ERR_OPT_INVALID if one of the two options mentioned in the

opt argument is not specified.

OS_ERR_TASK_WAITING if one or more tasks are waiting on the

semaphore.

Returned Value

None

Notes/Warnings

Use this call with care because other tasks might expect the presence of the semaphore.
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Example

OS_SEM  SwSem;

void Task (void *p_arg)

{

    OS_ERR  err;

    (void)&p_arg;

    while (DEF_ON) {

        :

        :

        OSSemDel(&SwSem,

                 OS_OPT_DEL_ALWAYS,

                 &err);

        /* Check �err� */

        :

        :

    }

}
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OSSemPend()

OS_SEM_CTR  OSSemPend (OS_SEM     *p_sem,

                       OS_TICK     timeout,

                       OS_OPT      opt,

                       CPU_TS     *p_ts,

                       OS_ERR     *p_err)

OSSemPend() is used when a task wants exclusive access to a resource, needs to

synchronize its activities with an ISR or task, or is waiting until an event occurs.

When the semaphore is used for resource sharing, if a task calls OSSemPend() and the value

of the semaphore is greater than 0, OSSemPend() decrements the semaphore and returns to

its caller. However, if the value of the semaphore is 0, OSSemPend() places the calling task

in the waiting list for the semaphore. The task waits until the owner of the semaphore

(which is always a task in this case) releases the semaphore by calling OSSemPost(), or the

specified timeout expires. If the semaphore is signaled before the timeout expires, μC/OS-III

resumes the highest-priority task waiting for the semaphore.

When the semaphore is used as a signaling mechanism, the calling task waits until a task or

an ISR signals the semaphore by calling OSSemPost(), or the specified timeout expires. If

the semaphore is signaled before the timeout expires, μC/OS-III resumes the

highest-priority task waiting for the semaphore.

A pended task that has been suspended with OSTaskSuspend() can obtain the semaphore.

However, the task remains suspended until it is resumed by calling OSTaskResume().

OSSemPend() also returns if the pend is aborted or, the semaphore is deleted.

Arguments

p_sem is a pointer to the semaphore.

File Called from Code enabled by

OS_SEM.C Task only OS_CFG_SEM_EN
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timeout allows the task to resume execution if a semaphore is not posted within the

specified number of clock ticks. A timeout value of 0 indicates that the task

waits forever for the semaphore. The timeout value is not synchronized with

the clock tick. The timeout count begins decrementing on the next clock tick,

which could potentially occur immediately.

opt specifies whether the call is to block if the semaphore is not available, or not block.

OS_OPT_PEND_BLOCKING to block the caller until the semaphore is

available or a timeout occurs.

OS_OPT_PEND_NON_BLOCKING if the semaphore is not available, OSSemPend()

will not block but return to the caller with an

appropriate error code.

p_ts is a pointer to a variable that will receive a timestamp of when the semaphore was

posted, pend aborted, or deleted. Passing a NULL pointer is valid and indicates

that a timestamp is not required.

A timestamp is useful when the task must know when the semaphore was

posted or, how long it took for the task to resume after the semaphore was

posted. In the latter case, call CPU_BOOLEAN() and compute the difference

between the current value of the timestamp and *p_ts. In other words:

delta = OS_TS_GET() - *p_ts;

p_err is a pointer to a variable used to hold an error code:

OS_ERR_NONE if the semaphore is available.

OS_ERR_OBJ_DEL if the semaphore was deleted.

OS_ERR_OBJ_PTR_NULL if p_sem is a NULL pointer.

OS_ERR_OBJ_TYPE if p_sem is not pointing to a semaphore.

OS_ERR_PEND_ABORT if the pend was aborted

OS_ERR_PEND_ISR if this function is called from an ISR.

OS_ERR_PEND_WOULD_BLOCK if this function is called as specified

OS_OPT_PEND_NON_BLOCKING, and the semaphore

was not available.

OS_ERR_SCHED_LOCKED if calling this function when the scheduler is

locked.
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OS_ERR_TIMEOUT if the semaphore is not signaled within the

specified timeout.

Returned Value

The new value of the semaphore count.

Notes/Warnings

1. Semaphores must be created before they are used.

Example

OS_SEM  SwSem;

void DispTask (void *p_arg)

{

    OS_ERR   err;

    CPU_TS   ts;

    (void)&p_arg;

    while (DEF_ON) {

        :

        :

        OSSemPend(&SwSem,

                  0,

                  OS_OPT_PEND_BLOCKING,

                  &ts,

                  &err);

        /* Check �err� */

    }

}
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OSSemPendAbort()

OS_OBJ_QTY  OSSemPendAbort (OS_SEM  *p_sem,

                            OS_OPT   opt,

                            OS_ERR  *p_err)

OSSemPendAbort() aborts and readies any task currently waiting on a semaphore. This

function should be used to fault-abort the wait on the semaphore, rather than to normally

signal the semaphore via OSSemPost().

Arguments

p_sem is a pointer to the semaphore for which pend(s) need to be aborted.

opt determines the type of abort performed.

OS_OPT_PEND_ABORT_1 Aborts the pend of only the highest-priority

task waiting on the semaphore.

OS_OPT_PEND_ABORT_ALL Aborts the pend of all the tasks waiting on

the semaphore.

OS_OPT_POST_NO_SCHED Specifies that the scheduler should not be

called, even if the pend of a higher-priority

task has been aborted. Scheduling will need

to occur from another function.

Use this option if the task calling

OSSemPendAbort() will be doing additional

pend aborts, reschedule takes place when

finished, and multiple pend aborts are to take

effect simultaneously.

p_err Is a pointer to a variable that holds an error

code. OSSemPendAbort() sets *p_err to one

of the following:

File Called from Code enabled by

OS_SEM.C Task only OS_CFG_SEM_EN and 

OS_CFG_SEM_PEND_ABORT_EN
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OS_ERR_NONE At least one task waiting on the semaphore

was readied and informed of the aborted

wait. Check the return value for the number

of tasks whose wait on the semaphore was

aborted.

OS_ERR_OBJ_PTR_NULL if p_sem is a NULL pointer.

OS_ERR_OBJ_TYPE if p_sem is not pointing to a semaphore.

OS_ERR_OPT_INVALID if an invalid option is specified.

OS_ERR_PEND_ABORT_ISR This function is called from an ISR.

OS_ERR_PEND_ABORT_NONE No task was aborted because no task was

waiting.

Returned Value

OSSemPendAbort() returns the number of tasks made ready to run by this function. Zero

indicates that no tasks were pending on the semaphore and therefore, the function had

no effect.

Notes/Warnings

Semaphores must be created before they are used.

Example

OS_SEM  SwSem;

void CommTask(void *p_arg)

{

    OS_ERR      err;

    OS_OBJ_QTY  nbr_tasks;

    (void)&p_arg;

    while (DEF_ON) {

        :

        :

        nbr_tasks = OSSemPendAbort(&SwSem,

                                   OS_OPT_PEND_ABORT_ALL,

                                   &err);

        /* Check �err� */

        :

        :

    }

}
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OSSemPost()

OS_SEM_CTR  OSSemPost (OS_SEM  *p_sem,

                       OS_OPT   opt,

                       OS_ERR  *p_err)

A semaphore is signaled by calling OSSemPost(). If the semaphore value is 0 or more, it is

incremented, and OSSemPost() returns to its caller. If tasks are waiting for the semaphore

to be signaled, OSSemPost() removes the highest-priority task pending for the semaphore

from the waiting list and makes this task ready to run. The scheduler is then called to

determine if the awakened task is now the highest-priority task that is ready to run.

Arguments

p_sem is a pointer to the semaphore.

opt determines the type of post performed.

OS_OPT_POST_1 Post and ready only the highest-priority task

waiting on the semaphore.

OS_OPT_POST_ALL Post to all tasks waiting on the semaphore.

ONLY use this option if the semaphore is

used as a signaling mechanism and NEVER

when the semaphore is used to guard a

shared resource. It does not make sense to

tell all tasks that are sharing a resource that

they can all access the resource.

OS_OPT_POST_NO_SCHED This option indicates that the caller does not

want the scheduler to be called after the post.

This option can be used in combination with

ONE of the two previous options.

File Called from Code enabled by

OS_SEM.C Task or ISR OS_CFG_SEM_EN
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Use this option if the task (or ISR) calling

OSSemPost() will be doing additional, the

user does not want to reschedule until all

done, and multiple posts are to take effect

simultaneously.

p_err is a pointer to a variable that holds an error code:

OS_ERR_NONE if no tasks are waiting on the semaphore. In

this case, the return value is also 0.

OS_ERR_OBJ_PTR_NULL if p_sem is a NULL pointer.

OS_ERR_OBJ_TYPE if p_sem is not pointing to a semaphore.

OS_ERR_SEM_OVF if the post would have caused the semaphore

counter to overflow.

Returned Value

The current value of the semaphore count

Notes/Warnings

1. Semaphores must be created before they are used.

2. You can also post to a semaphore from an ISR but the semaphore must be used as a

signaling mechanism and not to protect a shared resource.



474

Appendix A

Example

OS_SEM  SwSem;

void TaskX (void *p_arg)

{

    OS_ERR       err;

    OS_SEM_CTR   ctr;

    (void)&p_arg;

    while (DEF_ON) {

        :

        :

        ctr = OSSemPost(&SwSem,

                        OS_OPT_POST_1 + OS_OPT_POST_NO_SCHED,

                        &err);

        /* Check �err� */

        :

        :

    }

}
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OSSemSet()

void  OSSemSet (OS_SEM      *p_sem,

                OS_SEM_CTR   cnt,

                OS_ERR      *p_err)

OSSemSet() is used to change the current value of the semaphore count. This function is

normally selected when a semaphore is used as a signaling mechanism. OSSemSet() can

then be used to reset the count to any value. If the semaphore count is already 0, the count

is only changed if there are no tasks waiting on the semaphore.

Arguments

p_sem is a pointer to the semaphore that is used as a signaling mechanism.

cnt is the desired count that the semaphore should be set to.

p_err is a pointer to a variable used to hold an error code:

OS_ERR_NONE if the count was changed or, not changed,

because one or more tasks was waiting on

the semaphore.

OS_ERR_OBJ_PTR_NULL if p_sem is a NULL pointer.

OS_ERR_OBJ_TYPE if p_sem is not pointing to a semaphore.

OS_ERR_SET_ISR if this function was called from an ISR.

OS_ERR_TASK_WAITING if tasks are waiting on the semaphore.

Returned Value

None

Notes/Warnings

Do not use this function if the semaphore is used to protect a shared resource.

File Called from Code enabled by

OS_SEM.C Task OS_CFG_SEM_EN and 

OS_CFG_SEM_SET_EN
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Example

OS_SEM  SwSem;

void Task (void *p_arg)

{

    OS_ERR  err;

    (void)&p_arg;

    while (DEF_ON) {

        OSSemSet(&SwSem,      /* Reset the semaphore count */

                 0,

                 &err);

        /* Check �err� */

        :

        :

    }

}
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OSStart()

void  OSStart (OS_ERR  *p_err)

OSStart() starts multitasking under μC/OS-III. This function is typically called from startup

code after calling OSInit(). OSStart() will not return to the caller. Once μC/OS-III is

running, calling OSStart() again will have no effect.

Arguments

p_err is a pointer to a variable used to hold an error code:

OS_ERR_FATAL_RETURN if we ever return to this function.

OS_ERR_OS_RUNNING if the kernel is already running. In other

words, if this function has already been

called.

Returned Value

None

Notes/Warnings

OSInit() must be called prior to calling OSStart(). OSStart() should only be called once

by the application code. However, if calling OSStart() more than once, nothing happens

on the second and subsequent calls.

File Called from Code enabled by

OS_CORE.C Startup code only N/A
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Example

void main (void)

{

    OS_ERR  err;

    

                                       /* User Code            */

    :

    OSInit(&err);                      /* Initialize μC/OS-III */
    /* Check �err� */

    :                                  /* User Code            */

    :

    OSStart(&err);                     /* Start Multitasking   */

    /* Any code here should NEVER be executed! */

}
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OSStartHighRdy()

void  OSStartHighRdy (void)

OSStartHighRdy() is responsible for starting the highest-priority task that was created prior

to calling OSStart(). 

Arguments

None

Returned Values

None

Notes/Warnings

None

Example

The pseudocode for OSStartHighRdy() is shown below.

(1) OSStartHighRdy() must call OSTaskSwHook().

When called, OSTCBCurPtr and OSTCBHighRdyPtr both point to the OS_TCB of

the highest-priority task created.

OSTaskSwHook() should check that OSTCBCurPtr is not equal to

OSTCBHighRdyPtr as this is the first time OSTaskSwHook() is called and there

is not a task that is switched out.

File Called from Code enabled by

OS_CPU_A.ASM OSStart() N/A

void  OSStartHighRdy (void)

{

    OSTaskSwHook();                              (1)

    SP = OSTCBHighRdyPtr->StkPtr;                (2)

    Pop CPU registers off the task�s stack;      (3)

    Return from interrupt;                       (4)

}
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(2) Load the CPU stack pointer register with the top-of-stack (TOS) of the task

being started. The TOS is found in the .StkPtr field of the OS_TCB. For

convenience, the .StkPtr field is the very first field of the OS_TCB data

structure. This makes it easily accessible from assembly language.

(3) Pop the registers from the task’s stack frame. Recall that the registers should

have been placed on the stack frame in the same order as if they were pushed

at the beginning of an interrupt service routine.

(4) Perform a return from interrupt, which starts the task as if it was resumed when

returning from a real interrupt.
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OSStatReset()

void OSStatReset (OS_ERR *p_err)

OSStatReset() is used to reset statistical variables maintained by μC/OS-III. Specifically,

the per-task maximum interrupt disable time, maximum scheduler lock time, maximum

amount of time a message takes to reach a task queue, the maximum amount of time it

takes a signal to reach a task and more.

Arguments

p_err is a pointer to a variable used to hold an error code:

OS_ERR_NONE the call was successful.

OS_ERR_STAT_RESET_ISR if the call was attempted from an ISR.

Returned Value

None

Notes/Warnings

None

Example

File Called from Code enabled by

OS_STAT.C Task Level Only OS_CFG_STAT_TASK_EN

void TaskX (void *p_arg)

{

    OS_ERR   err;

    (void)&p_arg;

    while (DEF_ON) {

        :

        :

        OSStatReset(&err);

        /* Check �err� */

        :

        :

    }

}
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OSStatTaskCPUUsageInit()

void  OSStatTaskCPUUsageInit (void)

OSStatTaskCPUUsageInit() determines the maximum value that a 32-bit counter can

reach when no other task is executing. This function must be called when only one task is

created in the application and when multitasking has started. This function must be called

from the first and only task created by the application.

Arguments

p_err is a pointer to a variable used to hold an error code:

OS_ERR_NONE Always returns this value.

Returned Value

None

Notes/Warnings

None

Example

File Called from Code enabled by

OS_STAT.C Startup code only OS_CFG_TASK_STAT_EN

void FirstAndOnlyTask (void *p_arg)

{

    :

    :

#if OS_CFG_TASK_STAT_EN > 0

    OSStatTaskCPUUsageInit(); /* Compute CPU capacity with no task running */

#endif

    :

    OSTaskCreate(_);          /* Create the other tasks                    */

    OSTaskCreate(_);

    :

    while (DEF_ON) {

        :

        :

    }

}
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OSStatTaskHook()

void OSStatTaskHook (void);

OSStatTaskHook() is a function called by μC/OS-III’s statistic task, OSStatTask().

OSStatTaskHook() is generally implemented by the port implementer for the processor

used. This hook allows the port to perform additional statistics for the processor used.

Arguments

None

Returned Values

None

Notes/Warnings

None

Example

The code below calls an application-specific hook that an application programmer can

define. For this, the user can simply set the value of OS_AppStatTaskHookPtr to point to

the desired hook function (see App_OS_SetAllHooks() in OS_APP_HOOKS.C). 

In the example below, OSStatTaskHook() calls App_OS_StatTaskHook() if the pointer

OS_AppStatTaskHookPtr is set to that function.

File Called from Code enabled by

OS_CPU_C.C OSStatTask() Always enabled
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void  App_OS_StatTaskHook (void)                          /* OS_APP_HOOKS.C        */

{

    /* Your code goes here! */

}

void App_OS_SetAllHooks (void)                            /* OS_APP_HOOKS.C        */

{

    CPU_SR_ALLOC();

    CPU_CRITICAL_ENTER();

    :

    OS_AppStatTaskHookPtr = App_OS_StatTaskHook;

    :

    CPU_CRITICAL_EXIT();

}

void  OSStatTaskHook (void)                                /* OS_CPU_C.C            */

{

#if OS_CFG_APP_HOOKS_EN > 0u

    if (OS_AppStatTaskHookPtr != (OS_APP_HOOK_VOID)0) {   /* Call application hook */

        (*OS_AppStatTaskHookPtr)();

    }

#endif

}
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OSTaskChangePrio()

void  OSTaskChangePrio (OS_TCB   *p_tcb,

                        OS_PRIO   prio_new,

                        OS_ERR   *p_err)

When you creating a task (see OSTaskCreate()), you also specify the priority of the task

being created. In most cases, it is not necessary to change the priority of the task at run time.

However, it is sometimes useful to do so, and OSTaskChangePrio() allows this to take place.

If the task is ready to run, OSTaskChangePrio() simply changes the position of the task in

μC/OS-III’s ready list. If the task is waiting on an event, OSTaskChangePrio() will change

the position of the task in the pend list of the corresponding object, so that the pend list

remains sorted by priority.

Because μC/OS-III supports multiple tasks at the same priority, there are no restrictions on

the priority that a task can have, except that task priority zero (0) is reserved by μC/OS-III,

and priority OS_PRIO_MAX-1 is used by the idle task.

Note that a task priority cannot be changed from an ISR.

Arguments

p_tcb is a pointer to the OS_TCB of the task for which the priority is being changed. If

passing a NULL pointer, the priority of the current task is changed.

prio_new is the new task’s priority. This value must never be set to OS_CFG_PRIO_MAX-1,

or higher and you must not use priority 0 since they are reserved for μC/OS-III.

p_err is a pointer to a variable that will receive an error code:

OS_ERR_NONE if the task’s priority is changed.

OS_ERR_TASK_CHANGE_PRIO_ISR if attempting to change the task’s priority

from an ISR.

File Called from Code enabled by

OS_TASK.C Task OS_CFG_TASK_CHANGE_PRIO_EN



486

Appendix A

OS_ERR_PRIO_INVALID if the priority of the task specified is invalid.

By specifying a priority greater than or equal

to OS_PRIO_MAX-1, or 0.

Returned Value

None

Notes/Warnings

None

Example

OS_TCB  MyTaskTCB;

void TaskX (void *p_arg)

{

    OS_ERR  err;

    while (DEF_ON) {

        :

        :

        OSTaskChangePrio(&MyTaskTCB,     /* Change the priority of �MyTask� to 10 */

                         10,           

                         &err);

        /* Check �err� */

        :

    }

}
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OSTaskCreate()

void  OSTaskCreate (OS_TCB        *p_tcb,

                    CPU_CHAR      *p_name,

                    OS_TASK_PTR    p_task,

                    void          *p_arg,

                    OS_PRIO        prio,

                    CPU_STK       *p_stk_base,

                    CPU_STK_SIZE   stk_limit,

                    CPU_STK_SIZE   stk_size,

                    OS_MSG_QTY     q_size,

                    OS_TICK        time_quanta,

                    void          *p_ext,

                    OS_OPT         opt,

                    OS_ERR        *p_err)

Tasks must be created in order for μC/OS-III to recognize them as tasks. Create a task by

calling OSTaskCreate() and provide arguments specifying to μC/OS-III how the task will

be managed. Tasks are always created in the ready-to-run state.

Tasks can be created either prior to the start of multitasking (i.e., before calling OSStart()),

or by a running task. A task cannot be created by an ISR. A task must either be written as an

infinite loop, or delete itself once completed. If the task code returns by mistake, μC/OS-III

will terminate the task by calling OSTaskDel((OS_TCB *)0, &err)). At Micrium, we like

the “while (DEF_ON)” to implement infinite loops because, by convention, we use a while

loop when we don’t know how many iterations a loop will do. This is the case of an infinite

loop. We use for loops when we know how many iterations a loop will do.

File Called from Code enabled by

OS_TASK.C Task or startup code N/A
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Task as an infinite loop:

Run to completion task:

void MyTask (void *p_arg)

{

    /* Local variables                                                 */

    /* Do something with 'p_arg'                                       */

    /* Task initialization                                             */

    while (DEF_ON) {      /* Task body, as an infinite loop.           */

        :

        :

        /* Must call one of the following services:                    */

        /*    OSFlagPend()                                             */

        /*    OSMutexPend()                                            */

        /*    OSQPend()                                                */

        /*    OSSemPend()                                              */

        /*    OSTimeDly()                                              */

        /*    OSTimeDlyHMSM()                                          */

        /*    OSTaskQPend()                                            */

        /*    OSTaskSemPend()                                          */

        /*    OSTaskSuspend()     (Suspend self)                       */

        /*    OSTaskDel()         (Delete  self)                       */

        :

        :

    }

}

void MyTask (void *p_arg)

{

    OS_ERR  err;

    /* Local variables                                                 */

    /* Do something with 'p_arg'                                       */

    /* Task initialization                                             */

    /* Task body (do some work)                                        */

    OSTaskDel((OS_TCB *)0, &err);

    /* Check �err�                                                     */

}
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Arguments

p_tcb is a pointer to the task’s OS_TCB to use. It is assumed that storage for the TCB of

the task will be allocated by the user code. Declare a “global” variable as

follows, and pass a pointer to this variable to OSTaskCreate():

OS_TCB MyTaskTCB;

p_name is a pointer to an ASCII string (NUL terminated) to assign a name to the task.

The name can be displayed by debuggers or by μC/Probe.

p_task is a pointer to the task (i.e., the name of the function).

p_arg is a pointer to an optional data area, which is used to pass parameters to the

task when it is created. When μC/OS-III runs the task for the first time, the task

will think that it was invoked, and passed the argument p_arg. For example,

create a generic task that handles an asynchronous serial port. p_arg can be

used to pass task information about the serial port it will manage: the port

address, baud rate, number of bits, parity, and more. p_arg is the argument

received by the task shown below.

prio is the task priority. The lower the number, the higher the priority (i.e., the

importance) of the task. If OS_CFG_ISR_POST_DEFERRED_EN is set to 1, the user

may not use priority 0. 

Task priority must also have a lower number than OS_CFG_PRIO_MAX-1.

Priorities 0, 1, OS_CFG_PRIO_MAX-2 and OS_CFG_PRIO_MAX-1 are reserved. In

other words, a task should have a priority between 2 and

OOS_CFG_PRIO_MAX-3, inclusively.

void MyTask (void *p_arg)

{

    while (DEF_ON) {

        Task code;

    }

}
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p_stk_base is a pointer to the task’s stack base address. The task’s stack is used to store

local variables, function parameters, return addresses, and possibly CPU

registers during an interrupt.

The task stack must be declared as follows:

CPU_STK MyTaskStk[xxx];

The user would then pass p_stk_base the address of the first element of this

array or, &MyTaskStk[0]. “xxx” represents the size of the stack.
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The size of this stack is determined by the task’s requirements and the

anticipated interrupt nesting (unless the processor has a separate stack just for

interrupts). Determining the size of the stack involves knowing how many

bytes are required for storage of local variables for the task itself and all nested

functions, as well as requirements for interrupts (accounting for nesting).

Note that you can allocate stack space for a task from the heap but, in this case,

never delete the task and free the stack space as this can cause the heap to

fragment, which is not desirable in embedded systems.

stk_limit is used to locate, within the task’s stack, a watermark limit that can  be used to

monitor and ensure that the stack does not overflow.

If the processor does not have hardware stack overflow detection, or this

feature is not implemented in software by the port developer, this value may be

used for other purposes. For example, some processors have two stacks, a

hardware and a software stack. The hardware stack typically keeps track of

function call nesting and the software stack is used to pass function arguments.

stk_limit may be used to set the size of the hardware stack as shown below.
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stk_size specifies the size of the task’s stack in number of elements. If CPU_STK is set to

CPU_INT08U (see OS_TYPE.H), stk_size corresponds to the number of bytes

available on the stack. If CPU_STK is set to CPU_INT16U, then stk_size

contains the number of 16-bit entries available on the stack. Finally, if CPU_STK

is set to CPU_INT32U, stk_size contains the number of 32-bit entries available

on the stack.

q_size A μC/OS-III task contains an optional internal message queue

(if OS_TASK_Q_EN > 0). This argument specifies the maximum number of

messages that the task can receive through this message queue. The user may

specify that the task is unable to receive messages by setting the argument to 0.

time_quanta the amount of time (in clock ticks) for the time quanta when

round robin is enabled. If you specify 0, then the default time

quanta will be used which is the tick rate divided by 10.

Stack
(RAM)

p_stk_base

CPU_STK

stk_size

Low Memory

High Memory

Hardware
Stack

Software
Stack

stk_limit
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p_ext is a pointer to a user-supplied memory location (typically a data structure) used

as a TCB extension. For example, the user memory can hold the contents of

floating-point registers during a context switch.

opt contains task-specific options. Each option consists of one bit. The option is

selected when the bit is set. The current version of μC/OS-III supports the

following options:

OS_OPT_TASK_NONE specifies that there are no options.

OS_OPT_TASK_STK_CHK specifies whether stack checking is allowed

for the task.

OS_OPT_TASK_STK_CLR specifies whether the stack needs to be

cleared.

OS_OPT_TASK_SAVE_FP specifies whether floating-point registers are

saved. This option is only valid if the

processor has floating-point hardware and the

processor-specific code saves the

floating-point registers.

p_err is a pointer to a variable that will receive an error code:

OS_ERR_NONE if the function is successful.

OS_ERR_NAME if p_name is a NULL pointer.

OS_ERR_PRIO_INVALID if prio is higher than the maximum value

allowed (i.e., > OS_PRIO_MAX-1). Also, if the

user set OS_CFG_ISR_POST_DEFERRED_EN to 1

and tried to use priority 0.

OS_ERR_STK_INVALID if specifying a NULL pointer for p_stk_base.

OS_ERR_STK_SIZE_INVALID if specifying a stack size smaller than what is

currently specified by OS_CFG_STK_SIZE_MIN

(see the OS_CFG.H).

OS_ERR_TASK_CREATE_ISR if attempting to create the task from an ISR.

OS_ERR_TASK_INVALID if specifying a NULL pointer for p_task

OS_ERR_TCB_INVALID if specifying a NULL pointer for p_tcb.
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Returned Value

None

Notes/Warnings

1. The stack must be declared with the CPU_STK type.

2. A task must always invoke one of the services provided by μC/OS-III to wait for time to expire,

suspend the task, or wait on an object (wait on a message queue, event flag, mutex, semaphore, a

signal or a message to be sent directly to the task). This allows other tasks to gain control of the CPU.

3. Do not use task priorities 0, 1, OS_PRIO_MAX-2 and OS_PRIO_MAX-1 because they are

reserved for use by μC/OS-III.

Example

OSTaskCreate() can be called from main() (in C), or a previously created task.
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(1) In order to create a task, allocate storage for a TCB and pass a pointer to this

TCB to OSTaskCreate().

(2) Assign an ASCII name to the task by passing a pointer to an ASCII string. The

ASCII string may be allocated in code space (i.e., ROM), or data space (i.e.,

RAM). In either case, it is assumed that the code can access that memory.

(3) Pass the address of the task to OSTaskCreate(). In C, the address of a function

is simply the name of the function.

OS_TCB  MyTaskTCB;                        /*  (1) Storage for task�s TCB                  */

CPU_STK MyTaskStk[200];

void  MyTask (void *p_arg)                /*  (3) The address of the task is its name     */

{

    while (DEF_ON) {

        /* Wait for an event */

        /* My task body      */

    }

}

void SomeCode (void)

{

    OS_ERR  err;

    :

    :

    OSTaskCreate (&MyTaskTCB,             /*  (1) Address of TCB assigned to the task      */

                  �My Task�,              /*  (2) Name you want to give the task           */

                  MyTask,                 /*  (3) Address of the task itself               */

                  (void *)0,              /*  (4) �p_arg� is not used                      */

                   12,                    /*  (5) Priority you want to assign to the task  */

                  &MyTaskStk[0],          /*  (6) Base address of task�s stack             */

                   10,                    /*  (7) Watermark limit for stack growth         */

                  200,                    /*  (8) Stack size in number of CPU_STK elements */

                    5,                    /*  (9) Size of task message queue               */

                   10,                    /* (10) Time quanta (in number of ticks)         */

                  (void *)0,              /* (11) Extension pointer is not used            */

                  OS_OPT_TASK_STK_CHK + OS_OPT_TASK_STK_CLR, /* (12) Options               */

                  &err);                                     /* (13) Error code            */

    /* Check �err�                                              (14)                       */

    :

    :

}
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(4) To provide additional data to MyTask(), simply pass a pointer to such data. In

this case, MyTask() did not need such data and therefore, a NULL pointer is

passed.

(5) The user must assign a priority to the task. The priority specifies the

importance of this task with respect to other tasks. A low-priority value

indicates a high priority. Priority 0 is the highest priority (reserved for an

internal task) and a priority up to OS_PRIO_MAX-2 can be specified (see

OS_CFG.H). Note that OS_PRIO_MAX-1 is also reserved for an internal task, the

idle task.

(6) The next argument specifies the “base address” of the task’s stack. In this case,

it is simply the base address of the array MyTaskStk[]. Note that it is possible

to simply specify the name of the array. I prefer to make it clear by writing

&MyTaskStk[0].

(7) Set the watermark limit for stack growth. If the processor port does not use this

field then either set this value to 0.

(8) μC/OS-III also needs to know the size of the stack for the task. This allows

μC/OS-III to perform stack checking at run time.

(9) μC/OS-III allows tasks or ISRs to send messages directly to a task. This

argument specifies how many such messages can be received by this task.

(10) This argument specifies how much time (in number of ticks) this task will run

on the CPU before μC/OS-III will force the CPU away from this task and run

the next task at the same priority (if there are more than one task at the same

priority that is ready to run).

(11) μC/OS-III allows the user to “extend” the capabilities of the TCB by allowing

passing a pointer to some memory location that could contain additional

information about the task. For example, there may be a CPU that supports

floating-point math and the user would likely need to save the floating-point

registers during a context switch. This pointer could point to the storage area

for these registers.
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(12) When creating a task, options must be specified. Specifically, such options as,

whether the stack of the task will be cleared (i.e., filled with 0x00) when the

task is created (OS_OPT_TASK_STK_CLR), whether μC/OS-III will be allowed to

check for stack usage (OS_OPT_TASK_STK_CHK), whether the CPU supports

floating-point math, and whether the task will make use of the floating-point

registers and therefore need to save and restore them during a context switch

(OS_OPT_TASK_SAVE_FP). The options are additive.

(13) Most of μC/OS-III’s services return an error code indicating the outcome of the

call. The error code is always returned as a pointer to a variable of type

OS_ERR. The user must allocate storage for this variable prior to calling

OSTaskCreate(). By the way, a pointer to an error variable is always the last

argument, which makes it easy to remember.

(14) It is highly recommended that the user examine the error code whenever

calling a μC/OS-III function. If the call is successful, the error code will always

be OS_ERR_NONE. If the call is not successful, the returned code will indicate

the reason for the failure (see OS_ERR_??? in OS.H).
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OSTaskCreateHook()

void  OSTaskCreateHook (OS_TCB  *p_tcb)
;

This function is called by OSTaskCreate() just before adding the task to the ready list.

When OSTaskCreateHook() is called, all of the OS_TCB fields are assumed to be initialized.

OSTaskCreateHook() is called after initializing the OS_TCB fields and setting up the stack

frame for the task, before the task is placed in the ready list.

OSTaskCreateHook() is part of the CPU port code and this function must not be called by

the application code. OSTaskCreateHook() is actually used by the μC/OS-III port

developer.

Use this hook to initialize and store the contents of floating-point registers, MMU registers,

or anything else that can be associated with a task. Typically, store this additional

information in memory allocated by the application.

Arguments

p_tcb is a pointer to the TCB of the task being created. Note that the OS_TCB has

been validated by OSTaskCreate() and is guaranteed to not be a NULL pointer

when OSTaskCreateHook() is called.

Returned Value

None

Notes/Warnings

Do not call this function from the application.

Example

The code below calls an application-specific hook that the application programmer can

define. The user can simply set the value of OS_AppTaskCreateHookPtr to point to the

desired hook function as shown in the example. OSTaskCreate() calls

File Called from Code enabled by

OS_CPU_C.C OSTaskCreate() ONLY N/A
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OSTaskCreateHook() which in turns calls App_OS_TaskCreateHook() through

OS_AppTaskCreateHookPtr. As can be seen, when called, the application hook is passed

the address of the OS_TCB of the newly created task. 

void  App_OS_TaskCreateHook (OS_TCB *p_tcb)               /* OS_APP_HOOKS.C         */

{

    /* Your code goes here! */

}

void App_OS_SetAllHooks (void)                            /* OS_APP_HOOKS.C         */

{

    CPU_SR_ALLOC();

    CPU_CRITICAL_ENTER();

    :

    OS_AppTaskCreateHookPtr = App_OS_TaskCreateHook;

    :

    CPU_CRITICAL_EXIT();

}

void  OSTaskCreateHook (OS_TCB *p_tcb)                      /* OS_CPU_C.C            */

{

#if OS_CFG_APP_HOOKS_EN > 0u

    if (OS_AppTaskCreateHookPtr != (OS_APP_HOOK_TCB)0) {   /* Call application hook */

        (*OS_AppTaskCreateHookPtr)(p_tcb);

    }

#endif

}
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OSTaskDel()

void  OSTaskDel (OS_TCB  *p_tcb,

                 OS_ERR  *p_err)

When a task is no longer needed, it can be deleted. Deleting a task does not mean that the

code is removed, but that the task code is no longer managed by μC/OS-III. OSTaskDel()

can be used when creating a task that will only run once. In this case, the task must not

return but instead call OSTaskDel((OS_TCB *)0, &err), specifying to μC/OS-III to delete

the currently running task.

A task may also delete another task by specifying to OSTaskDel() the address of the

OS_TCB of the task to delete.

Once a task is deleted, its OS_TCB and stack may be reused to create another task. This

assumes that the task’s stack requirement of the new task is satisfied by the stack size of the

deleted task.

Even though μC/OS-III allows the user to delete tasks at run time, it is recommend that such

actions be avoided. Why? Because a task can “own” resources that are shared with other

tasks. Deleting the task that owns resource(s) without first relinquishing the resources could

lead to strange behaviors and possible deadlocks.

Arguments

p_tcb is a pointer to the TCB of the task to delete or, a NULL pointer for the calling

task to delete itself. If deleting the calling task, the scheduler will be invoked so

that the next highest-priority task is executed.

p_err is a pointer to a variable that will receive an error code:

OS_ERR_NONE if the desired task was deleted (unless the

task deleted itself in which case there are no

errors to return).

OS_ERR_TASK_DEL_IDLE if attempting to delete the ilde task.

File Called from Code enabled by

OS_TASK.C Task OS_CFG_TASK_DEL_EN
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OS_ERR_TASK_DEL_ISR if calling OSTaskDel() from an ISR.

OS_ERR_TASK_DEL_INVALID if attempting to delete the ISR Handler task

while OS_CFG_ISR_POST_DEFERRED_EN is set

to 1.

Returned Value

None

Notes/Warnings

1. OSTaskDel() verifies that the user is not attempting to delete the μC/OS-III idle task and

the ISR handler task.

2. Be careful when deleting a task that owns resources.

Example

OS_TCB  MyTaskTCB;

void TaskX (void *p_arg)

{

    OS_ERR  err;

    while (DEF_ON) {

        :

        :

        OSTaskDel(&MyTaskTCB,

                  &err);

        /* Check �err� */

        :

        :

    }

}
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OSTaskDelHook()

void  OSTaskDelHook (OS_TCB  *p_tcb);

This function is called by OSTaskDel() after the task is removed from the ready list or any

pend list.

Use this hook to deallocate storage assigned to the task.

OSTaskDelHook() is part of the CPU port code and this function must not be called by the

application code. OSTaskDelHook() is actually used by the μC/OS-III port developer.

Arguments

p_tcb is a pointer to the TCB of the task being created. Note that the OS_TCB has

been validated by OSTaskDel() and is guaranteed to not be a NULL pointer

when OSTaskDelHook() is called.

Returned Value

None

Notes/Warnings

Do not call this function from the application.

Example

The code below calls an application-specific hook that the application programmer can

define. The user can simply set the value of OS_AppTaskDelHookPtr to point to the desired

hook function. OSTaskDel() calls OSTaskDelHook() which in turns calls

App_OS_TaskDelHook() through OS_AppTaskDelHookPtr. As can be seen, when called,

the application hook is passed the address of the OS_TCB of the task being deleted.

File Called from Code enabled by

OS_CPU_C.C OSTaskDel() ONLY N/A
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void  App_OS_TaskDelHook (OS_TCB *p_tcb)                  /* OS_APP_HOOKS.C        */

{

    /* Your code goes here! */

}

void App_OS_SetAllHooks (void)                            /* OS_APP_HOOKS.C         */

{

    CPU_SR_ALLOC();

    CPU_CRITICAL_ENTER();

    :

    OS_AppTaskDelHookPtr = App_OS_TaskDelHook;

    :

    CPU_CRITICAL_EXIT();

}

void  OSTaskDelHook (OS_TCB *p_tcb)                        /* OS_CPU_C.C            */

{

#if OS_CFG_APP_HOOKS_EN > 0u

    if (OS_AppTaskDelHookPtr != (OS_APP_HOOK_TCB)0) {     /* Call application hook */

        (*OS_AppTaskDelHookPtr)(p_tcb);

    }

#endif

}
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OSTaskQPend()

void  *OSTaskQPend (OS_TICK       timeout,

                    OS_OPT        opt,

                    OS_MSG_SIZE  *p_msg_size,

                    CPU_TS       *p_ts,

                    OS_ERR       *p_err)

OSTaskQPend() allows a task to receive messages directly from an ISR or another task,

without going through an intermediate message queue. In fact, each task has a built-in

message queue if the configuration constant OS_TASK_Q_EN is set to 1. The messages

received are pointer-sized variables, and their use is application specific. If at least one

message is already present in the message queue when OSTaskQPend() is called, the

message is retrieved and returned to the caller.

If no message is present in the task’s message queue and OS_OPT_PEND_BLOCKING is

specified for the opt argument, OSTaskQPend() suspends the current task (assuming the

scheduler is not locked) until either a message is received, or a user-specified timeout

expires. A pended task that is suspended with OSTaskSuspend() can receive messages.

However, the task remains suspended until it is resumed by calling OSTaskResume().

If no message is present in the task’s message queue and OS_OPT_PEND_NON_BLOCKING is

specified for the opt argument, OSTaskQPend() returns to the caller with an appropriate

error code and returns a NULL pointer.

Arguments

timeout allows the task to resume execution if a message is not received from a task or

an ISR within the specified number of clock ticks. A timeout value of 0

indicates that the task wants to wait forever for a message. The timeout value is

not synchronized with the clock tick. The timeout count starts decrementing on

the next clock tick, which could potentially occur immediately.

File Called from Code enabled by

OS_TASK.C Task OS_CFG_TASK_Q_EN and 

OS_CFG_MSG_EN
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opt determines whether or not the user wants to block if a message is not available

in the task’s queue. This argument must be set to either:

OS_OPT_PEND_BLOCKING, or

OS_OPT_PEND_NON_BLOCKING

Note that the timeout argument should be set to 0 when

OS_OPT_PEND_NON_BLOCKING is specified, since the timeout value is irrelevant

using this option.

p_msg_size is a pointer to a variable that will receive the size of the message.

p_ts is a pointer to a timestamp indicating when the task’s queue was posted, or the

pend aborted. If passing a NULL pointer (i.e., (CPU_TS *)0), the timestamp will

not returned. In other words, passing a NULL pointer is valid and indicates that

the timestamp is not necessary.

A timestamp is useful when the task must know when the task message queue

was posted, or how long it took for the task to resume after the task message

queue was posted. In the latter case, call OS_TS_GET() and compute the

difference between the current value of the timestamp and *p_ts. In other

words:

delta = OS_TS_GET() - *p_ts;

p_err is a pointer to a variable used to hold an error code.

OS_ERR_NONE if a message is received.

OS_ERR_PEND_ABORT if the pend was aborted because another task

called OSTaskQPendAbort().

OS_ERR_PEND_ISR if calling this function from an ISR.

OS_ERR_PEND_WOULD_BLOCK if calling this function with the opt argument

set to OS_OPT_PEND_NON_BLOCKING and no

message is in the task’s message queue.

OS_ERR_SCHED_LOCKED if calling this function when the scheduler is

locked and the user wanted to block.
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OS_ERR_TIMEOUT if a message is not received within the

specified timeout.

Returned Value

The message if no error or a NULL pointer upon error. Examine the error code since it is

possible to send NULL pointer messages. In other words, a NULL pointer does not mean an

error occurred. *p_err must be examined to determine the reason for the error.

Notes/Warnings

Do not call OSTaskQPend() from an ISR.

Example

void CommTask (void *p_arg)

{

    OS_ERR       err;

    void        *p_msg;

    OS_MSG_SIZE  msg_size;

    CPU_TS       ts;

    (void)&p_arg;

    while (DEF_ON) {

        :

        :

        p_msg = OSTaskQPend(100,

                            OS_OPT_PEND_BLOCKING,

                            &msg_size,

                            &ts,

                            &err);

        /* Check �err� */

        :

        :

    }

}
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OSTaskQPendAbort()

CPU_BOOLEAN  OSTaskQPendAbort (OS_TCB  *p_tcb,

                               OS_OPT   opt,

                               OS_ERR  *p_err)

OSTaskQPendAbort() aborts and readies a task currently waiting on its built-in message

queue. This function should be used to fault-abort the wait on the task’s message queue,

rather than to normally signal the message queue via OSTaskQPost().

Arguments

p_tcb is a pointer to the task for which the pend needs to be aborted. Note that it

doesn’t make sense to pass a NULL pointer or the address of the calling task’s

TCB since, by definition, the calling task cannot be pending.

opt provides options for this function.

OS_OPT_POST_NONE No option specified.

OS_OPT_POST_NO_SCHED specifies that the scheduler should not be

called even if the pend of a higher priority

task has been aborted. Scheduling will need

to occur from another function.

Use this option if the task calling

OSTaskQPendAbort() will do additional

pend aborts, rescheduling will take place

when completed, and multiple pend aborts

should take effect simultaneously.

p_err is a pointer to a variable that holds an error code:

OS_ERR_NONE the task was readied by another task and it

was informed of the aborted wait.

OS_ERR_PEND_ABORT_ISR if called from an ISR

File Called from Code enabled by

OS_Q.C Task OS_CFG_TASK_Q_EN and 

OS_CFG_TASK_Q_PEND_ABORT_EN
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OS_ERR_PEND_ABORT_NONE if the task was not pending on the task’s

message queue.

OS_ERR_PEND_ABORT_SELF if p_tcb is a NULL pointer. The user is

attempting to pend abort the calling task

which makes no sense as the caller, by

definition, is not pending.

Returned Value

OSTaskQPendAbort() returns DEF_TRUE if the task was made ready to run by this function.

DEF_FALSE indicates that the task was not pending, or an error occurred.

Notes/Warnings

None

Example

OS_TCB  CommRxTaskTCB;

void CommTask (void *p_arg)

{

    OS_ERR       err;

    CPU_BOOLEAN  aborted;

    (void)&p_arg;

    while (DEF_ON) {

        :

        :

        aborted = OSTaskQPendAbort(&CommRxTaskTCB,

                                   OS_OPT_POST_NONE,

                                   &err);

        /* Check �err� */

        :

        :

    }

}
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OSTaskQPost()

void  OSTaskQPost (OS_TCB      *p_tcb,

                   void        *p_void,

                   OS_MSG_SIZE  msg_size,

                   OS_OPT       opt,

                   OS_ERR      *p_err)

OSTaskQPost() sends a message to a task through its local message queue. A message is a

pointer-sized variable, and its use is application specific. If the task’s message queue is full,

an error code is returned to the caller. In this case, OSTaskQPost() immediately returns to

its caller, and the message is not placed in the message queue.

If the task receiving the message is waiting for a message to arrive, it will be made ready to

run. If the receiving task has a higher priority than the task sending the message, the

higher-priority task resumes, and the task sending the message is suspended; that is, a

context switch occurs. A message can be posted as first-in first-out (FIFO), or last-in-first-out

(LIFO), depending on the value specified in the opt argument. In either case, scheduling

occurs unless opt is set to OS_OPT_POST_NO_SCHED.

Arguments

p_tcb is a pointer to the TCB of the task. Note that it is possible to post a message to

the calling task (i.e., self) by specifying a NULL pointer, or the address of its

TCB.

p_void is the actual message sent to the task. p_void is a pointer-sized variable and its

meaning is application specific.

msg_size specifies the size of the message posted (in number of bytes).

opt determines the type of POST performed. Of course, it does not make sense to

post LIFO and FIFO simultaneously, so these options are exclusive:

File Called from Code enabled by

OS_Q.C Task or ISR OS_CFG_TASK_Q_EN and 

OS_CFG_MSG_EN
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OS_OPT_POST_FIFO POST message to task, or place at the end of

the queue if the task is not waiting for

messages.

OS_OPT_POST_LIFO POST message to task, or place at the front of

the queue if the task is not waiting for

messages.

OS_OPT_POST_NO_SCHED Do not call the scheduler after the post and

therefore the caller is resumed.

Use this option if the task (or ISR) calling

OSTaskQPost() will be doing additional

posts, the user does not want to reschedule

until all done, and multiple posts are to take

effect simultaneously. p_err is a pointer to a

variable that will contain an error code

returned by this function.

OS_ERR_NONE if the call was successful and the message

was posted to the task’s message queue.

OS_ERR_MSG_POOL_EMPTY if running out of OS_MSG to hold the message

being posted.

OS_ERR_Q_MAX if the task’s message queue is full and cannot

accept more messages.

Returned Value

None

Notes/Warnings

None
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Example

OS_TCB       CommRxTaskTCB;

CPU_INT08U   CommRxBuf[100];

void CommTaskRx (void *p_arg)

{

    OS_ERR  err;

    (void)&p_arg;

    while (DEF_ON) {

        :

        OSTaskQPost(&CommRxTaskTCB,

                    (void *)&CommRxBuf[0],

                    sizeof(CommRxBuf),

                    OS_OPT_POST_FIFO,

                    &err);

        /* Check �err� */

        :

    }

}
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OSTaskRegGet()

OS_REG  OSTaskRegGet (OS_TCB     *p_tcb,

                      OS_REG_ID   id,

                      OS_ERR     *p_err)

μC/OS-III allows the user to store task-specific values in task registers. Task registers are

different than CPU registers and are used to save such information as “errno,” which are

common in software components. Task registers can also store task-related data to be

associated with the task at run time such as I/O register settings, configuration values, etc. A

task may have as many as OS_CFG_TASK_REG_TBL_SIZE registers, and all registers have a

data type of OS_REG. However, OS_REG can be declared at compile time (see OS_TYPE.H) to

be nearly anything (8-, 16-, 32-, 64-bit signed or unsigned integer, or floating-point). 

As shown below, a task is register is changed by calling OSTaskRegSet() and read by

calling OSTaskRegGet(). The desired task register is specified as an argument to these

functions and can take a value between 0 and OS_CFG_TASK_REG_TBL_SIZE-1.

File Called from Code enabled by

OS_TASK.C Task OS_CFG_TASK_REG_TBL_SIZE > 0
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Arguments

p_tcb is a pointer to the TCB of the task the user is receiving a task-register value

from. A NULL pointer indicates that the user wants the value of a task register of

the calling task.

id is the identifier of the task register and valid values are from 0 to

OS_CFG_TASK_REG_TBL_SIZE-1.

p_err is a pointer to a variable that will contain an error code returned by this

function.

OS_ERR_NONE if the call was successful and the function

returned the value of the desired task register.

OS_ERR_REG_ID_INVALID if a valid task register identifier is not

specified.

Returned Value

The current value of the task register.

Notes/Warnings

None

Example

OS_TCB  MyTaskTCB;

void TaskX (void *p_arg)

{

    OS_ERR  err;

    OS_REG  reg;

    while (DEF_ON) {

        :

        reg = OSTaskRegGet(&MyTaskTCB,

                           5,

                           &err);

        /* Check �err� */

        :

    }

}
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OSTaskRegSet()

void  OSTaskRegSet (OS_TCB     *p_tcb,

                    OS_REG_ID   id,

                    OS_REG      value,

                    OS_ERR     *p_err)

μC/OS-III allows the user to store task-specific values in task registers. Task registers are

different than CPU registers and are used to save such information as “errno,” which are

common in software components. Task registers can also store task-related data to be

associated with the task at run time such as I/O register settings, configuration values, etc. A

task may have as many as OS_CFG_TASK_REG_TBL_SIZE registers, and all registers have a

data type of OS_REG. However, OS_REG can be declared at compile time to be nearly

anything (8-, 16-, 32-, 64-bit signed or unsigned integer, or floating-point).

As shown below, a task is register is changed by calling OSTaskRegSet(), and read by

calling OSTaskRegGet(). The desired task register is specified as an argument to these

functions and can take a value between 0 and OS_CFG_TASK_REG_TBL_SIZE-1.

File Called from Code enabled by

OS_TASK.C Task OS_CFG_TASK_REG_TBL_SIZE > 0
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Arguments

p_tcb is a pointer to the TCB of the task you are setting. A NULL pointer indicates that

the user wants to set the value of a task register of the calling task.

id is the identifier of the task register and valid values are from 0 to

OS_CFG_TASK_REG_TBL_SIZE-1.

value is the new value of the task register specified by id.

p_err is a pointer to a variable that will contain an error code returned by this

function.

OS_ERR_NONE if the call was successful, and the function set

the value of the desired task register.

OS_ERR_REG_ID_INVALID if a valid task register identifier is not

specified.

Returned Value

None

Notes/Warnings

None

Example

OS_TCB  MyTaskTCB;

void TaskX (void *p_arg)

{

    OS_ERR  err;

    while (DEF_ON) {

        :

        reg = OSTaskRegSet(&MyTaskTCB,

                            5,

                           23,

                           &err);

        /* Check �err� */

        :

    }

}
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OSTaskReturnHook()

void  OSTaskReturnHook (void);

This function is called by OS_TaskReturn(). OS_TaskReturn() is called if the user

accidentally returns from the task code. In other words, the task should either be implemented

as an infinite loop and never return, or the task must call OSTaskDel((OS_TCB *)0, &err) to

delete itself to prevent it from exiting.

OSTaskReturnHook() is part of the CPU port code and this function must not be called by

the application code. OSTaskReturnHook() is actually used by the μC/OS-III port

developer.

Note that after calling OSTaskReturnHook(), OS_TaskReturn() will actually delete the task

by calling:

OSTaskDel((OS_TCB *)0,

          &err)

Arguments

p_tcb is a pointer to the TCB of the task that is not behaving as expected. Note that

the OS_TCB is validated by OS_TaskReturn(), and is guaranteed to not be a

NULL pointer when OSTaskReturnHook() is called.

Returned Value

None

Notes/Warnings

Do not call this function from the application.

Example

The code below calls an application-specific hook that the application programmer can

define. For this, the user can simply set the value of OS_AppTaskReturnHookPtr to point to

the desired hook function as shown in the example. If a task returns and forgets to call

File Called from Code enabled by

OS_CPU_C.C OS_TaskReturn() ONLY N/A
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OSTaskDel((OS_TCB *)0, &err) then μC/OS-III will call OSTaskReturnHook() which in

turns calls App_OS_TaskReturnHook() through OS_AppTaskReturnHookPtr. When called,

the application hook is passed the address of the OS_TCB of the task returning.

void  App_OS_TaskReturnHook (OS_TCB  *p_tcb)               /* OS_APP_HOOKS.C         */

{

    /* Your code goes here! */

}

void App_OS_SetAllHooks (void)                             /* OS_APP_HOOKS.C         */

{

    CPU_SR_ALLOC();

    CPU_CRITICAL_ENTER();

    :

    OS_AppTaskReturnHookPtr = App_OS_TaskReturnHook;

    :

    CPU_CRITICAL_EXIT();

}

void  OSTaskReturnHook (OS_TCB *p_tcb)                      /* OS_CPU_C.C            */

{

#if OS_CFG_APP_HOOKS_EN > 0u

    if (OS_AppTaskReturnHookPtr != (OS_APP_HOOK_TCB)0) {   /* Call application hook */

        (*OS_AppTaskReturnHookPtr)(p_tcb);

    }

#endif

}
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OSTaskResume()

void  OSTaskResume (OS_TCB  *p_tcb,

                    OS_ERR  *p_err)

OSTaskResume() resumes a task suspended through the OSTaskSuspend() function. In

fact, OSTaskResume() is the only function that can unsuspend a suspended task. Obviously,

the suspended task can only be resumed by another task. If the suspended task is also

waiting on another kernel object such as an event flag, semaphore, mutex, message queue

etc., the suspension will simply be lifted (i.e., removed), but the task will continue waiting

for the object.

The user can “nest” suspension of a task by calling OSTaskSuspend() and therefore must

call OSTaskResume() an equivalent number of times to resume such a task. In other words,

if suspending a task five times, it is necessary to unsuspend the same task five times to

remove the suspension of the task.

Arguments

p_tcb is a pointer to the TCB of the task that is resuming. A NULL pointer is not a valid

value as one cannot resume the calling task because, by definition, the calling

task is running and is not suspended.

p_err is a pointer to a variable that will contain an error code returned by this

function.

OS_ERR_NONE if the call was successful and the desired task

is resumed.

OS_ERR_TASK_RESUME_ISR if calling this function from an ISR.

OS_ERR_TASK_RESUME_SELF if passing a NULL pointer for p_tcb. It is not

possible to resume the calling task since, if

suspended, it cannot be executing.

OS_ERR_TASK_NOT_SUSPENDED if the task attempting to be resumed is not

suspended.

File Called from Code enabled by

OS_TASK.C Task OS_CFG_TASK_SUSPEND_EN
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Returned Value

None

Notes/Warnings

None

Example

OS_TCB   TaskY;

void TaskX (void *p_arg)

{

    OS_ERR err;

    while (DEF_ON) {

        :

        :

        OSTaskResume(&TaskY,

                     &err);            /* Resume suspended task        */

        /* Check �err� */

        :

        :

    }

}
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OSTaskSemPend()

OS_SEM_CTR  OSTaskSemPend (OS_TICK   timeout,

                           OS_OPT    opt,

                           CPU_TS   *p_ts,

                           OS_ERR   *p_err)

OSTaskSemPend() allows a task to wait for a signal to be sent by another task or ISR

without going through an intermediate object such as a semaphore. If the task was

previously signaled when OSTaskSemPend() is called then, the caller resumes.

If no signal was received by the task and OS_OPT_PEND_BLOCKING is specified for the opt

argument, OSTaskSemPend() suspends the current task (assuming the scheduler is not

locked) until either a signal is received, or a user-specified timeout expires. A pended task

suspended with OSTaskSuspend() can receive signals. However, the task remains

suspended until it is resumed by calling OSTaskResume().

If no signals were sent to the task and OS_OPT_PEND_NON_BLOCKING was specified for the

opt argument, OSTaskSemPend() returns to the caller with an appropriate error code and

returns a signal count of 0.

Arguments

timeout allows the task to resume execution if a signal is not received from a task or an

ISR within the specified number of clock ticks. A timeout value of 0 indicates

that the task wants to wait forever for a signal. The timeout value is not

synchronized with the clock tick. The timeout count starts decrementing on the

next clock tick, which could potentially occur immediately.

opt determines whether the user wants to block or not, if a signal was not sent to

the task. Set this argument to either:

OS_OPT_PEND_BLOCKING, or

OS_OPT_PEND_NON_BLOCKING

File Called from Code enabled by

OS_TASK.C Task Always enabled
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Note that the timeout argument should be set to 0 when specifying

OS_OPT_PEND_NON_BLOCKING, since the timeout value is irrelevant using this

option.

p_ts is a pointer to a timestamp indicating when the task’s semaphore was posted,

or the pend was aborted. If passing a NULL pointer (i.e., (CPU_TS *)0) the

timestamp will not be returned. In other words, passing a NULL pointer is valid

and indicates that the timestamp is not necessary.

A timestamp is useful when the task is to know when the semaphore was

posted, or how long it took for the task to resume after the semaphore was

posted. In the latter case, call OS_TS_GET() and compute the difference

between the current value of the timestamp and *p_ts. In other words:

delta = OS_TS_GET() - *p_ts;

p_err is a pointer to a variable used to hold an error code.

OS_ERR_NONE if a signal is received.

OS_ERR_PEND_ABORT if the pend was aborted because another task

called OSTaskSemPendAbort().

OS_ERR_PEND_ISR if calling this function from an ISR.

OS_ERR_PEND_WOULD_BLOCK if calling this function with the opt argument

set to OS_OPT_PEND_NON_BLOCKING, and no

signal was received.

OS_ERR_SCHED_LOCKED if calling this function when the scheduler is

locked and the user wanted the task to block.

OS_ERR_TIMEOUT if a signal is not received within the specified

timeout.

Returned Value

The current value of the signal counter after it has been decremented. In other words, the

number of signals still remaining in the signal counter.

Notes/Warnings

Do not call OSTaskSemPend() from an ISR.
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Example

void CommTask(void *p_arg)

{

    OS_ERR      err;

    OS_SEM_CTR  ctr;

    CPU_TS      ts;

    (void)&p_arg;

    while (DEF_ON) {

        :

        ctr = OSTaskSemPend(100,

                            OS_OPT_PEND_BLOCKING,

                            &ts,

                            &err);

        /* Check �err� */

        :

    }

}
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OSTaskSemPendAbort()

CPU_BOOLEAN  OSTaskSemPendAbort (OS_TCB  *p_tcb,

                                 OS_OPT   opt,

                                 OS_ERR  *p_err)

OSTaskSemPendAbort() aborts and readies a task currently waiting on its built-in

semaphore. This function should be used to fault-abort the wait on the task’s semaphore,

rather than to normally signal the task via OSTaskSemPost().

Arguments

p_tcb is a pointer to the task for which the pend must be aborted. Note that it does

not make sense to pass a NULL pointer or the address of the calling task’s TCB

since, by definition, the calling task cannot be pending.

opt provides options for this function.

OS_OPT_POST_NONE no option specified, call the scheduler by

default.

OS_OPT_POST_NO_SCHED specifies that the scheduler should not be

called even if the pend of a higher-priority

task has been aborted. Scheduling will need

to occur from another function.

Use this option if the task calling

OSTaskSemPendAbort() will be doing

additional pend aborts, rescheduling will not

take place until finished, and multiple pend

aborts are to take effect simultaneously.

File Called from Code enabled by

OS_TASK.C Task OS_CFG_TASK_SEM_PEND_ABORT_EN
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p_err is a pointer to a variable that holds an error code:

OS_ERR_NONE the pend was aborted for the specified task.

OS_ERR_PEND_ABORT_ISR if called from an ISR

OS_ERR_PEND_ABORT_NONE if the task was not waiting for a signal.

OS_ERR_PEND_ABORT_SELF if p_tcb is a NULL pointer or the TCB of the

calling task is specified. The user is

attempting to pend abort the calling task,

which makes no sense since, by definition,

the calling task is not pending.

Returned Value

OSTaskSemPendAbort() returns DEF_TRUE if the task was made ready to run by this

function. DEF_FALSE indicates that the task was not pending, or an error occurred.

Notes/Warnings

None

Example

OS_TCB  CommRxTaskTCB;

void CommTask (void *p_arg)

{

    OS_ERR      err;

    CPU_BOOLEAN  aborted;

    (void)&p_arg;

    while (DEF_ON) {

        :

        :

        aborted = OSTaskSemPendAbort(&CommRxTaskTCB,

                                     OS_OPT_POST_NONE,

                                     &err);

        /* Check �err� */

        :

        :

    }

}
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OSTaskSemPost()

OS_SEM_CTR  OSTaskSemPost (OS_TCB    *p_tcb,

                           OS_OPT     opt,

                           OS_ERR    *p_err)

OSTaskSemPost() sends a signal to a task through it’s local semaphore.

If the task receiving the signal is actually waiting for a signal to be received, it will be made

ready to run and, if the receiving task has a higher priority than the task sending the signal,

the higher-priority task resumes, and the task sending the signal is suspended; that is, a

context switch occurs. Note that scheduling only occurs if opt is set to OS_OPT_POST_NONE,

because the OS_OPT_POST_NO_SCHED option does not cause the scheduler to be called.

Arguments

p_tcb is a pointer to the TCB of the task being signaled. A NULL pointer indicates that

the user is sending a signal to itself.

opt provides options to the call.

OS_OPT_POST_NONE No option, by default the scheduler will be

called.

OS_OPT_POST_NO_SCHED Do not call the scheduler after the post,

therefore the caller is resumed.

Use this option if the task (or ISR) calling

OSTaskSemPost() will be doing additional

posts, reschedule waits until all is done, and

multiple posts are to take effect simultaneously.

p_err is a pointer to a variable that will contain an error code returned by this

function.

OS_ERR_NONE if the call was successful and the signal was sent.

File Called from Code enabled by

OS_TASK.C Task or ISR Always enabled
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OS_ERR_SEM_OVF the post would have caused the semaphore

counter to overflow.

Returned Value

The current value of the task’s signal counter, or 0 if called from an ISR and

OS_CFG_ISR_POST_DEFERRED_EN is set to 1.

Notes/Warnings

None

Example

OS_TCB       CommRxTaskTCB;

void CommTaskRx (void *p_arg)

{

    OS_ERR      err;

    OS_SEM_CTR  ctr;

    (void)&p_arg;

    while (DEF_ON) {

        :

        ctr = OSTaskSemPost(&CommRxTaskTCB,

                            OS_OPT_POST_NONE,

                            &err);

        /* Check �err� */

        :

    }

}
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OSTaskSemSet()

OS_SEM_CTR  OSTaskSemSet (OS_TCB     *p_tcb,

                          OS_SEM_CTR  cnt;

                          OS_ERR     *p_err)

OSTaskSemSet() allows the user to set the value of the task’s signal counter. Set the signal

counter of the calling task by passing a NULL pointer for p_tcb.

Arguments

p_tcb is a pointer to the task’s OS_TCB to clear the signal counter. A NULL pointer

indicates that the user wants to clear the caller’s signal counter.

cnt the desired value for the task semaphore counter.

p_err is a pointer to a variable that will contain an error code returned by this

function.

OS_ERR_NONE if the call was successful and the signal

counter was cleared.

OS_ERR_SET_ISR if calling this function from an ISR

Returned Value

The value of the signal counter prior to setting it.

Notes/Warnings

None

File Called from Code enabled by

OS_TASK.C Task or ISR Always Enabled
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Example

OS_TCB   TaskY;

void TaskX (void *p_arg)

{

    OS_ERR err;

    while (DEF_ON) {

        :

        :

        OSTaskSemSet(&TaskY,

                     0,

                     &err);

        /* Check �err� */

        :

        :

    }

}
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OSTaskStatHook()

void  OSTaskStatHook (void);

This function is called by OS_TaskStat().

OSTaskStatHook() is part of the CPU port code and must not be called by the application

code. OSTaskStatHook() is actually used by the μC/OS-III port developer.

Arguments

None

Returned Value

None

Notes/Warnings

Do not call this function from the application.

Example

The code below calls an application-specific hook that the application programmer can

define. The user can simply set the value of OS_AppStatTaskHookPtr to point to the

desired hook function as shown in the example.  The statistic task calls OSStatTaskHook()

which in turns calls App_OS_StatTaskHook() through OS_AppStatTaskHookPtr.

File Called from Code enabled by

OS_CPU_C.C OS_TaskStat() ONLY OS_CFG_TASK_STAT_EN
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void  App_OS_StatTaskHook (void)                           /* OS_APP_HOOKS.C         */

{

    /* Your code goes here! */

}

void App_OS_SetAllHooks (void)                             /* OS_APP_HOOKS.C         */

{

    CPU_SR_ALLOC();

    CPU_CRITICAL_ENTER();

    :

    OS_AppStatTaskHookPtr = App_OS_StatTaskHook;

    :

    CPU_CRITICAL_EXIT();

}

void  OSStatTaskHook (void)                                /* OS_CPU_C.C            */

{

#if OS_CFG_APP_HOOKS_EN > 0u

    if (OS_AppStatTaskHookPtr != (OS_APP_HOOK_VOID)0) {   /* Call application hook */

        (*OS_AppStatTaskHookPtr)();

    }

#endif

}
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OSTaskStkChk()

void  OSTaskStkChk (OS_TCB       *p_tcb,

                    CPU_STK_SIZE *p_free,

                    CPU_STK_SIZE *p_used,

                    OS_ERR       *p_err)

OSTaskStkChk() determines a task’s stack statistics. Specifically, it computes the amount of

free stack space, as well as the amount of stack space used by the specified task. This

function requires that the task be created with the OS_TASK_OPT_STK_CHK and

OS_TASK_OPT_STK_CLR options.

Stack sizing is accomplished by walking from the bottom of the stack and counting the

number of 0 entries on the stack until a non-zero value is found. It is possible to not set the

OS_TASK_OPT_STK_CLR when creating the task if the startup code clears all RAM, and tasks

are not deleted (this reduces the execution time of OSTaskCreate()).

μC/OS-III’s statistic task calls OSTaskStkChk() for each task created and stores the results in

each task’s OS_TCB so your application doesn’t need to call this function if the statistic task

is enabled.

Arguments

p_tcb is a pointer to the TCB of the task where the stack is being checked. A NULL

pointer indicates that the user is checking the calling task’s stack.

p_free is a pointer to a variable of type CPU_STK_SIZE and will contain the number of

free “bytes” on the stack of the task being inquired about.

p_used is a pointer to a variable of type CPU_STK_SIZE and will contain the number of

used “bytes” on the stack of the task being inquired about.

File Called from Code enabled by

OS_TASK.C Task OS_CFG_TASK_STAT_CHK_EN
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p_err is a pointer to a variable that will contain an error code returned by this

function.

OS_ERR_NONE if the call was successful.

OS_ERR_PTR_INVALID if either p_free or p_used are NULL pointers.

OS_ERR_TASK_NOT_EXIST if the stack pointer of the task is a NULL

pointer.

OS_ERR_TASK_OPT if OS_OPT_TASK_STK_CHK is not specififed

whencreating the task being checked.

OS_ERR_TASK_STK_CHK_ISR if calling this function from an ISR.

Returned Value

None

Notes/Warnings

1. Execution time of this task depends on the size of the task’s stack.

2. The application can determine the total task stack space (in number of bytes) by adding

the value of *p_free and *p_used.

3. The #define CPU_CFG_STK_GROWTH must be declared (typically from OS_CPU.H). When

this #define is set to CPU_STK_GROWTH_LO_TO_HI, the stack grows from low memory to

high memory. When this #define is set to CPU_STK_GROWTH_HI_TO_LO, the stack grows

from high memory to low memory.
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Example

OS_TCB  MyTaskTCB;

void Task (void *p_arg)

{

    OS_ERR        err;

    CPU_STK_SIZE  n_free;

    CPU_STK_SIZE  n_used;

    (void)&p_arg;

    while (DEF_ON) {

        :

        :

        OSTaskStkChk(&MyTaskTCB,

                     &n_free,

                     &n_used,

                     &err);

        /* Check �err� */

        :

        :

    }

}
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OSTaskStkInit()

void OSTaskStkInit (OS_TASK_PTR    p_task,

                    void          *p_arg,

                    CPU_STK       *p_stk_base,

                    CPU_STK       *p_stk_limit,

                    CPU_STK_SIZE   stk_size,

                    OS_OPT         opt);

This function is called by OSTaskCreate() to setup the stack frame of the task being

created. Typically, the stack frame will look as if an interrupt just occurred, and all CPU

registers were pushed onto the task’s stack. The stacking order of CPU registers is very CPU

specific.

OSTaskStkInit() is part of the CPU port code and this function must not be called by the

application code. OSTaskStkInit() is actually defined by the μC/OS-III port developer.

Arguments

p_task is the address of the task being created (see MyTask below). Tasks must be

declared as follows:

File Called from Code enabled by

OS_CPU_C.C OSTaskCreate() ONLY N/A

void   MyTask (void  *p_arg)

{

    /* Do something with �p_arg� (optional) */

    while (DEF_ON) {

        /* Wait for an event to occur */

        /* Do some work               */

    }

}
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Or,

p_arg is the argument that the task will receive when the task first start (see code

above).

p_stk_base is the base address of the task’s stack. This is typically the lowest address of the

area of storage reserved for the task stack. In other words, if declaring the task’s

stack as follows:

OSTaskCreate() would pass &OSMyTaskStk[0] to p_stk_base.

p_stk_limit is the address of the task’s stack limit watermark. This pointer is the same

pointer passed to OSTaskCreate().

stk_size is the size of the task’s stack in number of CPU_STK elements. In the example

above, the stack size is 100.

opt is the options pass to OSTaskCreate() for the task being created.

Returned Value

The new top of stack after the task’s stack is initialized. OSTaskStkInit() will place values

on the task’s stack and will return the new pointer of the stack pointer for the task. The

value returned is very processor specific. For some processors, the returned value will point

to the last value placed on the stack while, with other processors, the returned value will

point at the next free stack entry.

void   MyTask (void  *p_arg)

{

    OS_ERR  err;

    /* Do something with �p_arg� (optional) */

    /* Do some work                         */

    OSTaskDel((OS_TCB *)0,

              &err);

}

CPU_STK  MyTaskStk[100];
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Notes/Warnings

Do not call this function from the application.

Example

The pseudo code below shows the typical steps performed by this function. Consult an

existing μC/OS-III port for examples. Here it is assumed that the stack grows from high

memory to low memory.

(1) ‘p_stk” is set to the top-of-stack. It is assumed that the stack grows from high

memory locations to lower ones. If the stack of the CPU grew from low

memory locations to higher ones, the user would simply set “p_stk” to point at

the base. However, this also means that it would be necessary to initialize the

stack frame in the opposite direction.

(2) Store the CPU registers onto the stack using the same stacking order as used

when an interrupt service routine (ISR) saves the registers at the beginning of

the ISR. The value of the register contents on the stack is typically not

important. However, there are some values that are critical. Specifically, place

the address of the task in the proper location on the stack frame and it may be

important to load the value of the CPU register and possibly pass the value of

“p_arg� in one of the CPU registers. Finally, if the task is to return by mistake,

it is a good idea to place the address of “OS_TaskReturn()” in the proper

location on the stack frame. This ensures that a faulty returning task is

intercepted by μC/OS-III.

CPU_STK  *OSTaskStkInit (OS_TASK_PTR   p_task,

                         void         *p_arg,

                         CPU_STK      *p_stk_base,

                         CPU_STK      *p_stk_limit,

                         CPU_STK_SIZE  stk_size,

                         OS_OPT        opt)

{

    CPU_STK  *p_stk;

    p_stk    = &p_stk_base[stk_size � 1u];                            (1)

    *p_stk-- = Initialize the stack as if an interrupt just occurred; (2)

    return (p_stk);                                                   (3)

}
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(3) Finally, return the value of the stack pointer at the new top-of-stack frame.

Some processors point to the last stored location, while others point to the next

empty location. Consult the processor documentation so that the return value

points at the proper location.

Below is a complete example showing OSTaskCreate() which calls OSTaskStkInit()

with the proper arguments.

CPU_STK  MyTaskStk[100];

OS_TCB   MyTaskTCB;

void  MyTask (void *p_arg)

{

    /* Do something with �parg� (optional) */

}

void  main (void)

{

    OS_ERR  err;

    :

    :

    OSInit(&err);

    /* Check �err� */

    :

    OSTaskCreate ((OS_TCB        *)&MyTaskTCB,

                  (CPU_CHAR      *)�My Task�,

                  (OS_TASK_PTR    )MyTask,             /* �p_task�      of OSTaskStkInit() */

                  (void          *)0,                  /* �p_arg�       of OSTaskStkInit() */

                  (OS_PRIO        )prio,

                  (CPU_STK       *)&MyTaskStk[0],      /* �p_stk_base�  of OSTaskStkInit() */

                  (CPU_STK_SIZE   )10,                 /* �p_stk_limit� of OSTaskStkInit() */

                  (CPU_STK_SIZE   )100,                /* �stk_size�    of OSTaskStkInit() */

                  (OS_MSG_QTY     )0,

                  (OS_TICK        )0,

                  (void          *)0,

                  (OS_OPT         )(OS_OPT_TASK_STK_CLR + OS_OPT_TASK_STK_CHK),   /* �opt� */

                  (OS_ERR        *)&err);

    /* Check �err� */

    :

    :

    OSStart(&err);

    /* Check �err� */

}
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OSTaskSuspend()

void   OSTaskSuspend (OS_TCB  *p_tcb,

                      OS_ERR  *p_err)

OSTaskSuspend() suspends (or blocks) execution of a task unconditionally. The calling

task may be suspended by specifying a NULL pointer for p_tcb, or simply by passing the

address of its OS_TCB. In this case, another task needs to resume the suspended task. If the

current task is suspended, rescheduling occurs, and μC/OS-III runs the next highest priority

task ready to run. The only way to resume a suspended task is to call OSTaskResume().

Task suspension is additive, which means that if the task being suspended is delayed until n

ticks expire, the task is resumed only when both the time expires and the suspension is

removed. Also, if the suspended task is waiting for a semaphore and the semaphore is

signaled, the task is removed from the semaphore wait list (if it is the highest-priority task

waiting for the semaphore), but execution is not resumed until the suspension is removed.

The user can “nest” suspension of a task by calling OSTaskSuspend() and therefore it is

important to call OSTaskResume() an equivalent number of times to resume the task. If

suspending a task five times, it is necessary to unsuspend the same task five times to

remove the suspension of the task.

Arguments

p_tcb is a pointer to the TCB of the task the user is suspending. A NULL pointer

indicates suspension of the calling task.

p_err is a pointer to a variable that will contain an error code returned by this

function.

OS_ERR_NONE if the call was successful and the desired task

was suspended.

OS_ERR_TASK_SUSPEND_ISR if the function is called from an ISR.

File Called from Code enabled by

OS_TASK.C Task OS_CFG_TASK_SUSPEND_EN
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OS_ERR_TASK_SUSPEND_IDLE if attempting to suspend the idle task. This is

not allowed since the idle task must always

exist.

OS_ERR_TASK_SUSPEND_INT_HANDLERif attempting to suspend the ISR handler

task. This is not allowed since the ISR

handler task is a μC/OS-III internal

task.

Returned Value

None

Notes/Warnings

1. OSTaskSuspend() and OSTaskResume() must be used in pairs.

2. A suspended task can only be resumed by OSTaskResume().

Example

void TaskX (void *p_arg)

{

    OS_ERR  err;

    (void)&p_arg;

    while (DEF_ON) {

        :

        :

        OSTaskSuspend((OS_TCB *)0,

                      &err);       /* Suspend current task                       */

        /* Check �err� */

        :

    }

}
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OSTaskSwHook()

void  OSTaskSwHook (void)

OSTaskSwHook() is always called by either OSCtxSw() or OSIntCtxSw() (see

OS_CPU_A.ASM), just after saving the CPU registers onto the task being switched out. This

hook function allows the port developer to perform additional operations (if needed) when

μC/OS-III performs a context switch.

Before calling OSTaskSwHook(), OSTCBCurPtr is set to point at the OS_TCB of the task

being switched out, and OSTCBHighRdyPtr points at the OS_TCB of the new task being

switched in.

The code shown in the example below should be included in all implementations of

OSTaskSwHook(), and is used for performance measurements. This code is written in C for

portability.

Arguments

None

Returned Values

None

Notes/Warnings

None

Example

The code below calls an application specific hook that the application programmer can

define. The user can simply set the value of OS_AppTaskSwHookPtr to point to the desired

hook function. When μC/OS-III performs a context switch, it calls OSTaskSwitchHook()

which in turn calls App_OS_TaskSwHook() through OS_AppTaskSwHookPtr.

File Called from Code enabled by

OS_CPU_C.C OSCtxSw() or OSIntCtxSw() N/A
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void  App_OS_TaskSwHook (void)                              /* OS_APP_HOOKS.C         */

{

    /* Your code goes here! */

}

void App_OS_SetAllHooks (void)                             /* OS_APP_HOOKS.C         */

{

    CPU_SR_ALLOC();

    CPU_CRITICAL_ENTER();

    :

    OS_AppTaskSwHookPtr = App_OS_TaskSwHook;

    :

    CPU_CRITICAL_EXIT();

}
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void  OSTaskSwHook (void)                                  /* OS_CPU_C.C              */

{

#if OS_CFG_TASK_PROFILE_EN > 0u

    CPU_TS     ts;

#endif

#ifdef  CPU_CFG_TIME_MEAS_INT_DIS_EN

    CPU_TS     int_dis_time;        

#endif

#if OS_CFG_APP_HOOKS_EN > 0u

    if (OS_AppTaskSwHookPtr != (OS_APP_HOOK_VOID)0) {

        (*OS_AppTaskSwHookPtr)();

    }

#endif

#if OS_CFG_TASK_PROFILE_EN > 0u

    ts = OS_TS_GET();

    if (OSTCBCurPtr != OSTCBHighRdyPtr) {

        OSTCBCurPtr->CyclesDelta = ts - OSTCBCurPtr->CyclesStart;

        OSTCBCurPtr->CyclesTotal = OSTCBCurPtr->CyclesTotal + OSTCBCurPtr->CyclesDelta;

    }

    OSTCBHighRdyPtr->CyclesStart = ts;

#ifdef  CPU_CFG_INT_DIS_MEAS_EN        

    int_dis_time = CPU_IntDisMeasMaxCurReset();

    if (int_dis_time > OSTCBCurPtr->IntDisTimeMax) {

        OSTCBCurPtr->IntDisTimeMax = int_dis_time;

    }

#endif

#if OS_CFG_SCHED_LOCK_TIME_MEAS_EN > 0u

    if (OSSchedLockTimeMaxCur > OSTCBCurPtr->SchedLockTimeMax) {

        OSTCBCurPtr->SchedLockTimeMax = OSSchedLockTimeMaxCur;

        OSSchedLockTimeMaxCur         = (CPU_TS)0;              

    }

#endif

#endif

}
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OSTaskTimeQuantaSet()

void   OSTaskTimeQuantaSet (OS_TCB  *p_tcb,

                            OS_TICK  time_quanta,

                            OS_ERR  *p_err)

OSTaskTimeQuantaSet() is used to change the amount of time a task is given when time

slicing multiple tasks running at the same priority.

Arguments

p_tcb is a pointer to the TCB of the task for which the time quanta is

being set. A NULL pointer indicates that the user is changing the

time quanta for the calling task.

time_quanta specifies the amount of time (in ticks) that the task will run when

μC/OS-III is time slicing between tasks at the same priority.

Specifying 0 indicates that the default time as specified will be

used when calling the function OSSchedRoundRobinCfg(), or

OS_CFG_TICK_RATE_HZ / 10 if you never called

OSSchedRoundRobinCfg().

Do not specify a “large” value for this argument as this means that

the task will execute for that amount of time when multiple tasks

are ready to run at the same priority. The concept of time slicing is

to allow other equal-priority tasks a chance to run. Typical time

quanta periods should be approximately 10 mS. A too small value

results in more overhead because of the additional context

switches.

File Called from Code enabled by

OS_TASK.C Task only OS_CFG_SCHED_ROUND_ROBIN_EN
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p_err is a pointer to a variable that will contain an error code returned

by this function.

OS_ERR_NONE if the call was successful and the time quanta

for the task was changed.

OS_ERR_SET_ISR if calling this function from an ISR.

Returned Value

None

Notes/Warnings

Do not specify a large value for time_quanta.

Example

void TaskX (void *p_arg)

{

    OS_ERR  err;

    while (DEF_ON) {

        :

        :

        OSTaskTimeQuantaSet((OS_TCB *)0,

                            OS_CFG_TICK_RATE_HZ / 4;

                            &err);

        /* Check �err� */

        :

    }

}
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OSTickISR()

void  OSTickISR (void)

OSTickISR() is invoked by the tick interrupt, and the function is generally written in

assembly language. However, this depends on how interrupts are handled by the processor.

(see Chapter 9, “Interrupt Management” on page 157).

Arguments

None

Returned Values

None

Notes/Warnings

None

Example

The code below indicates how to write OSTickISR() if all interrupts vector to a common

location, and the interrupt handler simply calls OSTickISR(). As indicated, this code can be

written completely in C and can be placed either in OS_CPU_C.C of the μC/OS-III port, or in

the board support package (BSP.C) and be reused by applications using the same BSP.

The pseudo code below shows how to write OSTickISR() if each interrupt directly vectors to

its own interrupt handler. The code, in this case, would be written in assembly language and

placed either in OS_CPU_A.ASM of the μC/OS-III port, or in the board support package (BSP.C).

File Called from Code enabled by

OS_CPU_A.ASM Tick interrupt N/A

void  OSTickISR (void)

{

    Clear the tick interrupt;

    OSTimeTick();

}
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void  OSTickISR (void)

{

    Save all the CPU registers onto the current task�s stack;

    if (OSIntNestingCtr == 0) {

        OSTCBCurPtr->StkPtr = SP;

    }

    OSIntNestingCtr++;

    Clear the tick interrupt;

    OSTimeTick();

    OSIntExit();

    Restore the CPU registers from the stack;

    Return from interrupt;

}
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OSTimeDly()

void OSTimeDly (OS_TICK  dly,

                OS_OPT   opt,

                OS_ERR  *p_err)

OSTimeDly() allows a task to delay itself for an integral number of clock ticks. The delay

can either be relative (delay from current time), periodic (delay occurs at fixed intervals) or

absolute (delay until we reach some time).

In relative mode, rescheduling always occurs when the number of clock ticks is greater than

zero. A delay of 0 means that the task is not delayed, and OSTimeDly() returns immediately

to the caller.

In periodic mode, you must specify a non-zero period otherwise the function returns

immediately with an appropriate error code. The period is specified in “ticks”.

In absolute mode, rescheduling always occurs since all delay values are valid.

The actual delay time depends on the tick rate (see OS_CFG_TICK_RATE_HZ).

Arguments

dly is the desired delay expressed in number of clock ticks. Depending on the

value of the opt field, delays can be relative or absolute.

A relative delay means that the delay is started from the “current time +

dly”.

A periodic delay means the period (in number of ticks).

An absolute delay means that the task will wake up when OSTaskTickCtr

reaches the value specified by dly.

File Called from Code enabled by

OS_TIME.C Task only N/A
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opt is used to indicate whether the delay is absolute or relative:

OS_OPT_TIME_DLY Specifies a relative delay.

OS_OPT_TIME_PERIODIC Specifies periodic mode.

OS_OPT_TIME_MATCH Specifies that the task will wake up when

OSTaskTickCtr reaches the value specified

by dly

p_err is a pointer to a variable that will contain an error code returned by this

function.

OS_ERR_NONE if the call was successful, and the task has

returned from the desired delay.

OS_ERR_OPT_INVALID if a valid option is not specified.

OS_ERR_TIME_DLY_ISR if calling this function from an ISR.

OS_ERR_TIME_ZERO_DLY if specifying a delay of 0 when the option was

set to OS_OPT_TIME_DLY. Note that a value of

0 is valid when setting the option to

OS_OPT_TIME_MATCH.

Returned Value

None

Notes/Warnings

None
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Example

void TaskX (void *p_arg)

{

  OS_ERR  err;

  while (DEF_ON) {

    :

    :

    OSTimeDly(10,

              OS_OPT_TIME_PERIODIC,

              &err);

    /* Check �err� */

    :

    :

  }

}
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OSTimeDlyHMSM()

void  OSTimeDlyHMSM (CPU_INT16U  hours,

                     CPU_INT16U  minutes,

                     CPU_INT16U  seconds,

                     CPU_INT32U  milli,

                     OS_OPT      opt,

                     OS_ERR     *p_err)

OSTimeDlyHMSM() allows a task to delay itself for a user-specified period that is specified in

hours, minutes, seconds, and milliseconds. This format is more convenient and natural than

simply specifying ticks as is true in the case of OSTimeDly(). Rescheduling always occurs

when at least one of the parameters is non-zero. The delay is relative from the time this

function is called.

μC/OS-III allows the user to specify nearly any value when indicating that this function is

not to be strict about the values being passed (opt == OS_OPT_TIME_HMSM_NON_STRICT).

This is a useful feature, for example, to delay a task for thousands of milliseconds.

Arguments

hours is the number of hours the task is delayed. Depending on the opt

value, the valid range is 0..99 (OS_OPT_TIME_HMSM_STRICT), or 0..999

(OS_OPT_TIME_HMSM_NON_STRICT). Please note that it not recommended to

delay a task for many hours because feedback from the task will not be

available for such a long period of time.

minutes is the number of minutes the task is delayed. The valid range of values is 0 to 59

(OS_OPT_TIME_HMSM_STRICT), or 0..9,999 (OS_OPT_TIME_HMSM_NON_STRICT).

Please note that it not recommended to delay a task for tens to hundreds of

minutes because feedback from the task will not be available for such a long

period of time.

seconds is the number of seconds the task is delayed. The valid range of values is 0 to 59

(OS_OPT_TIME_HMSM_STRICT), or 0..65,535 (OS_OPT_TIME_HMSM_NON_STRICT).

File Called from Code enabled by

OS_TIME.C Task only OS_CFG_TIME_DLY_HMSM_EN
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milli is the number of milliseconds the task is delayed. The valid range of

values is 0 to 999 (OS_OPT_TIME_HMSM_STRICT), or 0..4,294,967,295

(OS_OPT_TIME_HMSM_NON_STRICT). Note that the resolution of this

argument is in multiples of the tick rate. For instance, if the tick rate is set to

100Hz, a delay of 4 ms results in no delay. Also, the delay is rounded to the

nearest tick. Thus, a delay of 15 ms actually results in a delay of 20 ms.

opt is the desired mode and can be either:

OS_OPT_TIME_HMSM_STRICT (see above)

OS_OPT_TIME_HMSM_NON_STRICT(see above)

p_err is a pointer to a variable that contains an error code returned by this function.

OS_ERR_NONE if the call was successful and the task has

returned from the desired delay.

OS_ERR_TIME_DLY_ISR if calling this function from an ISR.

OS_ERR_TIME_INVALID_HOURS if not specifying a valid value for hours.

OS_ERR_TIME_INVALID_MINUTESif not specifying a valid value for minutes.

OS_ERR_TIME_INVALID_SECONDSif not specifying a valid value for seconds.

OS_ERR_TIME_INVALID_MILLISECONDSif not specifying a valid value for

milliseconds.

OS_ERR_TIME_ZERO_DLY if specifying a delay of 0 because all the time

arguments are 0.

Returned Value

None

Notes/Warnings

1. Note that OSTimeDlyHMSM(0,0,0,0,OS_OPT_TIME_HMSM_???,&err) (i.e., hours, minutes,

seconds, milliseconds are 0) results in no delay, and the function returns to the caller.

2. The total delay (in ticks) must not exceed the maximum acceptable value that an

OS_TICK variable can hold. Typically OS_TICK is a 32-bit value.
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Example

void TaskX (void *p_arg)

{

    OS_ERR  err;

    while (DEF_ON) {

        :

        :

        OSTimeDlyHMSM(0,

                      0,

                      1,

                      0,

                      OS_OPT_TIME_HMSM_STRICT,

                      &err);              /* Delay task for 1 second */

        /* Check �err� */

        :

        :

    }

}
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OSTimeDlyResume()

void  OSTimeDlyResume (OS_TCB  *p_tcb,

                       OS_ERR  *p_err)

OSTimeDlyResume() resumes a task that has been delayed through a call to either

OSTimeDly(), or OSTimeDlyHMSM().

Arguments

p_tcb is a pointer to the TCB of the task that is resuming. A NULL pointer is not valid

since it would indicate that the user is attempting to resume the current task

and that is not possible as the caller cannot possibly be delayed.

p_err is a pointer to a variable that contains an error code returned by this function.

OS_ERR_NONE if the call was successful and the task was

resumed.

OS_ERR_STATE_INVALID if the task is in an invalid state.

OS_ERR_TIME_DLY_RESUME_ISR if calling this function from an ISR.

OS_ERR_TIME_NOT_DLY if the task was not delayed.

OS_ERR_TASK_SUSPENDED if the task to resume is suspended and will

remain suspended.

Returned Value

None

Notes/Warnings

Do not call this function to resume a task that is waiting for an event with timeout.

File Called from Code enabled by

OS_TIME.C Task only OS_CFG_TIME_DLY_RESUME_EN



554

Appendix A

Example

OS_TCB  AnotherTaskTCB;

void TaskX (void *p_arg)

{

    OS_ERR  err;

    while (DEF_ON) {

        :

        OSTimeDlyResume(&AnotherTaskTCB,

                        &err);

        /* Check �err� */

        :

    }

}
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OSTimeGet()

OS_TICK  OSTimeGet (OS_ERR  *p_err)

OSTimeGet() obtains the current value of the system clock. Specifically, it returns a

snapshot of the variable OSTaskTickCtr. The system clock is a counter of type OS_TICK

that counts the number of clock ticks since power was applied, or since OSTaskTickCtr

was last set by OSTimeSet().

Arguments

p_err is a pointer to a variable that contains an error code returned by this function.

OS_ERR_NONE if the call was successful.

Returned Value

The current value of OSTaskTickCtr (in number of ticks).

Notes/Warnings

None

Example

File Called from Code enabled by

OS_TIME.C Task + ISR N/A

void TaskX (void *p_arg)

{

    OS_TICK  clk;

    OS_ERR   err;

    while (DEF_ON) {

        :

        :

        clk = OSTimeGet(&err);  /* Get current value of system clock */

        /* Check �err� */

        :

        :

    }

}
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OSTimeSet()

void  OSTimeSet (OS_TICK  ticks,

                 OS_ERR  *p_err)

OSTimeSet() sets the system clock. The system clock is a counter, which has a data type of

OS_TICK, and it counts the number of clock ticks since power was applied. or since the

system clock was last set.

Arguments

ticks is the desired value for the system clock, in ticks.

p_err is a pointer to a variable that will contain an error code returned by this function.

OS_ERR_NONE if the call was successful.

Returned Value

None

Notes/Warnings

You should be careful when using this function because other tasks may depend on the

current value of the tick counter (OSTickCtr). Specifically, a task may delay itself (see

OSTimeDly() and specify to wake up when OSTickCtr reaches a specific value.

File Called from Code enabled by

OS_TIME.C Task + ISR N/A
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Example

void TaskX (void *p_arg)

{

    OS_ERR  err;

    while (DEF_ON) {

        :

        :

        OSTimeSet(0,

                  &err);        /* Reset the system clock  */

        /* Check �err� */

        :

        :

    }

}
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OSTimeTick()

void  OSTimeTick (void)

OSTimeTick() “announces” that a tick has just occurred, and that time delays and timeouts

need to be updated. This function must be called from the tick ISR.

Arguments

None

Returned Value

None

Notes/Warnings

None

Example

File Called from Code enabled by

OS_TIME.C ISR N/A

void MyTickISR (void)

{

    /* Clear interrupt source */

    OSTimeTick();

    :

    :

}
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OSTimeTickHook()

void  OSTimeTickHook (void);

This function is called by OSTimeTick(), which is assumed to be called from an ISR.

OSTimeTickHook() is called at the very beginning of OSTimeTick() to give priority to user

or port-specific code when the tick interrupt occurs.

If the #define OS_APP_HOOKS_EN is set to 1 in OS_CFG.H, OSTimeTickHook() will call

AppTimeTickHook().

OSTimeTickHook() is part of the CPU port code and the function must not be called by the

application code. OSTimeTickHook() is actually used by the μC/OS-III port developer.

Arguments

None

Returned Value

None

Notes/Warnings

Do not call this function from the application.

File Called from Code enabled by

OS_CPU_C.C OSTimeTick() ONLY N/A
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Example

The code below calls an application-specific hook that the application programmer can

define. The user can simply set the value of OS_AppTimeTickHookPtr to point to the

desired hook function OSTimeTickHook() is called by OSTimeTick() which in turn calls

App_OS_TimeTickHook() through the pointer OS_AppTimeTickHookPtr.  

void  App_OS_TimeTickHook (void)                          /* OS_APP_HOOKS.C         */

{

    /* Your code goes here! */

}

void App_OS_SetAllHooks (void)                            /* OS_APP_HOOKS.C         */

{

    CPU_SR_ALLOC();

    CPU_CRITICAL_ENTER();

    :

    OS_AppTimeTickHookPtr = App_OS_TimeTickHook;

    :

    CPU_CRITICAL_EXIT();

}

void  OSTimeTickHook (void)                                /* OS_CPU_C.C            */

{

#if OS_CFG_APP_HOOKS_EN > 0u

    if (OS_AppTimeTickHookPtr != (OS_APP_HOOK_VOID)0) {   /* Call application hook */

        (*OS_AppTimeTickHookPtr)();

    }

#endif

}
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OSTmrCreate()

void  OSTmrCreate (OS_TMR              *p_tmr,

                   CPU_CHAR            *p_name,

                   OS_TICK              dly,

                   OS_TICK              period,

                   OS_OPT               opt,

                   OS_TMR_CALLBACK_PTR  p_callback,

                   void                *p_callback_arg,

                   OS_ERR              *p_err)

OSTmrCreate() allows the user to create a software timer. The timer can be configured to

run continuously (opt set to OS_TMR_OPT_PERIODIC), or only once (opt set to

OS_TMR_OPT_ONE_SHOT). When the timer counts down to 0 (from the value specified in

period), an optional “callback” function can be executed. The callback can be used to signal

a task that the timer expired, or perform any other function. However, it is recommended to

keep the callback function as short as possible.

The timer is created in the “stop” mode and therefore the user must call OSTmrStart() to

actually start the timer. If configuring the timer for ONE-SHOT mode, and the timer expires,

call OSTmrStart() to retrigger the timer, or OSTmrDel() to delete the timer if it is not

necessary to retrigger it, or not use the timer anymore. Note: use the callback function to

delete the timer if using the ONE-SHOT mode.

File Called from Code enabled by

OS_TMR.C Task Only OS_CFG_TMR_EN
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PERIODIC MODE (see “opt”) – dly > 0, period > 0

PERIODIC MODE (see “opt”) – “ == 0
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ONE-SHOT MODE (see “opt”) – dly > 0, period == 0

Arguments

p_tmr is a pointer to the timer-control block of the desired timer. It is assumed that

storage for the timer will be allocated in the application. In other words, declare a

“global” variable as follows, and pass a pointer to this variable to OSTmrCreate():

OS_TMR MyTmr;

p_name is a pointer to an ASCII string (NUL terminated) used to assign a name to the

timer. The name can be displayed by debuggers or μC/Probe.

dly specifies the initial delay (specified in timer tick units) used by the timer (see

drawing above). If the timer is configured for ONE-SHOT mode, this is the

timeout used. If the timer is configured for PERIODIC mode, this is the timeout

to wait before the timer enters periodic mode. The units of this time depends

on how often the user will call OSTmrSignal() (see OSTimeTick()). If

OSTmrSignal() is called every 1/10 of a second (i.e.,

OS_CFG_TMR_TASK_RATE_HZ set to 10), dly specifies the number of 1/10 of a

second before the delay expires. Note that the timer is not started when it is

created.
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period specifies the period repeated by the timer if configured for PERIODIC mode.

Set the “period” to 0 when using ONE-SHOT mode. The units of time depend

on how often OSTmrSignal() is called. If OSTmrSignal() is called every 1/10

of a second (i.e., OS_CFG_TMR_TASK_RATE_HZ set to 10), the period specifies

the number of 1/10 of a second before the timer times out.

opt is used to specify whether the timer is to be ONE-SHOT or PERIODIC:

OS_OPT_TMR_ONE_SHOT ONE-SHOT mode

OS_OPT_TMR_PERIODIC PERIODIC mode

p_callback is a pointer to a function that will execute when the timer expires (ONE-SHOT

mode), or every time the period expires (PERIODIC mode). A NULL pointer

indicates that no action is to be performed upon timer expiration. The callback

function must be declared as follows:

void MyCallback (OS_TMR *p_tmr, void *p_arg);

When called, the callback will be passed the pointer to the timer as well as an

argument (p_callback_arg), which can be used to indicate to the callback what

to do. Note that the user is allowed to call all of the timer related functions (i.e.,

OSTmrCreate(), OSTmrDel(), OSTmrStateGet(), OSTmrRemainGet(),

OSTmrStart(), and OSTmrStop()) from the callback function.

Do not make blocking calls within callback functions.

p_callback_arg is an argument passed to the callback function when the timer expires

(ONE-SHOT mode), or every time the period expires (PERIODIC mode).

The pointer is declared as a “void *” so it can point to any data.

p_err is a pointer to a variable that contains an error code returned by this function.

OS_ERR_NONE if the call was successful.

OS_ERR_OBJ_CREATED if the timer was already created

OS_ERR_OBJ_PTR_NULL if p_tmr is a NULL pointer

OS_ERR_TMR_INVALID_DLY if specifying an invalid delay in ONE-SHOT

mode. In other words, it is not allowed to

delay for 0 in ONE-SHOT mode.
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OS_ERR_TMR_INVALID_PERIOD if specifying an invalid period in PERIODIC

mode. It is not allowed to have a 0 period in

PERIODIC.

OS_ERR_TMR_INVALID_OPT if not specifying a valid options.

OS_ERR_TMR_ISR if calling this function from an ISR.

Returned Values

None.

Notes/Warnings

1. Do not call this function from an ISR.

2. The timer is not started when it is created. To start the timer, call OSTmrStart().

3. Do not make blocking calls within callback functions.

4. Keep callback functions as short as possible.
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Example

OS_TMR  CloseDoorTmr;

void Task (void *p_arg)

{

    OS_ERR   err;

    (void)&p_arg;

    while (DEF_ON) {

        OSTmrCreate(&CloseDoorTmr,         /* p_tmr          */

                   �Door close�           /* p_name         */

                    10,                   /* dly            */

                   100,                   /* period         */

                   OS_OPT_TMR_PERIODIC,   /* opt            */

                   DoorCloseFnct,         /* p_callback     */

                   0,                     /* p_callback_arg */

                   &err);                 /* p_err          */

        /* Check �err� */

    }

}

void  DoorCloseFnct (void *p_arg)

{

    /* Close the door! */

}
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OSTmrDel()

CPU_BOOLEAN  OSTmrDel(OS_TMR    *p_tmr,

                      OS_ERR    *p_err)

OSTmrDel() allows the user to delete a timer. If a timer was running it will be stopped, then

deleted. If the timer has already timed out and is therefore stopped, it will simply be

deleted.

It is up to the user to delete unused timers. If deleting a timer, Do not reference it again.

Arguments

p_tmr is a pointer to the timer to be deleted.

p_err a pointer to an error code and can be any of the following:

OS_ERR_NONE if the timer was deleted.

OS_ERR_OBJ_TYPE if the user did not pass a pointer to a timer.

OS_ERR_TMR_INVALID if p_tmr is a NULL pointer.

OS_ERR_TMR_ISR This function is called from an ISR, which is

not allowed.

OS_ERR_TMR_INACTIVE p_tmr is pointing to an inactive timer. In

other words, this error appears when pointing

to a timer that has been deleted or was not

created.

OS_ERR_TMR_INVALID_STATE the timer is in an invalid state.

Returned Values

DEF_TRUE if the timer was deleted, DEF_FALSE if not.

File Called from Code enabled by

OS_TMR.C Task only OS_CFG_TMR_EN and 

OS_CFG_TMR_DEL_EN
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Notes/Warnings

1. Examine the return value to make sure what is received from this function is valid.

2. Do not call this function from an ISR.

3. When deleting a timer, do not reference it again.

Example

OS_TMR  CloseDoorTmr;

void Task (void *p_arg)

{

    OS_ERR       err;

    CPU_BOOLEAN  deleted;

    (void)&p_arg;

    while (DEF_ON) {

        deleted = OSTmrDel(&CloseDoorTmr,

                           &err);

        /* Check �err� */

    }

}
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OSTmrRemainGet()

OS_TICK  OSTmrRemainGet(OS_TMR *p_tmr,

                        OS_ERR *p_err);

OSTmrRemainGet() allows the user to obtain the time remaining (before timeout) of the

specified timer. The value returned depends on the rate (in Hz) at which the timer task is

signaled (see OS_CFG_TMR_TASK_RATE_HZ). If OS_CFG_TMR_TASK_RATE_HZ is set to 10, the

value returned is the number of 1/10 of a second before the timer times out. If the timer has

timed out, the value returned is 0.

Arguments

p_tmr is a pointer to the timer the user is inquiring about.

p_err a pointer to an error code and can be any of the following:

OS_ERR_NONE if the function returned the time remaining for

the timer.

OS_ERR_OBJ_TYPE ‘p_tmr” is not pointing to a timer.

OS_ERR_TMR_INVALID if p_tmr is a NULL pointer.

OS_ERR_TMR_ISR This function is called from an ISR, which is

not allowed.

OS_ERR_TMR_INACTIVE p_tmr is pointing to an inactive timer. In

other words, this error will appear when

pointing to a timer that has been deleted or

was not created.

OS_ERR_TMR_INVALID_STATE the timer is in an invalid state.

Returned Values

The time remaining for the timer. The value returned depends on the rate (in Hz) at which

the timer task is signaled (see OS_CFG_TMR_TASK_RATE_HZ). If OS_CFG_TMR_TASK_RATE_HZ

is set to 10 the value returned is the number of 1/10 of a second before the timer times out.

If specifying an invalid timer, the returned value will be 0. If the timer expired, the returned

value will be 0.

File Called from Code enabled by

OS_TMR.C Task only OS_CFG_TMR_EN
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Notes/Warnings

1. Examine the returned error code to ensure the results from this function are valid.

2. Do not call this function from an ISR.

Example

OS_TICK   TimeRemainToCloseDoor;

OS_TMR    CloseDoorTmr;

void Task (void *p_arg)

{

    OS_ERR    err;

    (void)&p_arg;

    while (DEF_ON) {

        TimeRemainToCloseDoor = OSTmrRemainGet(&CloseDoorTmr,

                                               &err);

        /* Check �err� */

    }

}
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OSTmrStart()

CPU_BOOLEAN  OSTmrStart (OS_TMR   *p_tmr,

                         OS_ERR   *p_err);

OSTmrStart() allows the user to start (or restart) the countdown process of a timer. The

timer must have previously been created.

Arguments

p_tmr is a pointer to the timer to start (or restart).

p_err a pointer to an error code and can be any of the following:

OS_ERR_NONE if the timer was started.

OS_ERR_OBJ_TYPE ‘p_tmr” is not pointing to a timer.

OS_ERR_TMR_INVALID if p_tmr is a NULL pointer.

OS_ERR_TMR_INACTIVE p_tmr is pointing to an inactive timer. In

other words, this error occurs if pointing to a

timer that has been deleted or was not

created.

OS_ERR_TMR_INVALID_STATE the timer is in an invalid state.

OS_ERR_TMR_ISR This function was called from an ISR, which is

not allowed.

Returned Values

DEF_TRUE if the timer was started

DEF_FALSE if an error occurred.

Notes/Warnings

1. Do not call this function from an ISR.

2. The timer must have previously been created.

File Called from Code enabled by

OS_TMR.C Task OS_CFG_TMR_EN
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Example

OS_TMR      CloseDoorTmr;

void Task (void *p_arg)

{

    OS_ERR       err;

    CPU_BOOLEAN  status;

    (void)&p_arg;

    while (DEF_ON) {

        status = OSTmrStart(&CloseDoorTmr,

                            &err);

        /* Check �err� */

    }

}
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OSTmrStateGet()

OS_STATE  OSTmrStateGet(OS_TMR  *p_tmr,

                        OS_ERR  *p_err);

OSTmrStateGet() allows the user to obtain the current state of a timer. A timer can be in

one of four states:

OS_TMR_STATE_UNUSED the timer has not been created

OS_TMR_STATE_STOPPED the timer is created but has not yet started, or

has been stopped.

OS_TMR_STATE_COMPLETED the timer is in one-shot mode, and has

completed its delay.

OS_TMR_STATE_RUNNING the timer is currently running

Arguments

p_tmr is a pointer to the timer that the user is inquiring about. This pointer is returned

when the timer is created (see OSTmrCreate()).

p_err a pointer to an error code and can be any of the following:

OS_ERR_NONE if the function returned the state of the timer.

OS_ERR_OBJ_TYPE p_tmr is not pointing to a timer.

OS_ERR_TMR_INVALID if p_tmr is a NULL pointer.

OS_ERR_TMR_INVALID_STATE the timer is in an invalid state.

OS_ERR_TMR_ISR This function was called from an ISR, which is

not allowed.

Returned Values

The state of the timer (see description).

Notes/Warnings

1. Examine the return value to ensure the results from this function are valid.

2. Do not call this function from an ISR.

File Called from Code enabled by

OS_TMR.C Task only OS_CFG_TMR_EN
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Example

OS_STATE   CloseDoorTmrState;

OS_TMR     CloseDoorTmr;

void Task (void *p_arg)

{

    OS_ERR  err;

    (void)&p_arg;

    while (DEF_ON) {

        CloseDoorTmrState = OSTmrStateGet(&CloseDoorTmr,

                                          &err);

        /* Check �err� */

    }

}
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OSTmrStop()

CPU_BOOLEAN   OSTmrStop (OS_TMR   *p_tmr,

                         OS_OPT    opt,

                         void     *p_callback_arg,

                         OS_ERR   *p_err)

OSTmrStop() allows the user to stop a timer. The user may execute the callback function of

the timer when it is stopped, and pass this callback function a different argument than was

specified when the timer was started. This allows the callback function to know that the

timer was stopped since the callback argument can be set to indicate this (this is application

specific). If the timer is already stopped, the callback function is not called.

Arguments

p_tmr is a pointer to the timer control block of the desired timer.

opt is used to specify options:

OS_OPT_TMR_NONE No option

OS_OPT_TMR_CALLBACK Run the callback function with the argument

specified when the timer was created.

OS_OPT_TMR_CALLBACK_ARG Run the callback function, but use the

argument passed in OSTmrStop() instead of

the one specified when the task was created.

p_callback_arg is a new argument to pass the callback functions (see options

above).

p_err is a pointer to a variable that contains an error code returned by this function.

OS_ERR_NONE if the call was successful.

OS_ERR_OBJ_TYPE if p_tmr is not pointing to a timer object.

OS_ERR_TMR_INACTIVE the timer cannot be stopped since it is

inactive.

File Called from Code enabled by

OS_TMR.C Task OS_CFG_TMR_EN
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OS_ERR_TMR_INVALID When passing a NULL pointer for the p_tmr

argument.

OS_ERR_TMR_INVALID_OPT if the user did not specify a valid option.

OS_ERR_TMR_INVALID_STATE the timer is in an invalid state.

OS_ERR_TMR_ISR if calling this function from an ISR.

OS_ERR_TMR_NO_CALLBACK if the timer lacks a callback function. This

should be specified when the timer is created.

OS_ERR_TMR_STOPPED if the timer is currently stopped.

Returned Values

DEF_TRUE if the timer was stopped (even if it was already stopped).

DEF_FALSE if an error occurred.

Notes/Warnings

1. Examine the returned error code to make ensure the results from this function are valid.

2. Do not call this function from an ISR.

3. The callback function is not called if the timer is already stopped.

Example

OS_TMR  CloseDoorTmr;

void Task (void *p_arg)

{

    OS_ERR     err;

    (void)&p_arg;

    while (DEF_ON) {

        OSTmrStop(&CloseDoorTmr,

                  OS_TMR_OPT_CALLBACK,

                  (void *)0,

                  &err);

        /* Check �err� */

    }

}
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OSVersion()

CPU_INT16U OSVersion (OS_ERR  *p_err);

OSVersion() obtains the current version of μC/OS-III.

Arguments

p_err is a pointer to a variable that contains an error code returned by this function.

Currently, OSVersion() always return:

OS_ERR_NONE

Returned Value

The version is returned as x.yy multiplied by 1000. For example, v3.00.0 is returned as 3000.

Notes/Warnings

None

Example

File Called from Code enabled by

OS_CORE.C Task or ISR N/A

void TaskX (void *p_arg)

{

    CPU_INT16U  os_version;

    OS_ERR      err;

    while (DEF_ON) {

        :

        :

        os_version = OSVersion(&err);  /* Obtain μC/OS-III's version       */
        /* Check �err� */

        :

        :

    }

}
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Three (3) files are used to configure μC/OS-III as highlighted in Figure B-1: OS_CFG.H,

OS_TYPE.H, and OS_CFG_APP.H.

Table B-1 shows where these files are typically located on your on a computer.

Table B-1 Configuration files and directories

File Directory

OS_CFG.H \Micrium\Software\uCOS-III\Cfg\Template

OS_CFG_APP.H \Micrium\Software\uCOS-III\Cfg\Template

OS_TYPE.H \Micrium\Software\uCOS-III\Source
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Figure B-1 Task pending on multiple objects
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FB-1(1) µC/OS-III Features (OS_CFG.H):

OS_CFG.H is used to determine which features are needed from μC/OS-III for

an application (i.e., product). Specifically, this file allows a user to determine

whether to include semaphores, mutexes, event flags, run-time argument

checking, etc. If μC/OS-III is provided in linkable object form, the available

features are determined in advanced.

If using a pre-compiled μC/OS-III library, make sure to use the same OS_CFG.H

file used to build this library so that all the data types properly match up.

FB-1(2) µC/OS-III Data Types (OS_TYPE.H):

OS_TYPE.H establishes μC/OS-III-specific data types used when building an

application. It specifies the size of variables used to represent task priorities,

the size of a semaphore count, and more. This file contains recommended data

types for μC/OS-III, however these can be altered to make better use of the

CPU’s natural word size. For example, on some 32-bit CPUs, it is better to

declare boolean variables as 32-bit values for performance considerations, even

though an 8-bit quantity is more space efficient (assuming performance is more

important than footprint). 

The port developer typically makes those decisions, since altering the contents

of the file requires a deep understanding of the CPU and, most important, how

data sizes affect μC/OS-III.

If using a pre-compiled μC/OS-III library, make sure to use the same

OS_TYPE.H file used to build this library so that all the data types properly

match up.

FB-1(3) µC/OS-III Stacks, Pools and other data sizes (OS_CFG_APP.H):

μC/OS-III can be configured at the application level through #define constants

in OS_CFG_APP.H even if μC/OS-III is provided in linkable object form. The

#defines allows a user to specify stack sizes for all μC/OS-III internal tasks:

the idle task, statistic task, tick task, timer task, and the ISR handler task.
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OS_CFG_APP.H also allows users to specify task priorities (except for the idle

task since it is always the lowest priority), the tick rate, tick wheel size, the

timer wheel size, and more. 

You can simply copy OS_CFG_APP.H into the project directory and alter the

contents of this file for the application. Once altered, simply re-compile

OS_CFG_APP.C, and link the object file produced by the compiler with the rest

of the μC/OS-III application. OS_CFG_APP.C “maps” the #define constants

defined in OS_CFG_APP.H to variables (placed in code space, i.e., ROM) that

μC/OS-III uses at initialization. This process is necessary to allow using

μC/OS-III in linkable object form. μC/OS-III licensees will have full source code

for μC/OS-III.

The contents of the three configuration files will be described in the following sections.
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B-1  µC/OS-III FEATURES (OS_CFG.H)

Compile-time configuration allows users to determine which features to enable and those

features that are not needed. This assumes that the user has the μC/OS-III source code. With

compile-time configuration, the code and data sizes of μC/OS-III (i.e., its footprint) can be

reduced by enabling only the desired functionality. 

Compile-time configuration is accomplished by setting a number of #define constants in a

file called OS_CFG.H that the application is expected to provide. With the full source code for

μC/OS-III, simply copy OS_CFG.H into the application directory and change the copied file to

satisfy the application’s requirements. This way, OS_CFG.H is not recreated from scratch.

The compile-time configuration #defines are listed below in alphabetic order and are not

necessarily found in this order in OS_CFG.H.

OS_CFG_APP_HOOKS_EN

When set to 1, this #define specifies that application-defined hooks can be called from

μC/OS-III’s hooks. This allows the application code to extend the functionality of

μC/OS-III. Specifically:

The µC/OS-III hook … Calls the Application-define hook through…

OSIdleTaskHook() OS_AppIdleTaskHookPtr

OSInitHook() None

OSStatTaskHook() OS_AppStatTaskHookPtr

OSTaskCreateHook() OS_AppTaskCreateHookPtr

OSTaskDelHook() OS_AppTaskDelHookPtr

OSTaskReturnHook() OS_AppTaskReturnHookPtr

OSTaskSwHook() OS_AppTaskSwHookPtr

OSTimeTickHook() OS_AppTimeTickHookPtr
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Application hook functions could be declared as shown in the code below. 

It’s also up to a user to set the value of the pointers so that they point to the appropriate

functions as shown below. The pointers do not have to be set in main() but, set them after

calling OSInit(). 

void  App_OS_TaskCreateHook (OS_TCB *p_tcb)

{

    /* Your code here */

}

void  App_OS_TaskDelHook (OS_TCB *p_tcb)

{

    /* Your code here */

}

void  App_OS_TaskReturnHook (OS_TCB *p_tcb)

{

    /* Your code here */

}

void  App_OS_IdleTaskHook (void)

{

    /* Your code here */

}

void  App_OS_StatTaskHook (void)

{

    /* Your code here */

}

void  App_OS_TaskSwHook (void)

{

    /* Your code here */

}

void  App_OS_TimeTickHook (void)

{

    /* Your code here */

}
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Note that not every hook function need to be defined, only the ones the user wants to place

in the application code.

Also, if you don't intend to extend μC/OS-III’s hook through these application hooks, set

OS_CFG_APP_HOOKS_EN to 0 to save RAM (i.e., the pointers).

OS_CFG_ARG_CHK_EN

OS_CFG_ARG_CHK_EN determines whether the user wants most of μC/OS-III functions to

perform argument checking. When set to 1, μC/OS-III ensures that pointers passed to

functions are non-NULL, that arguments passed are within allowable range, that options are

valid, and more. When set to 0, OS_CFG_ARG_CHK_EN reduces the amount of code space

and processing time required by μC/OS-III. Set OS_CFG_ARG_CHK_EN to 0 if you are certain

that the arguments are correct.

μC/OS-III performs argument checking in over 40 functions. Therefore, you can save a few

hundred bytes of code space by disabling this check. However, always enable argument

checking until you are certain the code can be trusted.

OS_CFG_CALLED_FROM_ISR_CHK_EN

OS_CFG_CALLED_FROM_ISR_CHK_EN determines whether most of μC/OS-III functions are to

confirm that the function is not called from an ISR. In other words, most of the functions

from μC/OS-III should be called by task-level code except “post” type functions (which can

void  main (void)

{

     OS_ERR  err;

     OSInit(&err);

     :

     :

     OS_AppTaskCreateHookPtr = (OS_APP_HOOK_TCB )App_OS_TaskCreateHook;

     OS_AppTaskDelHookPtr    = (OS_APP_HOOK_TCB )App_OS_TaskDelHook;

     OS_AppTaskReturnHookPtr = (OS_APP_HOOK_TCB )App_OS_TaskReturnHook;

     OS_AppIdleTaskHookPtr   = (OS_APP_HOOK_VOID)App_OS_IdleTaskHook;

     OS_AppStatTaskHookPtr   = (OS_APP_HOOK_VOID)App_OS_StatTaskHook;

     OS_AppTaskSwHookPtr     = (OS_APP_HOOK_VOID)App_OS_TaskSwHook;

     OS_AppTimeTickHookPtr   = (OS_APP_HOOK_VOID)App_OS_TimeTickHook;

     :

     :

     OSStart(&err);

}
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also be called from ISRs). By setting this #define to 1 μC/OS-III is told to make sure that

functions that are only supposed to be called by tasks are not called by ISRs. It’s highly

recommended to set this #define to 1 until absolutely certain that the code is behaving

correctly and that task-level functions are always called from tasks. Set this #define to 0 to

save code space and, of course, processing time. 

μC/OS-III performs this check in approximately 50 functions. Therefore, you can save a few

hundred bytes of code space by disabling this check.

OS_CFG_DBG_EN

When set to 1, this #define adds ROM constants located in OS_DBG.C to help support

kernel aware debuggers. Specifically, a number of named ROM variables can be queried by

a debugger to find out about compiled-in options. For example, a debugger can find out the

size of an OS_TCB, μC/OS-III’s version number, the size of an event flag group

(OS_FLAG_GRP), and much more.

OS_CFG_FLAG_EN

OS_CFG_FLAG_EN enables (when set to 1) or disables (when set to 0) code generation of

event flag services and data structures. This reduces the amount of code and data space

needed when an application does not require event flags. When OS_CFG_FLAG_EN is set to

0, it is not necessary to enable or disable any of the other OS_CFG_FLAG_xxx #define

constants in this section.

OS_CFG_FLAG_DEL_EN

OS_CFG_FLAG_DEL_EN enables (when set to 1) or disables (when set to 0) code generation

of the function OSFlagDel().

OS_CFG_FLAG_MODE_CLR_EN

OS_CFG_FLAG_MODE_CLR_EN enables (when set to 1) or disables (when set to 0) code

generation used to wait for event flags to be 0 instead of 1. Generally, wait for event flags to

be set. However, the user may also want to wait for event flags to be clear and in this case,

enable this option.

OS_CFG_FLAG_PEND_ABORT_EN

OS_CFG_FLAG_PEND_ABORT_EN enables (when set to 1) or disables (when set to 0) code

generation of the function OSFlagPendAbort().
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OS_CFG_ISR_POST_DEFERRED_EN

When set to 1, OS_CFG_ISR_POST_DEFERRED_EN reduces interrupt latency since interrupts

are not disabled during most critical sections of code within μC/OS-III. Instead, the

scheduler is locked during the processing of these critical sections. The advantage of setting

OS_CFG_ISR_POST_DEFERRED_EN to 1 is that interrupt latency is lower, however, ISR to task

response is slightly higher. It is recommended to set 

OS_CFG_ISR_POST_DEFERRED_EN to 1 when enabling the following services, as setting this

#define to 0 would potentially make interrupt latency unacceptably high:

The compromise to make is:

OS_CFG_ISR_POST_DEFERRED_EN set to 1

Short interrupt latency, longer ISR-to-task response.

OS_CFG_ISR_POST_DEFERRED_EN set to 0

Long interrupt latency (see table above), shorter ISR-to-task response.

OS_CFG_MEM_EN

OS_CFG_MEM_EN enables (when set to 1) or disables (when set to 0) code generation of the

μC/OS-III partition memory manager and its associated data structures. This feature allows

users to reduce the amount of code and data space needed when an application does not

require the use of memory partitions.

µC/OS-III Services Enabled by …

Event Flags OS_CFG_FLAG_EN

Multiple Pend OS_CFG_PEND_MULTI_EN

OS???Post() with broadcast

OS???Del() with OS_OPT_DEL_ALWAYS

OS???PendAbort()
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OS_CFG_MUTEX_EN

OS_CFG_MUTEX_EN enables (when set to 1) or disables (when set to 0) the code generation

of all mutual exclusion semaphore services and data structures. This feature allows users to

reduce the amount of code and data space needed when an application does not require

the use of mutexes. When OS_CFG_MUTEX_EN is set to 0, there is no need to enable or

disable any of the other OS_CFG_MUTEX_XXX #define constants in this section.

OS_CFG_MUTEX_DEL_EN

OS_CFG_MUTEX_DEL_EN enables (when set to 1) or disables (when set to 0) code generation

of the function OSMutexDel().

OS_CFG_MUTEX_PEND_ABORT_EN

OS_CFG_MUTEX_PEND_ABORT_EN enables (when set to 1) or disables (when set to 0) code

generation of the function OSMutexPendAbort().

OS_CFG_OBJ_TYPE_CHK_EN

OS_CFG_OBJ_TYPE_CHK_EN determines whether most of μC/OS-III functions should check

to see if the function is manipulating the proper object. In other words, if attempting to post

to a semaphore, is the user in fact passing a semaphore object or another object by mistake?

It is recommended to set this #define to 1 until absolutely certain that the code is behaving

correctly and the user code is always pointing to the proper objects. Set this #define to 0 to

save code space as well as data space. μC/OS-III object type checking is done nearly 30

times, and it is possible to save a few hundred bytes of code space and processing time by

disabling this check. 

OS_CFG_PEND_MULTI_EN

This constant determines whether the code to support pending on multiple events (i.e.,

semaphores or message queues) will be enabled (1) or not (0). 

OS_CFG_PRIO_MAX

OS_CFG_PRIO_MAX specifies the maximum number of priorities available in the application.

Specifying OS_CFG_PRIO_MAX to just the number of priorities the user intends to use,

reduces the amount of RAM needed by μC/OS-III. 

In μC/OS-III, task priorities can range from 0 (highest priority) to a maximum of 255 (lowest

possible priority) when the data type OS_PRIO is defined as a CPU_INT08U. However, in 
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μC/OS-III, there is no practical limit to the number of available priorities. Specifically, if

defining OS_PRIO as a CPU_INT16U, there can be up to 65536 priority levels. It is

recommended to leave OS_PRIO defined as a CPU_INT08U and use only 256 different

priority levels (i.e., 0..255), which is generally sufficient for every application. Always set the

value of OS_CFG_PRIO_MAX to even multiples of 8 (8, 16, 32, 64, 128, 256, etc.). The higher

the number of different priorities, the more RAM μC/OS-III will consume.

An application cannot create tasks with a priority number higher than or equal to 

OS_CFG_PRIO_MAX. In fact, μC/OS-III reserves priority OS_CFG_PRIO_MAX-1 for itself;

OS_CFG_PRIO_MAX-1 is reserved for the idle task OS_IdleTask(). Additionally, do not use

priority 0 for an application since it is reserved by μC/OS-III’s ISR handler task. The

priorities of the application tasks can therefore take a value between 1 and

OS_CFG_PRIO_MAX�2 (inclusive).

To summarize, there are two priority levels to avoid in an application:

OS_CFG_Q_EN

OS_CFG_Q_EN enables (when set to 1) or disables (when set to 0) code generation of

message queue services and data structures. This reduces the amount of code space needed

when an application does not require the use of message queues. When OS_CFG_Q_EN is set

to 0, do not enable or disable any of the other OS_CFG_Q_XXX #define constants in this

section. 

OS_CFG_Q_DEL_EN

OS_CFG_Q_DEL_EN enables (when set to 1) or disables (when set to 0) code generation of

the function OSQDel().

Priority Reserved by µC/OS-III for …

0 The ISR Handler Task (OS_IntQTask())

1 Reserved

2 Reserved

OS_CFG_PRIO_MAX-2 Reserved

OS_CFG_PRIO_MAX-1 The idle task (OS_IdleTask())
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OS_CFG_Q_FLUSH_EN

OS_CFG_Q_FLUSH_EN enables (when set to 1) or disables (when set to 0) code generation of

the function OSQFlush().

OS_CFG_Q_PEND_ABORT_EN

OS_CFG_Q_PEND_ABORT_EN enables (when set to 1) or disables (when set to 0) code

generation of the function OSQPendAbort(). 

OS_CFG_SCHED_LOCK_TIME_MEAS_EN

This constant enables (when set to 1) or disables (when set to 0) code generation to

measure the amount of time the scheduler is locked. This is useful when determining task

latency.

OS_CFG_SCHED_ROUND_ROBIN_EN

This constant enables (when set to 1) or disables (when set to 0) code generation for the

round-robin feature of μC/OS-III.

OS_CFG_SEM_EN

OS_CFG_SEM_EN enables (when set to 1) or disables (when set to 0) code generation of the

semaphore manager and associated data structures. This reduces the amount of code and

data space needed when an application does not require the use of semaphores. When

OS_CFG_SEM_EN is set to 0, it is not necessary to enable or disable any of the other

OS_CFG_SEM_XXX #define constants in this section.

OS_CFG_SEM_DEL_EN

OS_CFG_SEM_DEL_EN enables (when set to 1) or disables (when set to 0) code generation of

the function OSSemDel().

OS_CFG_SEM_PEND_ABORT_EN

OS_CFG_SEM_PEND_ABORT_EN enables (when set to 1) or disables (when set to 0) code

generation of the function OSSemPendAbort().

OS_CFG_SEM_SET_EN

OS_CFG_SEM_SET_EN enables (when set to 1) or disables (when set to 0) code generation of

the function OSSemSet().
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OS_CFG_STAT_TASK_EN

OS_CFG_STAT_TASK_EN specifies whether or not to enable μC/OS-III’s statistic task, as well

as its initialization function. When set to 1, the statistic task OS_StatTask() and statistic

task initialization function are enabled. OS_StatTask() computes the CPU usage of an

application, stack usage of each task, the CPU usage of each task at run time and more. 

When enabled, OS_StatTask() executes at a rate of OS_CFG_STAT_TASK_RATE_HZ (see

OS_CFG_APP.H), and computes the value of OSStatTaskCPUUsage, which is a variable that

contains the percentage of CPU used by the application. OS_StatTask() calls

OSStatTaskHook() every time it executes so that the user can add their own statistics as

needed. See OS_STAT.C for details on the statistic task. The priority of OS_StatTask() is

configurable by the application code (see OS_CFG_APP.H).

OS_StatTask() also computes stack usage of each task created when the #define 

OS_CFG_STAT_TASK_STK_CHK_EN is set to 1. In this case, OS_StatTask() calls

OSTaskStkChk() for each task and the result is placed in the task’s TCB. The .StkFree and

.StkUsed field of the task’s TCB represents the amount of free space (in bytes) and amount

of used space, respectively.

When OS_CFG_STAT_TASK_EN is set to 0, all variables used by the statistic task are not

declared (see OS.H). This, of course, reduces the amount of RAM needed by μC/OS-III

when not enabling the statistic task. When setting OS_CFG_STAT_TASK_EN to 1, statistics will

be determined at a rate of OS_CFG_STAT_TASK_RATE_HZ (see OS_CFG_APP.H).

OS_CFG_STAT_TASK_STK_CHK_EN

This constant allows the statistic task to call OSTaskStkChk() for each task created. For this

to happen, OS_CFG_STAT_TASK_EN needs to be set to 1 (i.e., the statistic task needs to be

enabled). However, call OSStatStkChk() from one of the tasks to obtain this information

about the task(s). 

OS_CFG_STK_SIZE_MIN

This #define specifies the minimum stack size (in CPU_STK elements) for each task. This is

used by μC/OS-III to verify that sufficient stack space is provided for when each task is

created. Suppose the full context of a processor consists of 16 registers of 32 bits. Also,

suppose CPU_STK is declared as being of type CPU_INT32U, at a bare minimum, set

OS_CFG_STK_SIZE_MIN to 16. However, it would be quite unwise to not accommodate for
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storage of local variables, function call returns, and possibly nested ISRs. Refer to the “port”

of the processor used to see how to set this minimum. Again, this is a safeguard to make

sure task stacks have sufficient stack space.

OS_CFG_TASK_CHANGE_PRIO_EN

OS_CFG_TASK_CHANGE_PRIO_EN enables (when set to 1) or disables (when set to 0) code

generation of the function OSTaskChangePrio().

OS_CFG_TASK_DEL_EN

OS_CFG_TASK_DEL_EN enables (when set to 1) or disables (when set to 0) code generation

of the function OSTaskDel(). 

OS_CFG_TASK_Q_EN

OS_CFG_TASK_Q_EN enables (when set to 1) or disables (when set to 0) code generation of

the OSTaskQXXX() functions used to send and receive messages directly to/from tasks and

ISRs. Sending messages directly to a task is more efficient than sending messages using a

message queue because there is no pend list associated with messages sent to a task.

OS_CFG_TASK_Q_PEND_ABORT_EN

OS_CFG_TASK_Q_PEND_ABORT_EN enables (when set to 1) or disables (when set to 0) code

generation of code for the function OSTaskQPendAbort().

OS_CFG_TASK_PROFILE_EN

This constant allows variables to be allocated in each task’s OS_TCB to hold performance

data about each task. If OS_CFG_TASK_PROFILE_EN is set to 1, each task will have a variable

to keep track of the number of times a task is switched to, the task execution time, the

percent CPU usage of the task relative to the other tasks and more. The information made

available with this feature is highly useful when debugging, but requires extra RAM.

OS_CFG_TASK_REG_TBL_SIZE

This constant allows each task to have task context variables. Use task variables to store

such elements as “errno”, task identifiers and other task-specific values. The number of

variables that a task contains is set by this constant. Each variable is identified by a unique

identifier from 0 to OS_CFG_TASK_REG_TBL_SIZE-1. Also, each variable is declared as

having an OS_REG data type (see OS_TYPE.H). If OS_REG is a CPU_INT08U, all variables in

this table are of this type. 
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OS_CFG_TASK_SEM_PEND_ABORT_EN

OS_CFG_TASK_SEM_PEND_ABORT_EN enables (when set to 1) or disables (when set to 0)

code generation of code for the function OSTaskSemPendAbort().

OS_CFG_TASK_SUSPEND_EN

OS_CFG_TASK_SUSPEND_EN enables (when set to 1) or disables (when set to 0) code

generation of the functions OSTaskSuspend() and OSTaskResume(), which allows the

application to explicitly suspend and resume tasks, respectively. Suspending and resuming a

task is useful when debugging, especially if calling these functions via a terminal interface

at run time.

OS_CFG_TIME_DLY_HMSM_EN

OS_CFG_TIME_DLY_HMSM_EN enables (when set to 1) or disables (when set to 0) the code

generation of the function OSTimeDlyHMSM(), which is used to delay a task for a specified

number of hours, minutes, seconds, and milliseconds.

OS_CFG_TIME_DLY_RESUME_EN

OS_CFG_TIME_DLY_RESUME_EN enables (when set to 1) or disables (when set to 0) the code

generation of the function OSTimeDlyResume().

OS_CFG_TMR_EN

Enables (when set to 1) or disables (when set to 0) the code generation of timer

management services.

OS_CFG_TMR_DEL_EN

OS_CFG_TMR_DEL_EN enables (when set to 1) or disables (when set to 0) the code

generation of the function OSTmrDel().

B-2  DATA TYPES (OS_TYPE.H)

OS_TYPE.H contains the data types used by μC/OS-III, which should only be altered by the

implementer of the μC/OS-III port. If the user only has access to a compiled μC/OS-III library

or object code, make sure to use the same OS_TYPE.H used to compile the library in order to

use μC/OS-III. Of course, if there is access to the source code of both the port and μC/OS-III,

you can alter the contents of OS_TYPE.H. However, it is important to understand how each of

the data types that are being changed will affect the operation of μC/OS-III-based applications.
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The reason to change OS_TYPE.H is that processors may work better with specific word

sizes. For example, a 16-bit processor will likely be more efficient at manipulating 16-bit

values and a 32-bit processor more comfortable with 32-bit values, even at the cost of extra

RAM. In other words, the user may need to choose between processor performance and

RAM footprint.

If changing “any” of the data types, copy OS_TYPE.H in the project directory and change

that file (not the original OS_TYPE.H that comes with the μC/OS-III release). Of course, to

change the data types, the user must have the full source code for μC/OS-III and recompile

all of the code using the new data types.

Recommended data type sizes are specified in comments in OS_TYPE.H.

B-3  µC/OS-III STACKS, POOLS AND OTHER (OS_CFG_APP.H)

μC/OS-III allows the user to configure the sizes of the idle task stack, statistic task stack,

message pool, tick wheel, timer wheel, debug tables, and more. This is done through

OS_CFG_APP.H.

OS_CFG_TASK_STK_LIMIT_PCT_EMPTY

This #define sets the position (as a percentage to empty) of the stack limit for the idle,

statistic, tick, interrupt queue handler, and timer tasks stacks. In other words, the amount of

space to leave before the stack is empty. For example if the stack contains 1000 CPU_STK

entries and the user declares OS_CFG_TASK_STK_LIMIT_PCT_EMPTY to 10, the stack limit

will be set when the stack reaches 90% full, or 10% empty.

If the stack of the processor grows from high memory to low memory, the limit would be

set towards the “base address” of the stack, i.e., closer to element 0 of the stack.

If the processor used does not offer automatic stack limit checking, set this #define to 0. 

OS_CFG_IDLE_TASK_STK_SIZE

This #define sets the size of the idle task’s stack as follows:

CPU_STK OSCfg_IdleTaskStk[OS_CFG_IDLE_TASK_STK_SIZE];

Note that the stack size needs to be at least greater than OS_CFG_STK_SIZE_MIN.
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OS_CFG_INT_Q_SIZE

If OS_CFG_ISR_POST_DEFERRED_EN is set to 1 (see OS_CFG.H), this #define specifies the

number of entries that can be placed in the interrupt queue. The size of this queue depends

on how many interrupts could occur in the time it takes to process interrupts by the ISR

Handler Task. The size also depends on whether or not to allow interrupt nesting. A good

start point is approximately 10 entries.

OS_CFG_INT_Q_TASK_STK_SIZE

If OS_CFG_ISR_POST_DEFERRED_EN is set to 1 (see OS_CFG.H) then this #define sets the

size of the ISR handler task’s stack as follows:

CPU_STK OSCfg_IntQTaskStk[OS_CFG_INT_Q_TASK_STK_SIZE];

Note that the stack size needs to be at least greater than OS_CFG_STK_SIZE_MIN.

OS_CFG_ISR_STK_SIZE

This specifies the size of μC/OS-III’s interrupt stack (in CPU_STK elements, see OS_TYPE.H).

Note that the stack size needs to accommodate for worst case interrupt nesting, assuming

the processor supports interrupt nesting.

OS_CFG_MSG_POOL_SIZE

This entry specifies the number of OS_MSGs available in the pool of OS_MSGs. The size is specified

in number of OS_MSG elements. The message pool is declared in OS_CFG_APP.C as follows:

OS_MSG  OSCfg_MsgPool[OS_CFG_MSG_POOL_SIZE];

OS_CFG_STAT_TASK_PRIO

This #define allows a user to specify the priority assigned to the μC/OS-III statistic task. It

is recommended to make this task a very low priority and possibly even one priority level

just above the idle task, or, OS_CFG_PRIO_MAX-2.

OS_CFG_STAT_TASK_RATE_HZ

This #define defines the execution rate (in Hz) of the statistic task. It is recommended to

make this rate an even multiple of the tick rate (see OS_CFG_TICK_RATE_HZ).



596

Appendix B

OS_CFG_STAT_TASK_STK_SIZE

This #define sets the size of the statistic task’s stack as follows:

CPU_STK OSCfg_StatTaskStk[OS_CFG_STAT_TASK_STK_SIZE];

Note that the stack size needs to be at least greater than OS_CFG_STK_SIZE_MIN.

OS_CFG_TICK_RATE_HZ

This #define specifies the rate in Hertz of μC/OS-III’s tick interrupt. The tick rate should be

set between 10 and 1000 Hz. The higher the rate, the more overhead it will impose on the

processor. The desired rate depends on the granularity required for time delays and

timeouts. 

OS_CFG_TICK_TASK_PRIO

This #define specifies the priority to assign to the μC/OS-III tick task. It is recommended to

make this task a fairly high priority, but it does not need to be the highest. The priority

assigned to this task must be greater than 0 and less than OS_CFG_PRIO_MAX-1.

OS_CFG_TICK_TASK_STK_SIZE

This entry specifies the size of μC/OS-III’s tick task stack (in CPU_STK elements). Note that

the stack size must be at least greater than OS_CFG_STK_SIZE_MIN.

OS_CFG_TICK_WHEEL_SIZE

This #define determines the number of entries in the OSTickWheel[] table. This “wheel”

reduces the number of tasks to be updated by the tick task. The size of the wheel should be

a fraction of the number of tasks expected in the application. 

This value should be a number between 4 and 1024. Task management overhead is

somewhat determined by the size of the wheel. A large number of entries might reduce the

overhead for tick management but would require more RAM. Each entry requires a pointer

and a counter of the number of entries in each “spoke” of the wheel. This counter is

typically a 16-bit value. It is recommended that OS_CFG_TICK_WHEEL_SIZE not be a

multiple of the tick rate. If the application has many tasks, a large wheel size is

recommended. As a starting value, use a prime number (3, 5, 7, 11, 13, 17, 19, 23, etc.).



597

µC/OS-III Configuration Manual

OS_CFG_TMR_TASK_PRIO

This #define allows a user to specify the priority to assign to the μC/OS-III timer task. It is

recommended to make this task a medium-to-low priority, depending on how fast the timer

task will execute (see OS_CFG_TMR_TASK_RATE_HZ), how many timers running in the

application, and the size of the timer wheel, etc. The priority assigned to this task must be

greater than 0 and less than OS_CFG_PRIO_MAX-1.

Start with these simple rules:

■ The faster the timer rate, the higher the priority to assign to this task. 

■ The higher the timer wheel size, the higher the priority to assign this task. 

■ The higher the number of timers in the system, the lower the priority. 

In other words:

High Timer Rate Higher Priority

High Timer Wheel Size Higher Priority

High Number of Timers Lower Priority

OS_CFG_TMR_TASK_RATE_HZ

This #define specifies the rate in Hertz of μC/OS-III’s timer task. The timer task rate should

typically be set to 10 Hz. However, timers can run at a faster rate at the price of higher

processor overhead. Note that OS_CFG_TMR_TASK_RATE_HZ MUST be an integer multiple of

OS_CFG_TICK_TASK_RATE_HZ. In other words, if setting OS_CFG_TICK_TASK_RATE_HZ to

1000, do not set OS_CFG_TMR_TASK_RATE_HZ to 11 since 90.91 ticks would be required for every

timer update, and 90.91 is not an integer multiple. Use approximately 10 Hz in this example.

OS_CFG_TMR_TASK_STK_SIZE

This #define sets the size of the timer task’s stack as follows:

CPU_STK OSCfg_TmrTaskStk[OS_CFG_TMR_TASK_STK_SIZE];

Note that the stack size needs to be at least greater than OS_CFG_STK_SIZE_MIN.
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OS_CFG_TMR_WHEEL_SIZE

Timers are updated using a rotating wheel mechanism. This “wheel” reduces the number of

timers to be updated by the timer manager task. The size of the wheel should be a fraction

of the number of timers in the application. 

This value should be a number between 4 and 1024. Timer management overhead is

somewhat determined by the size of the wheel. A large number of entries might reduce the

overhead for timer management but would require more RAM. Each entry requires a pointer

and a counter of the number of entries in each “spoke” of the wheel. This counter is

typically a 16-bit value. It is recommended that this value not be a multiple of the tick rate.

If an application has many timers a large wheel size is recommended. As a starting value,

use a prime number (3, 5, 7, 11, 13, 17, 19, 23, etc.).
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C
Migrating from µC/OS-II to µC/OS-III

μC/OS-III is a completely new real-time kernel with roots in μC/OS-II. Portions of the

μC/OS-II Application Programming Interface (API) function names are the same, but the

arguments passed to the functions have, in some places, drastically changed.

Appendix C explains several differences between the two real-time kernels. However,

access to μC/OS-II and μC/OS-III source files best highlights the differences.
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Table C-1 is a feature-comparison chart for μC/OS-II and μC/OS-III.

Feature µC/OS-II µC/OS-III

Year of introduction 1998/2002 2009

Book Yes Yes

Source code available (Licensees only) Yes Yes

Preemptive Multitasking Yes Yes

Maximum number of tasks 255 Unlimited

Number of tasks at each priority level 1 Unlimited

Round Robin Scheduling No Yes

Semaphores Yes Yes

Mutual Exclusion Semaphores (Nestable) Yes Yes

Event Flags Yes Yes

Message Mailboxes (not needed) Yes No 

Message Queues Yes Yes

Fixed Sized Memory Management Yes Yes

Signal a task without requiring a semaphore No Yes

Send messages to a task without requiring a message queue No Yes

Software Timers Yes Yes

Task suspend/resume (Nestable) Yes Yes

Deadlock prevention Yes Yes

Scalable Yes Yes

Code Footprint 6K to 26K 6K to 20K

Data Footprint 1K+ 1K+

ROMable Yes Yes

Run-time configurable No Yes

Feature µC/OS-II µC/OS-III

Compile-time configurable Yes Yes
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Table C-1 µC/OS-II and µC/OS-III features comparison chart

ASCII names for each kernel object Yes Yes

Interrupt Latency 1200~ < 1000~

Pend on multiple objects Yes Yes

Task registers Yes Yes

Built-in performance measurements Limited Extensive

User definable hook functions Yes Yes

Time stamps on posts No Yes

Built-in Kernel Awareness support Yes Yes

Optimizable Scheduler in assembly language No Yes

Tick handling at task level No Yes

Source code available Yes Yes

Number of services ~90 ~70

MISRA-C:1998 (except 5 rules) Yes N/A

MISRA-C:2004 (except 5 rules) No Yes

DO178B Level A and EUROCAE ED-12B Yes In progress

Medical FDA pre-market notification (510(k)) and pre-market 

approval (PMA)

Yes In progress

SIL3/SIL4 IEC for transportation and nuclear systems Yes In progress

IEC-61508 Yes In progress

Feature µC/OS-II µC/OS-III
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C-1  DIFFERENCES IN SOURCE FILE NAMES AND CONTENTS

Table C-2 shows the source files used in both kernels. Note that a few of the files have the

same or similar name. Even though μC/OS-III has more source files, the final compiled

footprint is actually smaller for a full configuration.

Table C-2 µC/OS-II and µC/OS-III files

µC/OS-II µC/OS-III Note

OS_APP_HOOKS.C (1)

OS_CFG_APP.C (2)

OS_CFG_APP.H (3)

OS_CFG_R.H OS_CFG.H (4)

OS_CORE.C OS_CORE.C

OS_CPU.H OS_CPU.H (5)

OS_CPU_A.ASM OS_CPU_A.ASM (5)

OS_CPU_C.C OS_CPU_C.C (5)

OS_DBG_R.C OS_DBG.C (6)

OS_FLAG.C OS_FLAG.C

OS_INT.C (7)

OS_PEND_MULTI.C (8)

OS_PRIO.C (9)

OS_MBOX.C (10)

OS_MEM.C OS_MEM.C

OS_MSG.C (11)

OS_MUTEX.C OS_MUTEX.C

OS_Q.C OS_Q.C

OS_SEM.C OS_SEM.C

OS_STAT.C (12)

OS_TASK.C OS_TASK.C

OS_TIME.C OS_TIME.C

OS_TMR.C OS_TMR.C

OS_VAR.C (13)

OS_TYPE.H (14)

UCOS_II.H OS.H (15)
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TC-2(1) μC/OS-II does not have this file, which is now provided for convenience so the

user can add application hooks. Copy this file to the application directory and

edit the contents of the file.

TC-2(2) OS_CFG_APP.C did not exist in μC/OS-II. This file needs to be added to a

project build for μC/OS-III.

TC-2(3) In μC/OS-II, all configuration constants were placed in OS_CFG.H. In μC/OS-III,

some of the configuration constants are placed in this file, while others are in

OS_CFG.H. OS_CFG_APP.H contains application-specific configurations such as

the size of the idle task stack, tick rate, and others.

TC-2(4) In μC/OS-III, OS_CFG.H is reserved for configuring certain features of the

kernel. For example, are any of the semaphore services required, and will the

application have fixed-sized memory partition management?

TC-2(5) These are the port files and a few variables and functions will need to be

changed when using a μC/OS-II port as a starting point for the μC/OS-III port.

The name of OSTaskStkInit() is the same but it is listed here since the code

for it needs to be changed slightly as several arguments passed to this function

are different. Specifically, instead of passing the top-of-stack as in μC/OS-II,

OSTaskStkInit() is passed the base address and the size of the task stack.

µC/OS-II variable changes to … … in µC/OS-III

OSIntNesting OSIntNestingCtr

OSTCBCur OSTCBCurPtr

OSTCBHighRdy OSTCBHighRdyPtr

µC/OS-II function changes to … … in µC/OS-III

OSInitHookBegin() OSInitHook()

OSInitHookEnd() N/A

OSTaskStatHook() OSStatTaskHook()

OSTaskIdleHook() OSIdleTaskHook()

OSTCBInitHook() N/A

OSTaskStkInit() OSTaskStkInit()
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TC-2(6) In μC/OS-III, OS_DBG.C should always be part of the build. In μC/OS-II, the

equivalent file (OS_DBG_R.C) was optional.

TC-2(7) OS_INT.C contains the code for the Interrupt Queue handler, which is a new

feature in μC/OS-III, allowing post calls from ISRs to be deferred to a task-level

handler. This is done to reduce interrupt latency (see Chapter 9, “Interrupt

Management” on page 157).

TC-2(8) Both kernels allow tasks to pend on multiple kernel objects. In μC/OS-II, this

code is found in OS_CORE.C, while in μC/OS-III, the code is placed in a

separate file.

TC-2(9) The code to determine the highest priority ready-to-run task is isolated in

μC/OS-III and placed in OS_PRIO.C. This allows the port developer to replace

this file by an assembly language equivalent file, especially if the CPU used

supports certain bit manipulation instructions and a count leading zeros (CLZ)

instruction.

TC-2(10) μC/OS-II provides message mailbox services. A message mailbox is identical to

a message queue of size one. μC/OS-III does not have these services since they

can be easily emulated by message queues.

TC-2(11) Management of messages for message queues is encapsulated in OS_MSG.C in

μC/OS-III.

TC-2(12) The statistics task and its support functions have been extracted out of

OS_CORE.C and placed in OS_STAT.C for μC/OS-III.

TC-2(13) All the μC/OS-III variables are instantiated in a file called OS_VAR.C.

TC-2(14) In μC/OS-III, the size of most data types is better adapted to the CPU

architecture used. In μC/OS-II, the size of a number of these data types was

assumed.

TC-2(15) In μC/OS-II, the main header file is called UCOS_II.H. In μC/OS-III, it is

renamed to OS.H. 
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C-2  CONVENTION CHANGES

There are a number of convention changes from μC/OS-II to μC/OS-III. The most notable is

the use of CPU-specific data types. Table C-3 shows the differences between the data types

used in both kernels.

Table C-3 µC/OS-II vs. µC/OS-III basic data types

TC-3(1) A task stack in μC/OS-II is declared as an OS_STK, which is now replaced by a

CPU specific data type CPU_STK. These two data types are equivalent, except

that defining the width of the CPU stack in μC/CPU makes more sense.

TC-3(2) It also makes sense to declare the CPU’s status register in μC/CPU.

TC-3(3) Stack growth (high-to-low or low-to-high memory) is declared in μC/CPU since

stack growth is a CPU feature and not an OS one.

µC/OS-II (OS_CPU.H) µC/CPU (CPU.H) Note

BOOLEAN CPU_BOOLEAN

INT8S CPU_INT8S

INT8U CPU_INT8U

INT16S CPU_INT16S

INT16U CPU_INT16U

INT32S CPU_INT32S

INT32U CPU_INT32U

OS_STK CPU_OS_STK (1)

OS_CPU_SR CPU_SR (2)

µC/OS-II (OS_CFG.H) µC/CPU (CPU.H)

OS_STK_GROWTH CPU_CFG_STK_GROWTH (3)
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Another convention change is the use of the acronym “cfg” which stands for configuration.

Now, all #define configuration constants and variables have the “CFG” or “Cfg” acronym in

them as shown in Table C-4. Table C-4 shows the configuration constants that have been

moved from OS_CFG.H to OS_CFG_APP.H. This is done because μC/OS-III is configurable at

the application level instead of just at compile time as with μC/OS-II. 

Table C-4 µC/OS-III uses “CFG” in configuration

TC-4(1) The very useful OS_TICKS_PER_SEC in μC/OS-II was renamed to

OS_CFG_TICK_RATE_HZ in μC/OS-III. The “HZ” indicates that this #define

represents Hertz (i.e., ticks per second).

Table C-5 shows additional configuration constants added to OS_CFG.H, while several

μC/OS-II constants were either removed or renamed.

µC/OS-II (OS_CFG.H) µC/OS-III (OS_CFG_APP.H) Note

OS_CFG_MSG_POOL_SIZE

OS_CFG_ISR_STK_SIZE

OS_CFG_TASK_STK_LIMIT_PCT_EMPTY

OS_TASK_IDLE_STK_SIZE OS_CFG_IDLE_TASK_STK_SIZE

OS_CFG_INT_Q_SIZE

OS_CFG_INT_Q_TASK_STK_SIZE

OS_CFG_STAT_TASK_PRIO

OS_CFG_STAT_TASK_RATE_HZ

OS_TASK_STAT_SIZE OS_CFG_STAT_TASK_STK_SIZE

OS_TICKS_PER_SEC OS_CFG_TICK_RATE_HZ (1)

OS_CFG_TICK_TASK_PRIO

OS_CFG_TICK_TASK_STK_SIZE

OS_CFG_TICK_WHEEL_SIZE

OS_CFG_TMR_TASK_PRIO

OS_TMR_CFG_TICKS_PER_SEC OS_CFG_TMR_TASK_RATE_HZ

OS_TASK_TMR_STK_SIZE OS_CFG_TMR_TASK_STK_SIZE

OS_TMR_CFG_WHEEL_SIZE OS_CFG_TMR_WHEEL_SIZE
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µC/OS-II (OS_CFG.H) µC/OS-III (OS_CFG.H) Note

OS_APP_HOOKS_EN OS_CFG_APP_HOOKS_EN

OS_ARG_CHK_EN OS_CFG_ARG_CHK_EN

OS_CFG_CALLED_FROM_ISR_CHK_EN

OS_DEBUG_EN OS_CFG_DBG_EN (1)

OS_EVENT_MULTI_EN OS_CFG_PEND_MULTI_EN

OS_EVENT_NAME_EN (2)

OS_CFG_ISR_POST_DEFERRED_EN

OS_MAX_EVENTS (3)

OS_MAX_FLAGS (3)

OS_MAX_MEM_PART (3)

OS_MAX_QS (3)

OS_MAX_TASKS (3)

OS_CFG_OBJ_TYPE_CHK_EN

OS_LOWEST_PRIO OS_CFG_PRIO_MAX

OS_CFG_SCHED_LOCK_TIME_MEAS_EN

OS_CFG_SCHED_ROUND_ROBIN_EN

OS_CFG_STK_SIZE_MIN

OS_FLAG_EN OS_CFG_FLAG_EN

OS_FLAG_ACCEPT_EN (6)

OS_FLAG_DEL_EN OS_CFG_FLAG_DEL_EN

OS_FLAG_WAIT_CLR_EN OS_CFG_FLAG_MODE_CLR_EN

OS_FLAG_NAME_EN (2)

OS_FLAG_NBITS (4)

OS_FLAG_QUERY_EN (5)

OS_CFG_PEND_ABORT_EN

OS_MBOX_EN

OS_MBOX_ACCEPT_EN (6)
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OS_MBOX_DEL_EN

OS_MBOX_PEND_ABORT_EN

OS_MBOX_POST_EN

OS_MBOX_POST_OPT_EN

OS_MBOX_QUERY_EN (5)

OS_MEM_EN OS_CFG_MEM_EN

OS_MEM_NAME_EN (2)

OS_MEM_QUERY_EN (5)

OS_MUTEX_EN OS_CFG_MUTEX_EN

OS_MUTEX_ACCEPT_EN (6)

OS_MUTEX_DEL_EN OS_CFG_MUTEX_DEL_EN

OS_CFG_MUTEX_PEND_ABORT_EN

OS_MUTEX_QUERY_EN (5)

OS_Q_EN OS_CFG_Q_EN

OS_Q_ACCEPT_EN (6)

OS_Q_DEL_EN OS_CFG_Q_DEL_EN

OS_Q_FLUSH_EN OS_CFG_Q_FLUSH_EN

OS_CFG_Q_PEND_ABORT_EN

OS_Q_POST_EN (7)

OS_Q_POST_FRONT_EN (7)

OS_Q_POST_OPT_EN (7)

OS_Q_QUERY_EN (5)

OS_SCHED_LOCK_EN

OS_SEM_EN OS_CFG_SEM_EN

OS_SEM_ACCEPT_EN (6)

OS_SEM_DEL_EN OS_CFG_SEM_DEL_EN

OS_SEM_PEND_ABORT_EN OS_CFG_SEM_PEND_ABORT_EN

µC/OS-II (OS_CFG.H) µC/OS-III (OS_CFG.H) Note
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Table C-5 µC/OS-III uses “CFG” in configuration

OS_SEM_QUERY_EN (5)

OS_SEM_SET_EN OS_CFG_SEM_SET_EN

OS_TASK_STAT_EN OS_CFG_STAT_TASK_EN

OS_TASK_STK_CHK_EN OS_CFG_STAT_TASK_STK_CHK_EN

OS_TASK_CHANGE_PRIO_EN OS_CFG_TASK_CHANGE_PRIO_EN

OS_TASK_CREATE_EN

OS_TASK_CREATE_EXT_EN

OS_TASK_DEL_EN OS_CFG_TASK_DEL_EN

OS_TASK_NAME_EN (2)

OS_CFG_TASK_Q_EN

OS_CFG_TASK_Q_PEND_ABORT_EN

OS_TASK_QUERY_EN (5)

OS_TASK_PROFILE_EN OS_CFG_TASK_PROFILE_EN

OS_CFG_TASK_REG_TBL_SIZE

OS_CFG_TASK_SEM_PEND_ABORT_EN

OS_TASK_SUSPEND_EN OS_CFG_TASK_SUSPEND_EN

OS_TASK_SW_HOOK_EN

OS_TICK_STEP_EN (8)

OS_TIME_DLY_HMSM_EN OS_CFG_TIME_DLY_HMSM_EN

OS_TIME_DLY_RESUME_EN OS_CFG_TIME_DLY_RESUME_EN

OS_TIME_GET_SET_EN

OS_TIME_TICK_HOOK_EN

OS_TMR_EN OS_CFG_TMR_EN

OS_TMR_CFG_NAME_EN (2)

OS_TMR_DEL_EN OS_CFG_TMR_DEL_EN

µC/OS-II (OS_CFG.H) µC/OS-III (OS_CFG.H) Note
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TC-5(1) DEBUG is replaced with DBG.

TC-5(2) In μC/OS-II, all kernel objects have ASCII names after creation. In μC/OS-III,

ASCII names are assigned when the object is created. 

TC-5(3) In μC/OS-II, it is necessary to declare the maximum number of kernel objects

(number of tasks, number of event flag groups, message queues, etc.) at

compile time. In μC/OS-III, all kernel objects are allocated at run time so it is

no longer necessary to specify the maximum number of these objects. This

feature saves valuable RAM as it is no longer necessary to over allocate objects.

TC-5(4) In μC/OS-II, event-flag width must be declared at compile time through

OS_FLAG_NBITS. In μC/OS-III, this is accomplished by defining the width (i.e.,

number of bits) in OS_TYPE.H through the data type OS_FLAG. The default is

typically 32 bits.

TC-5(5) μC/OS-III does not provide query services to the application.

TC-5(6) μC/OS-III does not directly provide “accept” function calls as with μC/OS-II.

Instead, OS???Pend() functions provide an option that emulates the “accept”

functionality.

TC-5(7) In μC/OS-II, there are a number of “post” functions. The features offered are

now combined in the OS???Post() functions in μC/OS-III.

TC-5(8) The μC/OS-View feature OS_TICK_STEP_EN is not present in μC/OS-III since

μC/OS-View is an obsolete product.
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C-3  VARIABLE NAME CHANGES

Some of the variable names in μC/OS-II are changed for μC/OS-III to be more consistent

with coding conventions. Significant variables are shown in Table C-6.

Table C-6 Changes in variable naming

TC-6(1) In μC/OS-II, OSCPUUsage contains the total CPU utilization in percentage

format. If the CPU is busy 12% of the time, OSCPUUsage has the value 12. In

μC/OS-III, the same information is provided in OSStatTaskCPUUsage.

TC-6(2) In μC/OS-II, OSIntNesting keeps track of the number of interrupts nesting.

μC/OS-III uses OSIntNestingCtr. The “Ctr” has been added to indicate that

this variable is a counter. 

µC/OS-II (uCOS_II.H) µC/OS-III (OS.H) Note

OSCtxSwCtr OSTaskCtxSwCtr

OSCPUUsage OSStatTaskCPUUsage (1)

OSIdleCtr OSIdleTaskCtr

OSIdleCtrMax OSIdleTaskCtrMax

OSIntNesting OSIntNestingCtr (2)

OSPrioCur OSPrioCur

OSPrioHighRdy OSPrioHighRdy

OSRunning OSRunning

OSSchedNesting OSSchedLockNestingCtr (3)

OSSchedLockTimeMax

OSTaskCtr OSTaskQty

OSTCBCur OSTCBCurPtr (4)

OSTCBHighRdy OSTCBHighRdyPtr (4)

OSTime OSTickCtr (5)

OSTmrTime OSTmrTickCtr



612

Appendix C

TC-6(3) OSSchedNesting represents the number of times OSSchedLock() is called.

μC/OS-III renames this variable to OSSchedLockNestingCtr to better represent

the variable’s meaning.

TC-6(4) In μC/OS-II, OSTCBCur and OSTCBHighRdy are pointers to the OS_TCB of the

current task, and to the OS_TCB of the highest-priority task that is ready to run.

In μC/OS-III, these are renamed by adding the “Ptr” to indicate that they are

pointers.

TC-6(5) The internal counter of the number of ticks since power up, or the last time the

variable was changed through OSTimeSet(), has been renamed to better

reflect its function.

C-4  API CHANGES

The most significant change from μC/OS-II to μC/OS-III occurs in the API. In order to port a

μC/OS-II-based application to μC/OS-III, it is necessary to change the way services are

invoked.

Table C-7 shows changes in the way critical sections in μC/OS-III are handled. Specifically,

μC/OS-II defines macros to disable interrupts, and they are moved to μC/CPU since they are

CPU specific functions.

Table C-7 Changes in variable naming

One of the biggest changes in the μC/OS-III API is its consistency. In fact, based on the

function performed, it is possible to guess which arguments are needed, and in what order.

For example, “*p_err” is a pointer to an error-returned variable. When present, “*p_err” is

always the last argument of a function. In μC/OS-II, error-returned values are at times

returned as a “*perr,” and at other times as the return value of the function.

µC/OS-II (OS_CPU.H) µC/CPU (CPU.H) Note

OS_ENTER_CRITICAL() CPU_CRITICAL_ENTER()

OS_EXIT_CRITICAL() CPU_CRITICAL_EXIT()
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C-4-1  EVENT FLAGS

Table C-8 shows the API for event-flag management.

µC/OS-II (OS_FLAG.C) µC/OS-III (OS_FLAG.C) Note

OS_FLAGS

OSFlagAccept(

    OS_FLAG_GRP  *pgrp,

    OS_FLAGS      flags,

    INT8U         wait_type,

    INT8U        *perr);

(1)

OS_FLAG_GRP *

OSFlagCreate(

    OS_FLAGS      flags,

    INT8U        *perr);

void

OSFlagCreate(

    OS_FLAG_GRP   *p_grp,

    CPU_CHAR      *p_name,

    OS_FLAGS       flags,

    OS_ERR        *p_err);

(2)

OS_FLAG_GRP *

OSFlagDel(

    OS_FLAG_GRP  *pgrp,

    INT8U         opt,

    INT8U        *perr);

OS_OBJ_QTY

OSFlagDel(

    OS_FLAG_GRP   *p_grp,

    OS_OPT         opt,

    OS_ERR        *p_err);

INT8U

OSFlagNameGet(

    OS_FLAG_GRP  *pgrp,

    INT8U       **pname,

    INT8U        *perr);

void

OSFlagNameSet(

    OS_FLAG_GRP  *pgrp,

    INT8U        *pname,

    INT8U        *perr);

(3)

OS_FLAGS

OSFlagPend(

    OS_FLAG_GRP  *pgrp,

    OS_FLAGS      flags,

    INT8U         wait_type,

    INT32U        timeout,

    INT8U        *perr);

OS_FLAGS

OSFlagPend(

    OS_FLAG_GRP   *p_grp,

    OS_FLAGS       flags,

    OS_TICK        timeout,

    OS_OPT         opt,

    OS_TS         *p_ts,

    OS_ERR        *p_err);
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Table C-8 Event Flags API

TC-8(1) In μC/OS-III, there is no “accept” API. This feature is actually built-in the

OSFlagPend() by specifying the OS_OPT_PEND_NON_BLOCKING option.

TC-8(2) In μC/OS-II, OSFlagCreate() returns the address of an OS_FLAG_GRP, which is

used as the “handle” to the event-flag group. In μC/OS-III, the application must

allocate storage for an OS_FLAG_GRP, which serves the same purpose as the

OS_EVENT. The benefit in μC/OS-III is that it is not necessary to predetermine

the number of event flags at compile time.

TC-8(3) In μC/OS-II, the user may assign a name to an event-flag group after the group

is created. This functionality is built-into OSFlagCreate() for μC/OS-III.

TC-8(4) μC/OS-III does not provide query services, as they are typically rarely used.

OS_FLAGS

OSFlagPendGetFlagsRdy(

    void);

OS_FLAGS

OSFlagPendGetFlagsRdy(

    OS_ERR        *p_err);

OS_FLAGS

OSFlagPost(

    OS_FLAG_GRP  *pgrp,

    OS_FLAGS      flags,

    INT8U         opt,

    INT8U        *perr);

OS_FLAGS

OSFlagPost(

    OS_FLAG_GRP   *p_grp,

    OS_FLAGS       flags,

    OS_OPT         opt,

    OS_ERR        *p_err);

OS_FLAGS

OSFlagQuery(

    OS_FLAG_GRP  *pgrp,

    INT8U        *perr);

(4)

µC/OS-II (OS_FLAG.C) µC/OS-III (OS_FLAG.C) Note
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C-4-2  MESSAGE MAILBOXES

Table C-9 shows the API for message mailbox management. Note that μC/OS-III does not

directly provide services for managing message mailboxes. Given that a message mailbox is

a message queue of size one, μC/OS-III can easily emulate message mailboxes.

µC/OS-II (OS_MBOX.C) µC/OS-III (OS_Q.C) Note

void *

OSMboxAccept(

    OS_EVENT     *pevent);

(1)

OS_EVENT *

OSMboxCreate(

    void         *pmsg);

void

OSQCreate(

    OS_Q         *p_q,

    CPU_CHAR     *p_name,

    OS_MSG_QTY    max_qty,

    OS_ERR       *p_err);

(2)

void *

OSMboxDel(

    OS_EVENT     *pevent,

    INT8U         opt,

    INT8U        *perr);

OS_OBJ_QTY,

OSQDel(

    OS_Q         *p_q,

    OS_OPT        opt,

    OS_ERR       *p_err);

void *

OSMboxPend(

    OS_EVENT     *pevent,

    INT32U        timeout,

    INT8U        *perr);

void *

OSQPend(

    OS_Q         *p_q,

    OS_TICK       timeout,

    OS_OPT        opt, 

    OS_MSG_SIZE  *p_msg_size,

    CPU_TS       *p_ts,

    OS_ERR       *p_err);

(3)

INT8U

OSMBoxPendAbort(

    OS_EVENT    *pevent,

    INT8U        opt,

    INT8U       *perr);

OS_OBJ_QTY

OSQPendAbort(

    OS_Q         *p_q,

    OS_OPT        opt

    OS_ERR       *p_err);
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Table C-9 Message Mailbox API

TC-9(1) In μC/OS-III, there is no “accept” API since this feature is built into the

OSQPend() by specifying the OS_OPT_PEND_NON_BLOCKING option.

TC-9(2) In μC/OS-II, OSMboxCreate() returns the address of an OS_EVENT, which is

used as the “handle” to the message mailbox. In μC/OS-III, the application

must allocate storage for an OS_Q, which serves the same purpose as the

OS_EVENT. The benefit in μC/OS-III is that it is not necessary to predetermine

the number of message queues at compile time.

TC-9(3) μC/OS-III returns additional information about the message received.

Specifically, the sender specifies the size of the message as a snapshot of the

current timestamp is taken and stored as part of the message. The receiver of

the message therefore knows when the message was sent.

TC-9(4) In μC/OS-III, OSQPost() offers a number of options that replaces the two post

functions provided in μC/OS-II.

TC-9(5) μC/OS-III does not provide query services, as they were rarely used.

INT8U

OSMboxPost(

    OS_EVENT    *pevent,

    void        *pmsg);

void 

OSQPost(

    OS_Q         *p_q,

    Void         *p_void,

    OS_MSG_SIZE   msg_size,

    OS_OPT        opt,

    OS_ERR       *p_err);

(4)

INT8U

OSMboxPostOpt(

    OS_EVENT     *pevent,

    void         *pmsg,

    INT8U         opt);

(4)

INT8U

OSMboxQuery(

    OS_EVENT     *pevent,

    OS_MBOX_DATA *p_mbox_data);

(5)

µC/OS-II (OS_MBOX.C) µC/OS-III (OS_Q.C) Note
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C-4-3  MEMORY MANAGEMENT

Table C-10 shows the difference in API for memory management. 

Table C-10 Memory Management API

TC-10(1) In μC/OS-II, OSMemCreate() returns the address of an OS_MEM object, which is

used as the “handle” to the newly created memory partition. In μC/OS-III, the

application must allocate storage for an OS_MEM, which serves the same

purpose. The benefit in μC/OS-III is that it is not necessary to predetermine the

number of memory partitions at compile time.

µC/OS-II (OS_MEM.C) µC/OS-III (OS_MEM.C) Note

OS_MEM *
OSMemCreate(
    void         *addr,
    INT32U        nblks,
    INT32U        blksize,
    INT8U        *perr);

void
OSMemCreate(
    OS_MEM      *p_mem,
    CPU_CHAR    *p_name,
    void        *p_addr,
    OS_MEM_QTY   n_blks,
    OS_MEM_SIZE  blk_size,
    OS_ERR      *p_err);

(1)

void *
OSMemGet(
    OS_MEM       *pmem,
    INT8U        *perr);

void *
OSMemGet(
    OS_MEM      *p_mem,
    OS_ERR      *p_err);

INT8U
OSMemNameGet(
    OS_MEM       *pmem,
    INT8U       **pname,
    INT8U        *perr);

void
OSMemNameSet(
    OS_MEM       *pmem,
    INT8U        *pname,
    INT8U        *perr);

void 
OSMemPut(
    OS_MEM      *p_mem,
    void        *p_blk,
    OS_ERR      *p_err);

(2)

INT8U
OSMemPut(
    OS_MEM       *pmem,
    void         *pblk);

(3)

INT8U
OSMemQuery(
    OS_MEM       *pmem,
    OS_MEM_DATA  *p_mem_data);
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TC-10(2) μC/OS-III does not need an OSMemNameSet() since the name of the memory

partition is passed as an argument to OSMemCreate().

TC-10(3) μC/OS-III does not support query calls.

C-4-4  MUTUAL EXCLUSION SEMAPHORES

Table C-11 shows the difference in API for mutual exclusion semaphore management. 

µC/OS-II (OS_MUTEX.C) µC/OS-III (OS_MUTEX.C) Note

BOOLEAN

OSMutexAccept(

    OS_EVENT       *pevent,

    INT8U          *perr);

(1)

OS_EVENT *

OSMutexCreate(

    INT8U           prio,

    INT8U          *perr);

void

OSMutexCreate(

    OS_MUTEX   *p_mutex,

    CPU_CHAR   *p_name,

    OS_ERR     *p_err);

(2)

OS_EVENT *

OSMutexDel(

    OS_EVENT       *pevent,

    INT8U           opt,

    INT8U          *perr);

void

OSMutexDel(

    OS_MUTEX   *p_mutex,

    OS_OPT      opt,

    OS_ERR     *p_err);

void

OSMutexPend(

    OS_EVENT       *pevent,

    INT32U          timeout,

    INT8U          *perr);

void

OSMutexPend(

    OS_MUTEX   *p_mutex,

    OS_TICK     timeout,

    OS_OPT      opt,

    CPU_TS     *p_ts,

    OS_ERR     *p_err);

(3)

OS_OBJ_QTY

OSMutexPendAbort(

    OS_MUTEX   *p_mutex,

    OS_OPT      opt,

    OS_ERR     *p_err);
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Table C-11 Mutual Exclusion Semaphore Management API

TC-11(1) In μC/OS-III, there is no “accept” API, since this feature is built into the

OSMutexPend() by specifying the OS_OPT_PEND_NON_BLOCKING option.

TC-11(2) In μC/OS-II, OSMutexCreate() returns the address of an OS_EVENT, which is

used as the “handle” to the message mailbox. In μC/OS-III, the application

must allocate storage for an OS_MUTEX, which serves the same purpose as the

OS_EVENT. The benefit in μC/OS-III is that it is not necessary to predetermine

the number of mutual-exclusion semaphores at compile time.

TC-11(3) μC/OS-III returns additional information when a mutex is released. The releaser

takes a snapshot of the current time stamp and stores it in the OS_MUTEX. The

new owner of the mutex therefore knows when the mutex was released.

TC-11(4) μC/OS-III does not provide query services as they were rarely used.

INT8U

OSMutexPost(

    OS_EVENT       *pevent);

void

OSMutexPost(

    OS_MUTEX   *p_mutex,

    OS_OPT      opt,

    OS_ERR     *p_err);

INT8U

OSMutexQuery(

    OS_EVENT       *pevent,

    OS_MUTEX_DATA  *p_mutex_data);

µC/OS-II (OS_MUTEX.C) µC/OS-III (OS_MUTEX.C) Note
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C-4-5  MESSAGE QUEUES

Table C-12 shows the difference in API for message-queue management.

µC/OS-II (OS_Q.C) µC/OS-III (OS_Q.C) Note

void *

OSQAccept(

    OS_EVENT  *pevent,

    INT8U     *perr);

(1)

OS_EVENT *

OSQCreate(

    void     **start,

    INT16U     size);

void

OSQCreate(

    OS_Q         *p_q,

    CPU_CHAR     *p_name,

    OS_MSG_QTY    max_qty,

    OS_ERR       *p_err);

(2)

OS_EVENT *

OSQDel(

    OS_EVENT  *pevent,

    INT8U      opt,

    INT8U     *perr);

OS_OBJ_QTY,

OSQDel(

    OS_Q         *p_q,

    OS_OPT        opt,

    OS_ERR       *p_err);

INT8U

OSQFlush(

    OS_EVENT  *pevent);

OS_MSG_QTY

OSQFlush(

    OS_Q         *p_q,

    OS_ERR       *p_err);

void *

OSQPend(

    OS_EVENT  *pevent,

    INT32U     timeout,

    INT8U     *perr);

void *

OSQPend(

    OS_Q         *p_q,

    OS_MSG_SIZE  *p_msg_size,

    OS_TICK       timeout,

    OS_OPT        opt, 

    CPU_TS       *p_ts,

    OS_ERR       *p_err);

(3)

INT8U

OSQPendAbort(

    OS_EVENT  *pevent,

    INT8U      opt,

    INT8U     *perr);

OS_OBJ_QTY

OSQPendAbort(

    OS_Q         *p_q,

    OS_OPT        opt,

    OS_ERR       *p_err);

INT8U

OSQPost(

    OS_EVENT  *pevent,

    void      *pmsg);

void

OSQPost(

    OS_Q         *p_q,

    void         *p_void,

    OS_MSG_SIZE   msg_size,

    OS_OPT        opt,

    OS_ERR       *p_err);

(4)
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Table C-12 Message Queue Management API

TC-12(1) In μC/OS-III, there is no “accept” API as this feature is built into the OSQPend()

by specifying the OS_OPT_PEND_NON_BLOCKING option.

TC-12(2) In μC/OS-II, OSQCreate() returns the address of an OS_EVENT, which is used

as the “handle” to the message queue. In μC/OS-III, the application must

allocate storage for an OS_Q object, which serves the same purpose as the

OS_EVENT. The benefit in μC/OS-III is that it is not necessary to predetermine at

compile time, the number of message queues.

TC-12(3) μC/OS-III returns additional information when a message queue is posted.

Specifically, the sender includes the size of the message and takes a snapshot

of the current timestamp and stores it in the message. The receiver of the

message therefore knows when the message was posted.

TC-12(4) In μC/OS-III, OSQPost() offers a number of options that replaces the three

post functions provided in μC/OS-II.

TC-12(5) μC/OS-III does not provide query services as they were rarely used.

INT8U

OSQPostFront(

    OS_EVENT  *pevent,

    void      *pmsg);

INT8U

OSQPostOpt(

    OS_EVENT  *pevent,

    void      *pmsg,

    INT8U      opt);

(4)

INT8U

OSQQuery(

    OS_EVENT  *pevent,

    OS_Q_DATA *p_q_data);

(5)

µC/OS-II (OS_Q.C) µC/OS-III (OS_Q.C) Note
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C-4-6  SEMAPHORES

Table C-13 shows the difference in API for semaphore management.

µC/OS-II (OS_SEM.C) µC/OS-III (OS_SEM.C) Note

INT16U

OSSemAccept(

    OS_EVENT    *pevent);

(1)

OS_EVENT *

OSSemCreate(

    INT16U       cnt);

void 

OSSemCreate(

    OS_SEM       *p_sem,

    CPU_CHAR     *p_name,

    OS_SEM_CTR    cnt,

    OS_ERR       *p_err);

(2)

OS_EVENT *

OSSemDel(

    OS_EVENT    *pevent,

    INT8U        opt,

    INT8U       *perr);

OS_OBJ_QTY,

OSSemDel(

    OS_SEM       *p_sem,

    OS_OPT        opt,

    OS_ERR       *p_err);

void

OSSemPend(

    OS_EVENT    *pevent,

    INT32U       timeout,

    INT8U       *perr);

OS_SEM_CTR

OSSemPend(

    OS_SEM       *p_sem,

    OS_TICK       timeout,

    OS_OPT        opt, 

    CPU_TS       *p_ts,

    OS_ERR       *p_err);

(3)

INT8U

OSSemPendAbort(

    OS_EVENT    *pevent,

    INT8U        opt,

    INT8U       *perr);

OS_OBJ_QTY

OSSemPendAbort(

    OS_SEM       *p_sem,

    OS_OPT        opt,

    OS_ERR       *p_err);

void

OSSemPost(

    OS_EVENT    *pevent);

void 

OSSemPost(

    OS_SEM       *p_sem,

    OS_OPT        opt,

    OS_ERR       *p_err);

INT8U

OSSemQuery(

    OS_EVENT    *pevent,

    OS_SEM_DATA *p_sem_data);

(4)
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Table C-13 Semaphore Management API

TC-13(1) In μC/OS-III, there is no “accept” API since this feature is built into the

OSSemPend() by specifying the OS_OPT_PEND_NON_BLOCKING option.

TC-13(2) In μC/OS-II, OSSemCreate() returns the address of an OS_EVENT, which is used

as the “handle” to the semaphore. In μC/OS-III, the application must allocate

storage for an OS_SEM object, which serves the same purpose as the OS_EVENT.

The benefit in μC/OS-III is that it is not necessary to predetermine the number

of semaphores at compile time.

TC-13(3) μC/OS-III returns additional information when a semaphore is signaled. The

ISR or task that signals the semaphore takes a snapshot of the current

timestamp and stores this in the OS_SEM object signaled. The receiver of the

signal therefore knows when the signal was sent.

TC-13(4) μC/OS-III does not provide query services, as they were rarely used.

void

OSSemSet(

    OS_EVENT    *pevent,

    INT16U       cnt,

    INT8U       *perr);

void

OSSemSet(

    OS_SEM       *p_sem,

    OS_SEM_CTR    cnt,

    OS_ERR       *p_err);

µC/OS-II (OS_SEM.C) µC/OS-III (OS_SEM.C) Note
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C-4-7  TASK MANAGEMENT

Table C-14 shows the difference in API for task-management services.

µC/OS-II  (OS_TASK.C) µC/OS-III (OS_TASK.C) Note

INT8U

OSTaskChangePrio(

    INT8U        oldprio,

    INT8U        newprio);

void

OSTaskChangePrio(

    OS_TCB       *p_tcb,

    OS_PRIO       prio,

    OS_ERR       *p_err);

(1)

INT8U

OSTaskCreate(

    void       (*task)(void *p_arg),

    void        *p_arg,

    OS_STK      *ptos,

    INT8U        prio);

void

OSTaskCreate(

    OS_TCB       *p_tcb,

    CPU_CHAR     *p_name,

    OS_TASK_PTR  *p_task,

    void         *p_arg,

    OS_PRIO       prio,

    CPU_STK      *p_stk_base,

    CPU_STK_SIZE  stk_limit,

    CPU_STK_SIZE  stk_size,

    OS_MSG_QTY    q_size,

    OS_TICK       time_quanta,

    void         *p_ext,

    OS_OPT        opt,

    OS_ERR       *p_err);

(2)

INT8U

OSTaskCreateExt(

    void       (*task)(void *p_arg),

    void        *p_arg,

    OS_STK      *ptos,

    INT8U        prio,

    INT16U       id,

    OS_STK      *pbos,

    INT32U       stk_size,

    void        *pext,

    INT16U       opt);

void

OSTaskCreate(

    OS_TCB       *p_tcb,

    CPU_CHAR     *p_name,

    OS_TASK_PTR  *p_task,

    void         *p_arg,

    OS_PRIO       prio,

    CPU_STK      *p_stk_base,

    CPU_STK_SIZE  stk_limit,

    CPU_STK_SIZE  stk_size,

    OS_MSG_QTY    q_size,

    OS_TICK       time_quanta,

    void         *p_ext,

    OS_OPT        opt,

    OS_ERR       *p_err);

(2)

INT8U 

OSTaskDel(

    INT8U        prio);

void

OSTaskDel(

    OS_TCB       *p_tcb,

    OS_ERR       *p_err);
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INT8U

OSTaskDelReq(

    INT8U        prio);

INT8U

OSTaskNameGet(

    INT8U        prio,

    INT8U      **pname,

    INT8U       *perr);

void

OSTaskNameSet(

    INT8U        prio,

    INT8U       *pname,

    INT8U       *perr);

(3)

OS_MSG_QTY

OSTaskQFlush(

    OS_TCB       *p_tcb,

    OS_ERR       *p_err);

(4)

void *

OSTaskQPend(

    OS_TICK      timeout,

    OS_OPT       opt,

    OS_MSG_SIZE *p_msg_size,

    CPU_TS      *p_ts,

    OS_ERR      *p_err);

(4)

CPU_BOOLEAN

OSTaskQPendAbort(

    OS_TCB      *p_tcb,

    OS_OPT       opt,

    OS_ERR      *p_err);

(4)

void

OSTaskQPost(

    OS_TCB      *p_tcb,

    void        *p_void,

    OS_MSG_SIZE  msg_size,

    OS_OPT       opt,

    OS_ERR      *p_err);

(4)

INT32U

OSTaskRegGet(

    INT8U        prio,

    INT8U        id,

    INT8U       *perr);

OS_REG

OSTaskRegGet(

    OS_TCB      *p_tcb,

    OS_REG_ID    id,

    OS_ERR      *p_err);

µC/OS-II  (OS_TASK.C) µC/OS-III (OS_TASK.C) Note
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void

OSTaskRegSet(

    INT8U        prio,

    INT8U        id,

    INT32U       value,

    INT8U       *perr);

void

OSTaskRegGet(

    OS_TCB      *p_tcb,

    OS_REG_ID    id,

    OS_REG       value,

    OS_ERR      *p_err);

INT8U

OSTaskResume(

    INT8U        prio);

void

OSTaskResume(

    OS_TCB      *p_tcb,

    OS_ERR      *p_err);

OS_SEM_CTR

OSTaskSemPend(

    OS_TICK      timeout,

    OS_OPT       opt,

    CPU_TS      *p_ts,

    OS_ERR      *p_err);

(5)

CPU_BOOLEAN

OSTaskSemPendAbort(

    OS_TCB      *p_tcb,

    OS_OPT       opt,

    OS_ERR      *p_err);

(5)

CPU_BOOLEAN

OSTaskSemPendAbort(

    OS_TCB      *p_tcb,

    OS_OPT       opt,

    OS_ERR      *p_err);

(5)

OS_SEM_CTR

OSTaskSemPost(

    OS_TCB      *p_tcb,

    OS_OPT       opt,

    OS_ERR      *p_err);

(5)

OS_SEM_CTR

OSTaskSemSet(

    OS_TCB      *p_tcb,

    OS_SEM_CTR   cnt,

    OS_ERR      *p_err);

(5)

INT8U

OSTaskSuspend(

    INT8U        prio);

void

OSTaskSuspend(

    OS_TCB       *p_tcb,

    OS_ERR       *p_err);

µC/OS-II  (OS_TASK.C) µC/OS-III (OS_TASK.C) Note
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Table C-14 Task Management API

TC-14(1) In μC/OS-II, each task must have a unique priority. The priority of a task can be

changed at run-time, however it can only be changed to an unused priority.

This is generally not a problem since μC/OS-II supports up to 255 different

priority levels and is rare for an application to require all levels. Since μC/OS-III

supports an unlimited number of tasks at each priority, the user can change the

priority of a task to any available level.

TC-14(2) μC/OS-II provides two functions to create a task: OSTaskCreate() and

OSTaskCreateExt(). OSTaskCreateExt() is recommended since it offers

more flexibility. In μC/OS-III, only one API is used to create a task,

OSTaskCreate(), which offers similar features to OSTaskCreateExt() and

provides additional ones.

TC-14(3) μC/OS-III does not need an OSTaskNameSet() since an ASCII name for the

task is passed as an argument to OSTaskCreate().

TC-14(4) μC/OS-III allows tasks or ISRs to send messages directly to a task instead of

having to pass through a mailbox or a message queue as does μC/OS-II.

TC-14(5) μC/OS-III allows tasks or ISRs to directly signal a task instead of having to pass

through a semaphore as does μC/OS-II.

INT8U

OSTaskStkChk(

    INT8U        prio,

    OS_STK_DATA *p_stk_data);

void

OSTaskStkChk(

    OS_TCB       *p_tcb,

    CPU_STK_SIZE *p_free,

    CPU_STK_SIZE *p_used,

    OS_ERR       *p_err);

(6)

void

OSTaskTimeQuantaSet(

    OS_TCB      *p_tcb,

    OS_TICK      time_quanta,

    OS_ERR      *p_err);

(7)

INT8U

OSTaskQuery(

    INT8U        prio,

    OS_TCB      *p_task_data);

(8)

µC/OS-II  (OS_TASK.C) µC/OS-III (OS_TASK.C) Note
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TC-14(6) In μC/OS-II, the user must allocate storage for a special data structure called

OS_STK_DATA, which is used to place the result of a stack check of a task. This

data structure contains only two fields: .OSFree and .OSUsed. In μC/OS-III, it

is required that the caller pass pointers to destination variables where those

values will be placed.

TC-14(7) μC/OS-III allows users to specify the time quanta of each task on a per-task

basis. This is available since μC/OS-III supports multiple tasks at the same

priority, and allows for round robin scheduling. The time quanta for a task is

specified when the task is created, but it can be changed by the API at run

time.

TC-14(8) μC/OS-III does not provide query services as they were rarely used.

C-4-8  TIME MANAGEMENT

Table C-15 shows the difference in API for time-management services.

µC/OS-II  (OS_TIME.C) µC/OS-III  (OS_TIME.C) Note

void

OSTimeDly(

    INT32U    ticks);

void

OSTimeDly(

    OS_TICK     dly,

    OS_OPT      opt,

    OS_ERR     *p_err);

(1)

INT8U

OSTimeDlyHMSM(

    INT8U     hours,

    INT8U     minutes,

    INT8U     seconds,

    INT16U    ms);

void

OSTimeDlyHMSM(

    CPU_INT16U  hours,

    CPU_INT16U  minutes,

    CPU_INT16U  seconds

    CPU_INT32U  milli,

    OS_OPT      opt,

    OS_ERR     *p_err);

(2)

INT8U

OSTimeDlyResume(

    INT8U     prio);

void 

OSTimeDlyResume(

    OS_TCB     *p_tcb,

    OS_ERR     *p_err);

INT32U

OSTimeGet(void);

OS_TICK

OSTimeGet(

    OS_ERR     *p_err);
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Table C-15 Time Management API

TC-15(1) μC/OS-III includes an option argument, which allows the user to delay a task

for a certain number of ticks, or wait until the tick counter reaches a certain

value. In μC/OS-II, only the former is available.

TC-15(2) OSTimeDlyHMSM() in μC/OS-III is more flexible as it allows a user to specify

whether to be “strict” about the ranges of hours (0 to 999), minutes (0 to 59),

seconds (0 to 59), and milliseconds (0 to 999), or whether to allow any values

such as 200 minutes, 75 seconds, or 20,000 milliseconds.

C-4-9  TIMER MANAGEMENT

Table C-16 shows the difference in API for timer-management services. The timer

management in μC/OS-III is similar to that of μC/OS-II except for minor changes in

arguments in OSTmrCreate().

void

OSTimeSet(

    INT32U    ticks);

void

OSTimeSet(

    OS_TICK     ticks,

    OS_ERR     *p_err);

void

OSTimeTick(void)

void

OSTimeTick(void)

µC/OS-II  (OS_TMR.C) µC/OS-III  (OS_TMR.C) Note

OS_TMR *

OSTmrCreate(

    INT32U           dly,

    INT32U           period,

    INT8U            opt,

    OS_TMR_CALLBACK  callback,

    void            *callback_arg,

    INT8U           *pname,

    INT8U           *perr);

void

OSTmrCreate(

    OS_TMR              *p_tmr,

    CPU_CHAR            *p_name,

    OS_TICK              dly,

    OS_TICK              period,

    OS_OPT               opt,

    OS_TMR_CALLBACK_PTR *p_callback,

    void                *p_callback_arg,

    OS_ERR              *p_err);

µC/OS-II  (OS_TIME.C) µC/OS-III  (OS_TIME.C) Note
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Table C-16 Timer Management API

BOOLEAN

OSTmrDel(

    OS_TMR          *ptmr,

    INT8U           *perr);

CPU_BOOLEAN

OSTmrDel(

    OS_TMR              *p_tmr,

    OS_ERR              *p_err);

INT8U

OSTmrNameGet(

    OS_TMR          *ptmr,

    INT8U          **pdest,

    INT8U           *perr);

INT32U

OSTmrRemainGet(

    OS_TMR          *ptmr,

    INT8U           *perr);

OS_TICK

OSTmrRemainGet(

    OS_TMR              *p_tmr,

    OS_ERR              *p_err);

INT8U

OSTmrStateGet(

    OS_TMR          *ptmr,

    INT8U           *perr);

OS_STATE

OSTmrStateGet(

    OS_TMR              *p_tmr,

    OS_ERR              *p_err);

BOOLEAN

OSTmrStart(

    OS_TMR          *ptmr,

    INT8U           *perr);

CPU_BOOLEAN

OSTmrStart(

    OS_TMR              *p_tmr,

    OS_ERR              *p_err);

BOOLEAN

OSTmrStop(

    OS_TMR          *ptmr,

    INT8U            opt,

    void            *callback_arg,

    INT8U           *perr);

CPU_BOOLEAN

OSTmrStop(

    OS_TMR              *p_tmr,

    OS_OPT               opt,

    void                *p_callback_arg,

    OS_ERR              *p_err);

INT8U

OSTmrSignal(void);

µC/OS-II  (OS_TMR.C) µC/OS-III  (OS_TMR.C) Note
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C-4-10  MISCELLANEOUS

Table C-17 shows the difference in API for miscellaneous services. 

µC/OS-II  (OS_CORE.C) µC/OS-III  (OS_CORE.C) Note

INT8U

OSEventNameGet(

    OS_EVENT   *pevent,

    INT8U     **pname,

    INT8U      *perr);

void

OSEventNameSet(

    OS_EVENT   *pevent,

    INT8U      *pname,

    INT8U      *perr);

(1)

INT16U

OSEventPendMulti(

    OS_EVENT  **pevent_pend,

    OS_EVENT  **pevent_rdy,

    void      **pmsgs_rdy,

    INT32U      timeout,

    INT8U      *perr);

OS_OBJ_QTY

OSPendMulti(

    OS_PEND_DATA  *p_pend_data_tbl,

    OS_OBJ_QTY     tbl_size,

    OS_TICK        timeout,

    OS_OPT         opt,

    OS_ERR        *p_err);

(2)

void

OSInit(void)

void

OSInit(

    OS_ERR        *p_err);

(3)

void

OSIntEnter(void)

void

OSIntEnter(void);

void

OSIntExit(void)

void

OSIntExit(void)

void

OSSched(void);

void

OSSchedLock(void)

void

OSSchedLock(

    OS_ERR        *p_err);

(4)

void

OSSchedRoundRobinCfg(

    CPU_BOOLEAN    en,

    OS_TICK        dflt_time_quanta,

    OS_ERR        *p_err);

(5)

void

OSSchedRoundRobinYield(

    OS_ERR        *p_err);

(6)
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Table C-17 Miscellaneous API

TC-17(1) Objects in μC/OS-III are named when they are created and these functions are

not required in μC/OS-III.

TC-17(2) The implementation of the multi-pend functionality is changed from μC/OS-II.

However, the purpose of multi-pend is the same, to allow a task to pend (or

wait) on multiple objects. In μC/OS-III, however, it is possible to only

multi-pend on semaphores and message queues and not event flags and

mutexes.

TC-17(3) An error code is returned in μC/OS-III for this function. Initialization is

successful if OS_ERR_NONE is received back from OSInit(). In μC/OS-II, there

is no way of knowing whether there is an error in the configuration that caused

OSInit() to fail.

TC-17(4) An error code is returned in μC/OS-III for this function. 

TC-17(5) Enable or disable μC/OS-III’s round-robin scheduling at run time, as well as

change the default time quanta.

TC-17(6) A task that completes its work before its time quanta expires may yield the CPU

to another task at the same priority.

TC-17(7) An error code is returned in μC/OS-III for this function. 

void

OSSchedUnlock(void)

void

OSSchedUnlock(

    OS_ERR        *p_err);

(7)

void

OSStart(void)

void

OSStart(void);

void

OSStatInit(void)

void

OSStatTaskCPUUsageInit(

    OS_ERR        *p_err);

(8)

INT16U

OSVersion(void)

CPU_INT16U

OSVersion(

    OS_ERR        *p_err);

(9)

µC/OS-II  (OS_CORE.C) µC/OS-III  (OS_CORE.C) Note
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TC-17(8) Note the change in name for the function that computes the “capacity” of the

CPU for the purpose of computing CPU usage at run-time.

TC-17(9) An error code is returned in μC/OS-III for this function. 

C-4-11  HOOKS AND PORT

Table C-18 shows the difference in APIs used to port μC/OS-II to μC/OS-III. 

µC/OS-II  (OS_CPU*.C/H) µC/OS-III  (OS_CPU*.C/H) Note

OS_TS

OSGetTS(void);

(1)

void

OSInitHookBegin(void);

void

OSInitHook(void);

void

OSInitHookEnd(void);

void

OSTaskCreateHook(

    OS_TCB    *ptcb);

void

OSTaskCreateHook(

    OS_TCB        *p_tcb);

void

OSTaskDelHook(

    OS_TCB    *ptcb);

void

OSTaskDelHook(

    OS_TCB        *p_tcb);

void

OSTaskIdleHook(void);

void

OSIdleTaskHook(void);

void

OSTaskReturnHook(

    OS_TCB        *p_tcb);

(2)

void

OSTaskStatHook(void)

void

OSStatTaskHook(void);

void

OSTaskStkInit(

    void     (*task)(void *p_arg),

    void      *p_arg,

    OS_STK    *ptos,

    INT16U     opt);

CPU_STK *

OSTaskStkInit(

    OS_TASK_PTR    p_task,

    void          *p_arg,

    CPU_STK       *p_stk_base,

    CPU_STK      *p_stk_limit,

    CPU_STK_SIZE   size,

    OS_OPT         opt);

(3)

void

OSTaskSwHook(void)

void

OSTaskSwHook(void);
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Table C-18 Hooks and Port API

TC-18(1) μC/OS-III requires that the Board Support Package (BSP) provide a 32-bit

free-running counter (from 0x00000000 to 0xFFFFFFFF and rolls back to

0x00000000) for the purpose of performing time measurements. When a signal

is sent, or a message is posted, this counter is read and sent to the recipient.

This allows the recipient to know when the message was sent. If a 32-bit

free-running counter is not available, simulate one using a 16-bit counter.

TC-18(2) μC/OS-III is able to terminate a task that returns. Recall that tasks should not

return since they should be either implemented as an infinite loop, or deleted if

implemented as run once.

TC-18(3) The code for OSTaskStkInit() must be changed slightly in μC/OS-III since

several arguments passed to this function are different than in μC/OS-II. Instead

of passing the top-of-stack as in μC/OS-II, OSTaskStkInit() is passed the base

address of the task stack, as well as the size of the stack.

TC-18(4) This function is not needed in μC/OS-III.

TC-18(5) These functions are a part of OS_CPU_A.ASM, and should only require name

changes for the following variables:

void

OSTCBInitHook(

    OS_TCB    *ptcb);

(4)

void

OSTimeTickHook(void);

void

OSTimeTickHook(void);

void

OSStartHighRdy(void);

void

OSStartHighRdy(void);

(5)

void

OSIntCtxSw(void);

void

OSIntCtxSw(void);

(5)

void

OSCtxSw(void);

void

OSCtxSw(void);

(5)

µC/OS-II  (OS_CPU*.C/H) µC/OS-III  (OS_CPU*.C/H) Note



635

Migrating from µC/OS-II to µC/OS-III

µC/OS-II variable changes to … … in µC/OS-III

OSIntNesting OSIntNestingCtr

OSTCBCur OSTCBCurPtr

OSTCBHighRdy OSTCBHighRdyPtr
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MISRA-C:2004 and µC/OS-III

MISRA C is a software development standard for the C programming language developed by

the Motor Industry Software Reliability Association (MISRA). Its aims are to facilitate code

safety, portability, and reliability in the context of embedded systems, specifically those

systems programmed in ANSI C. There is also a set of guidelines for MISRA C++.

There are now more MISRA users outside of the automotive industry than within it. MISRA

has evolved into a widely accepted model of best practices by leading developers in such

sectors as aerospace, telecom, medical devices, defense, railway, and others.

The first edition of the MISRA C standard, "Guidelines for the use of the C language in

vehicle based software," was produced in 1998 and is officially known as MISRA-C:1998.

MISRA-C:1998 had 127 rules, of which 93 were required and 34 advisory. The rules were

numbered in sequence from 1 to 127.

In 2004, a second edition "Guidelines for the use of the C language in critical systems," or

MISRA-C:2004 was produced with many substantial changes, including a complete

renumbering of the rules.

The MISRA-C:2004 document contains 141 rules, of which 121 are "required" and 20 are

"advisory," divided into 21 topical categories, from "Environment" to "Run-time failures."

μC/OS-III follows most of the MISRA-C:2004 except that five (5) of the required rules were

suppressed. The reasoning behind this is discussed within this appendix.

IAR Embedded Workbench for ARM (EWARM) V5.40 was used to verify MISRA-C:2004

compliance, which required suppressing the rules to achieve a clean build. 
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D-1  MISRA-C:2004, RULE 8.5 (REQUIRED)

Rule Description

There shall be no definitions of objects or functions in a header file.

Offending code appears as

OS_EXT allows us to declare “extern” and storage using a single declaration in OS.H but

allocation of storage actually occurs in OS_VAR.C. 

Rule suppressed

The method used in μC/OS-III is an improved scheme as it avoids declaring variables in

multiple files. Storage for a variable must be declared in one file (such as OS_VAR.C) and

another file needs to extern the variables in a separate file (such as OS.H).

Occurs in

OS.H

D-2  MISRA-C:2004, RULE 8.12 (REQUIRED)

Rule Description:

When an array is declared with external linkage, its size shall be stated explicitly or defined

implicitly by initialization.

Offending code appears as

μC/OS-III can be provided in object form (linkable object), but requires that the value and

size of known variables and arrays be declared in application code. It is not possible to

know the size of the arrays.

OS_EXT   OS_IDLE_CTR   OSIdleTaskCtr;    

extern  CPU_STK        OSCfg_IdleTaskStk[];
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Rule suppressed

There is no choice other than to suppress or add a fictitious size, which would not be

proper. For example, we could specify a size of 1 and the MISRA-C:2004 would pass.

Occurs in:

OS.H

D-3  MISRA-C:2004, RULE 14.7 (REQUIRED)

Rule Description

A function shall have a single point of exit at the end of the function.

Offending code appears as

Rule suppressed

We prefer to exit immediately upon finding an invalid argument rather than create nested

“if” statements.

Occurs in

OS_CORE.C

OS_FLAG.C

OS_INT.C

OS_MEM.C

OS_MSG.C

OS_MUTEX.C

OS_PEND_MULTI.C

OS_PRIO.C

OS_Q.C

OS_SEM.C

OS_STAT.C

OS_TASK.C

OS_TICK.C

OS_TIME.C

OS_TMR.C

if (argument is invalid) {

    Set error code;

    return;

}
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D-4  MISRA-C:2004, RULE 15.2 (REQUIRED)

Rule Description

An unconditional break statement shall terminate every non-empty switch clause.

Offending code appears as

Rule suppressed

The problem involves using a return statement to exit the function instead of using a break.

When adding a “break” statement after the return, the compiler complains about the

unreachable code of the “break” statement.

Occurs in

OS_FLAG.C

OS_MUTEX.C 

OS_Q.C

OS_TMR.C

switch (value) {

    case constant_value:

         /* Code */  

         return;    

}
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D-5  MISRA-C:2004, RULE 17.4 (REQUIRED)

Rule Description

Array indexing shall be the only allowed form of pointer arithmetic.

Offending code appears as

Rule suppressed

It is common practice in C to increment a pointer instead of using array indexing to

accomplish the same thing. This common practice is not in agreement with this rule.

Occurs in

OS_CORE.C

OS_CPU_C.C

OS_INT.C

OS_MSG.C

OS_PEND_MULTI.C

OS_PRIO.C

OS_TASK.C

OS_TICK.C

OS_TMR.C

    :

    p_tcb++;

    :
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Licensing Policy

This book contains μC/OS-III, precompiled in linkable object form, and is accompanied by

an evaluation board and tools (compiler/assembler/linker/debugger). The user may use

μC/OS-III with the evaluation board that accompanied the book and it is not necessary to

purchase anything else as long as the initial purchase is used for educational purposes.

Once the code is used to create a commercial project/product for profit, however, it is

necessary to purchase a license. 

It is necessary to purchase this license when the decision to use μC/OS-III in a design is

made, not when the design is ready to go to production.

If you are unsure about whether you need to obtain a license for your application, please

contact Micriμm and discuss the intended use with a sales representative.

CONTACT MICRIUM

1290 Weston Road, Suite 306

Weston, FL 33326

USA

Phone:  +1 954 217 2036

Fax:    +1 954 217 2037

E-mail: Licensing@Micrium.com

Web:    www.Micrium.com
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