mCIOS-IIIT"

The Real-Time Kernel

User’s Manual

Micripm

This book puts the spotlight on how a real-time kernel works, using Micrium’s pC/OS-lll as a reference.

This book is written for serious embedded systems programmers, consultants, hobbyists, and students interested
in understanding the inner workings of a real-time kernel. pC/OS-lll is not just a great learning platform, but also
a full commercial-grade software package, ready to be part of a wide range of products.

pC/OS-lIlis a highly portable, ROMable, scalable, preemptive real-time, multitasking kernel designed specifically
to address the demanding requirements of today’s embedded systems. pC/OS-lll is the successor to the highly
popular uC/OS-Il real-time kernel but can use most of pC/0OS-II's ports with minor modifications. Some
of the features of pC/OS-Ill are:

m Preemptive multitasking with round-robin scheduling of tasks at the same priority

m Supports and unlimited number of tasks and other kernel objects

m Rich set of services: semaphores, mutual exclusion semaphores with full priority inheritance, event flags,
message queues, timers, fixed-size memory block management, and more.

m Built-in performance measurements

Micripm
L)\ Press

ISBN 97&4-0-9823375-9-2

‘ ‘“ 90‘000
9 '780982"337592

www.micrium.com

Lp}C/OS-I | B

The Real-Time Kernel

User’s Manual

Micripm
L\ Press
Weston, FL 33326

Micripm Press

1290 Weston Road, Suite 306
Weston, FL 33326

USA

Www.micrium.com

Designations used by companies to distinguish their products are often claimed as trademarks.
In all instances where Micripm Press is aware of a trademark claim, the product name appears in
initial capital letters, in all capital letters, or in accordance with the vendor’s capatilization
preference. Readers should contact the appropriate companies for more complete information
on trademarks and trademark registrations. All trademarks and registerd trademarks in this book
are the property of their respective holders.

Copyright © 2010 by Micripm Press except where noted otherwise. Published by Micripm Press.
All rights reserved. Printed in the United States of America. No part of this publication may be
reproduced or distributed in any form or by any means, or stored in a database or retrieval
system, without the prior written permission of the publisher; with the exception that the
program listings may be entered, stored, and executed in a computer system, but they may not
be reproduced for publication.

The programs and code examples in this book are presented for instructional value. The
programs and examples have been carefully tested, but are not guaranteed to any particular
purpose. The publisher does not offer any warranties and does not guarantee the accuracy,
adequacy, or completeness of any information herein and is not responsible for any errors and
ommissions. The publisher assumes no liability for damages resulting from the use of the
information in this book or for any infringement of the intellectual property rights of third parties
that would result from the use of this information.

For bulk orders, please contact Micrium Press at: +1 954 217 2036

Micripm
ISBN: 978-0-9823375-9-2 @ Press

600-uCOS-III-Users-Manual-002

Chapter 1
1-1
1-2
1-3
1-4
1-5
1-6
1-7
1-8
1-9
1-10
1-11

Chapter 2
2-1
2-2
2-3
2-4
2-5
2-6
2-7
2-8

Chapter 3
3-1
3-2

Table of Contents

Preface ... 13
Y 40 To [To 1 T o T 15
Foreground/Background SyStemscccccccccermremerinissssssssmseesseseeessnnes 16
Real-Time Kernels ... 17
RTOS (Real-Time Operating System)cccccereiiiiiicccccissemerree e 19
807 @ 1 | | 19
MC/0S, uC/0S-Il and pC/0OS-I1ll Features Comparisoncccceuuee. 24
How the Book is Organizedccccveeerinnniesnnnnese s 26
10374 2 e o = 26
L0 0] 1Y =1 01] To] o £ 27
Chapter Contentsooceiiiiiicccirrr e 28
I o =Y g =3 o 32
Contacting MiCHiUMceeiiiiimi i 32
Directories and Files ... 33
Application COde ... s 36
0 OSSPSR 37
Board Support Package (BSP)cccccvrmmrmmriimiins s cccssseeeeeesseees s e 38
MC/0S-lll, CPU Independent Source Codeccoomireeeecemeeecccccccicnnan, 39
HC/0S-IIl, CPU Specific Source Codeccommrrimimiiemremmmeeecesessnns 43
HC/CPU, CPU Specific Source Codecccrrrrrrmerrrrsssmrrrssssmrersssssnnenes 44
UC/LIB, Portable Library FUNCLIONS ... 46
SUMMANY e 47
Getting Started with HC/OS-1IIeeiiiier 51
571 gTe] (3 IP= T3 1A o] o] [o= To o IR 52
Multiple Tasks Application with Kernel Objectscccccccerrrrrrrrrinneees 60

Table of Contents

Chapter 4
4-1

4-1-1

4-2

4-2-1

4-3

4-4

Chapter 5
5-1
5-2
5-3
5-4
5-5
5-5-1
5-5-2
5-6
5-6-1
5-6-2
5-6-3
5-6-4
5-6-5
5-7

Chapter 6
6-1
6-2
6-3
6-4

Chapter 7
7-1

7-2

7-3

7-4

7-4-1
7-4-2

(07 gy Tor=T I ST=T o 1) ISP 69
Disabling INterruptsueeeeeeemecscssssssssss s ss e s s e e s e e s e s ee e s s s sssssssnss 70
Measuring Interrupt Disable Time ... 70
Locking the Scheduler ... e 71
Measuring Scheduler LOCK TiMecccccevmemmrrermrnnsssssssssssssesssssssessssnnnns 72
pC/OS-lIl Features with Longer Critical Sectionsccccocceecerriicncnn. 73
SUMMANY e 74
Task Managementooooeececeieemeeesssssssssss s s e s e s e e s e s s e s s s s s msmssssssssssnns 75
Assigning Task Priorities ... 84
Determining the Size of a Stackccccecivmcrrmririe s 86
Detecting Task Stack Overflowsccccceeeemriimniinncscccccsseceree e 87
Task Management ServiCes ... 91
Task Management Internalscccccceeccceriirrrnsnserreee e s eeee e e e snnnes 92
QLI TS Q8 = L =T 92
Task Control BIOCKS (TCBS)cccceeeismmmmerrreresssssssssssmmeesses s s esssssssssssmnens 97
INternal TAsKSccciiiiiiiiiiiieiirrrr s 106
The Idle Task (OS_IdIeTask())cccceerrrmmmmmrrmerrmrirssssscsssmnneereeeereessssneses 107
The Tick Task (OS_TickTasK()) ...cccceessasmmrrrrrrrrrrmmsssssssssmmmmennneerssssssansns 109
The Statistic Task (OS_StatTask())cceeeeeerrrrrrrrrrrrrrrrrereeereeeenenmnnnnnnes 116
The Timer Task (OS_TmMrTask())coceeceerererrrrrssssssssssmsmeeeereeessssssenses 119
The ISR Handler Task (OS_INtQTask()) -eeeeerrrrrrrarrersssanmmermeeeesesssnaanes 120
SUMMANY coiiiiiiiccecirsmereereresrsssssssssssssmsss e s e e e eessasssssssssmssssseeessassasssssnnnnns 121
The Ready Listcooccciiimerriir e 123
Priority LEVEIS ..o sr e e s r e r e e s 124
The Ready Listcccccimiiiiinemiiniinr s s 128
Adding Tasks to the Ready Listccccccmmmiirmiiiniiiiiieeerreee s 131
SUMMANY coiiiiiiicccccrsmererrere s rsssssssssssssmses e s e e e eessassssssssssmssseseeessassasssssnnnnns 132
S To7 0 T=To L1113V P 133
Preemptive Schedulingcccccciirmiiiiscccccsseccreee e ssmsce e s e neees 134
Scheduling Points ..o 136
Round-Robin Schedulingcccovcmiiiimnnee e 138
Scheduling INternalscoiviiccccccrscerrrrerr e nmnnes 141
L@ 51T 1= o | | PSSR 142
OSINEEXIL() cuvneerrrsrnnnrerresssnsersssssnsesssssssnsesssssanneessssssseesssssansessssssnseessessnns 143

7-4-3
7-5

Chapter 8
8-1
8-2
8-3

Chapter 9
9-1
9-2
9-3
9-4
9-5
9-6
9-6-1
9-6-2
9-7
9-8
9-9

Chapter 10
10-1

Chapter 11
11-1
11-2
11-3
11-4
11-5
11-6

Chapter 12
12-1
12-2
12-3

0S_SchedRoundRODbIN() ...ccccoemmrmmrrriiiri e 144

SUMMANY coiiiiiiicciccrseerereers s rsssssssssssssmser e s e e e eessasssssssssmsssssenessassasssssnnnnns 146
Context SWItChINGcccociiiiiiiir s 147
OSCIXSW() ceirccccnmmmrrrrrrrirssssssssssssneee s e s resssssssssssnmsessesesssassassssnsnnnnssnnnnes 150
OSINECEXSW() .eureememerririrriiiissccsssmnenreere e e e s sssssssssssmneeeeseessessssssnsnnnnsssneees 153
SUMMANY i 155
Interrupt Management ... 157
Handling CPU INterruptscccocciemmminiimns e 158
Typical uC/OS-Ill Interrupt Service Routine (ISR)ccccccvvererriiiieenees 159
Short Interrupt Service Routine (ISR) ...ccovvevccicciieeecmrrerree e 162
All Interrupts Vector to a Common Locationcccceeeeerrrreneirnnnnees 163
Every Interrupt Vectors to a Unique Locationcceeeeemememeeenccennnn. 165
Direct and Deferred Post Methods ..., 166
Direct Post Method ... 166
Deferred Post Method ... 169
Direct vs. Deferred Post Methodccccoeviiiiiiiiis s 172
The Clock Tick (or System TiCk)ccccccccrrrrrrmriiiissscrseemereee e 173
SUMMANY coiiiiiiiiccccrsmsrereerrsrsssssssssssssmsrr e s e e s eessassssssssssmsssesensssassssssssnnnns 175
Pend Lists (Or Waiit LiStS)ccccccrrmmriiiiisiccssemrmeee e s sssmeene e 177
SUMMANY ceiiiiiiiiccccrssmereeeer e s rsssssssssssssmsre e s e e e esssaasssssssssmssseseesssassnsssssnnnnns 182
Time Management ... s 183
OSTIMEDIY() -reeeeeeammrerrrreammerrrresmreressssmme e s sessmee e e ssssmn e e s esssmeeessessmneesesssnns 184
OSTIMEDIYHMSMY() ..o e 189
OSTIimeDIyReSUME() ...uueriiiiiieiriireee s 191
OSTimeSet() and OSTIMEGEL() -wvveeerrrrrrrsrrrssrmmemerrrr e e s rssssssssssneneeeneees 192
L@ 1S 14 L= T (| 192
SUMMANY i 192
Timer Management ... 193
L@ TR o Vo L A T3 0 1= P 195
Periodic (no initial delay)cccccceemmiiiiiiscccssneceere e 196
Periodic (with initial delay)ccccoooiiiiiiiiie e 196

Table of Contents

12-4
12-4-1
12-4-2
12-4-3
12-4-4
12-5

Chapter 13
13-1
13-2
13-3
13-3-1
13-3-2
13-3-3
13-3-4
13-3-5
13-4
13-4-1
13-5
13-6
13-7

Chapter 14
14-1
14-1-1
14-1-2
14-1-3
14-1-4
14-2
14-2-1
14-2-2
14-2-3
14-3
14-3-1
14-3-2
14-4
14-5

Timer Management Internalscccccvvmmmmmmeiincccieer s 197
Timer Management Internals - Timers Statesccccccccerrerrieriinnnne. 197
Timer Management Internals - OS_TMRcooiiiiccciiiimmecrreneeneeee e, 198
Timer Management Internals - Timer Taskccccovvmmmmmrmnnenniinnnnnn. 200
Timer Management Internals - Timer Listcccccovviiiivirveveeeececcenennnns 203
SUMMANY ciiiiiiiiiccccrsenrerrer s rs s ss s s s sssssmsre e e e e e s e e sas s s s sssnmnseeeeeessassasssnsnnnnns 208
Resource Managementccccccrrriirrmrrerrmrererseseece s s 209
Disable/Enable INterruptscccccecerrrceecemnrscscee e e 212
[0 Tod 19/ 1 1 1 o T QPR 214
ST g =T o] o Vo - 215
Binary Semaphoresccccccceeeriiriiiniissccscssssssceseee e ss s ss s ssnsssnseseneees 217
Counting SEemMAaphOrescccciriiiiismrrisr e 224
Notes 0N SEMAPNOrEScceueeeeerrrrrrrrrr e e e s 226
Semaphore Internals (for resource sharing)ccccccceriiriiicccccccssnenene 227
Priority INVErsionsccccciiemmmmmnemssesr s 232
Mutual Exclusion Semaphores (MUteX)ccccceverrereeeecemmmneeeerereneenns 234
Mutual Exclusion Semaphore Internalsccccccerveiiiiicccccsceceeennennn, 239
Should You Use a Semaphore Instead of a Mutex?cccccrvvvenenn 245
Deadlocks (or Deadly EMbrace)cccoevmmrmrrmrrrmnnsssssssssssssneessessnnens 245
SUMMANY ciiiiiiiicccicrsmnrerrer e rs s ss s s s s ssssmsr e e s e e e s e e sssssssssnssmssseeeeessassasssnsnnnnns 250
SYNChroNizationccccceeiiiiicccccccseccrrr e e 251
SeMAPNOrES ...t e nmnnns 252
Unilateral Rendezvous ... 254
(O77=To [A 1e=Te] (1 Vo [SRR 257
Multiple Tasks Waiting on a Semaphoreccccoveiiiiiiciiiiieeenennnn. 259
Semaphore Internals (for synchronization)ccccccmiiiiiiiiiicccciiinnnes 260
Task SEMAPNOrEcocoiiiiiiiieeeeeceerrr e re s s e s e s e e e e s e e e e s e e e e e e e e s e e s nnnnnen 267
Pending (i.e., Waiting) on a Task Semaphoreccccceiiiiiiemrennnnn. 268
Posting (i.e., Signaling) a Task Semaphorecocceriiiiiienniiicinennn, 269
Bilateral RENdezVOouUSccccccmeimiiiiiiiniieeeree s 271
Event FIagscccoccriiiiin s 273
Using Event Flagsccccviimmmmimiisesrrn e 275
Event Flags Internalseeccciiiniiiisrir e re s r e s e e s 279
Synchronizing Multiple Tasksccccmiiiiiiiiiiiiiieeeer s 286
SUMMANY i 288

Chapter 15
15-1
15-2
15-3
15-4
15-5
15-6
15-7
15-8
15-9
15-10

Chapter 16
16-1

Chapter 17
17-1
17-2
17-3
17-4
17-5

Chapter 18
18-1
18-2
18-3
18-4

Chapter 19
19-1
19-2
19-3
19-4
19-5
19-6

Message PassSingcccccvvivmmmemmnnnnnssssss e e 289
LY LTSS T = 290
MesSSage QUEUEScccceerrrreccrerrrssmneressssmme e e s s smr e s e s smne e s s s smmne e s s ssmnees 290
Task Message QUEUEcccceeiiiemmriinsirn s 292
Bilateral RENdezVOUScccccmiimiiriiiiniieeer s 293
L [0 11V 0o Y o { o 294
Keeping the Data in SCOPEe ..c..ovviviiiiiicciirree e 296
Using Message QUEUEScceevireemerrrresmrereessme e e s smme e s s smee e s s 299
Clients and SEIrVErSccviicecieirrecsre e sene e s ennns 307
Message Queues Internals ..o 308
SUMMANY coiiiiiiiiccccrsmereeeer e s rsssssssssssssmse s e s e e e e ssssssssssssnsmssssseeessassnssssssnnnns 311
Pending On Multiple ObjJECtSccoviiiiicccicieerree e 313
SUMMANY ceiiiiiiiiccccssmererrere s rsssssssssssssmses e e e e e eessasssssssssnmsssssenessassasssssnnnnns 321
Memory Management ..o 323
Creating a Memory Partitioncccceovvivcccccccccrrree e 324
Getting a Memory Block from a Partitioncccccceeeeecccciiceececennennn, 328
Returning a Memory Block to a Partitionccccceiiviciiieeeeennnnennn, 329
Using Memory Partitionsccccociiiiiriiiiiemrsser e seeee e s 330
SUMMANY ciiiiiiiiiccicrneeeerrer e rs s ss s s s sssssmsr e e e e e e s e e s s s s s s s snsnmnseeeeeessassasssnsnnnnns 333
Porting HC/OSHIII ... e e 335
807 SRR 338
(010710 1S || I o o o S S SO SRR 341
Board Support Package (BSP)cccceevrsmmmrmrrerrrrnssssssssssssssseeesssseeens 343
T8 0 4T T o 345
Run-Time StatistiCscccvvireerr e 347
General Statistics = RUN-TIMEcoooiiiiiiiiicccere e 348
Per-Task Statistics — RUN-TIMEccooviiiiciccrree e 352
Kernel Object — RUN-TIMEcccoiiieeeeriecceee e 355
OS_DBG.C — StatiC ...cccecrerrrrrmrrrrrsssmresrsssssseessssssessssssssseessssssnsessssssns 358
OS_CFG_APP.C — STatiC ...cccoecmerrrrrrrirrssscscssmsmmere e e esssss s ssmsmsenesenees 371
SUMMANY coiiiiiiiccccccseererrerrrrssss s s sssssssmsee s s e e e e essasssssssssmsssseeeessassnsssssnnnnns 373

Table of Contents

Appendix A
A-1
A-2
A-3
A-4
A-5
A-6
A-7
A-8
A-9
A-10
A-11

UC/OS-IIl API Reference Manualoccceeevecmemreesnennsssssssseeeeeeeeees 375
Task Managementoooceeeeemmemememnnsssssssssssss e sr s e s s e s e eeee e e e snmnsmsssssnns 376
Time Management ... s s e e e e s e e e e 378
Mutual Exclusion Semaphores — Resource Management 379
Event Flags — Synchronizationccccovvmmmmniiinnicccccccseeeceeeeeeeeen 380
Semaphores — Synchronizationcccccceeveicccciisecener e 381
Task Semaphores — Synchronizationccccciiiicciiinicncnncceees 382
Message Queues — Message Passingccccccceecervreceerrencssceesenesecens 383
Task Message Queues — Message Passingcccccccccceererrcmmenrsseeeeens 384
Pending on Multiple ObjJectscccciiicicmmiiniier e 385
11T £ 386
Fixed-Size Memory Partitions - Memory Management 387
L0 13103 1€ | PR 388
OSFIagCreate() ... ceererrrrrrrmssssssssnmrrrrerrersssssssssssnsmmssssesesssssssssssnnmsnssssesens 390
(@ 15T =T | 1Y [| OO RR 392
L@ 251 o F= T | 2 T=T g Vo || 394
(0137 S F=Te [1=T3To VY oo) o) PSSP 398
OSFlagPendGetFlagsSRAY()....ccceerrrriiieiicsismmmerrere s e s ss e ssmssnneeeneeeeseas 401
OS] F= T | 2o 1= | 403
(013710 | 1Y JF=T5] 1 Lo To) (| PR 405
L0251 0 SRR 407
(0 1371114 Lo T (| P 409
(@157 91 (0397511 | 410
(@ 153101 =1 LT ¢ | PSR 412
OSINEEXIt()..uuneereresnnneerresssnrersssssnsesssssssnsessssssnneessssssseesssssansessssssnsessssssnns 413
(@ 13717, 1= 5/ 10 == Y | 414
OSMEMGEL() .. uuummmmmerrrrriiiiiissssssnmnenr e e s e e e e s s s s s e ssnmn e e e e e e e se s s s s smnnnennnenes 417
L@ 1331V 1= 0 41 = | P 419
(1371, (1 =5 (@ == | L= | 421
OSMULEXDEI() .eereeumererraesnmreersssneeesssssmsessssssmneesssssnneessssssnneessassnsesssnsnns 423
OSMULEXPENA() .eeemeerreereriiiiieecsnmnerere e e s s e sss s sssmme e e e e s e e s ss s s smsmnnne e neees 425
OSMuUteXPendADOI()......cccecernmmmrrnreresessssssssssmnseere e e s ee s ss s s s sssmneneseneees 428
OSMULEXPOST() -.euemmeeeeeeiiiiiiaeiemmmnr e e 430
OSPEeNAMUHRI() «eveeeeeeeeiecimreerssceee e e smr e s s ssmnr e s s sme e e s smne e s e snme e e ennns 432
(0 15T @07 =T | =Y | SRR 436
OSQDEI() e eenmrerrrarsnnrerrassanreerssssseessasssnsessasssnneessasssneessssssnsesssassnnesssassnns 438
OSQFIUSN() uueeerrrirnererricsmeeesssssnneeesssssmseesssssnnsesssssneessssssnssesssssnnsesssnsnns 440
L@ ST] =1 o T | | SN 442

OSQPENAADOI() «.vvrvereeeeeseesesseesesseesesesessesesesssesesesessesasessessessssseens 446

L0 ST] o | S 448
OSSafetyCriticalStart()........ccceerrrmmrrrrrrmriiniccccrssseerrr e seenneeees 451
L@ 1335 T o] o= o || 452
(@ 15357 ¢ =Y | I Y 1 | 454
(01535Te] Yo | 2TeTN Vo | 3T0) o110 103 {o | PR 456
0SSchedRoundRObINYield() .ceeeirerrmeeerrissneerrressnreesssssneeeesssssmeeessssnns 458
(©1315Te] aT=Te [0 o1 [oYod (| 1SR 460
OSSEMOCIEALE()..uueeererrrrriiiiiiiiirnmnrrrrerr e e s s sss s s s ssmneee e e s eeses s e s snnmnnneeeneees 462
OSSEMDEI() ...uuuummnmmerrrrrrrirasasssssnmsenere e e e e e ssssssssssmmne e e e s eessessas s s smmnnesnnenes 464
(@ 1535721 0 1 2= Vo) 467
(O1SITT0 a1 2=TaTe VaY oTo) o | SRR 470
OSSEMPOST() ..uuummeerrrrririiiiissesssnmmrrrrere e resssssssssmnmme e e e e s eessa s s s ssnnmsnneseneees 472
(@ 153572 5T) 475
L@ 2515 =T g) SR 477
OSStartHIghRAY()ceccceererricimereriscceere s resssee e s s sse e e s s ssnee e e s sme e e s sesnnns 479
(@ 153 =11 =TT) 481
OSStatTaskCPUUsagelNit()cccceeerrrreiiicicssssmmcereeesensssssssssssssssneseseens 482
(13137 6= Ll IF=T5] 1 Lo T (| TS 483
OSTaskChangePrio().......ccceeeremmmmrrererrrissssssssssssnnerereeseessssssssssnsmsessseneees 485
OSTaskCreate()cccceerrrrrrireriiersnnmreereeresssssssssssssssssesseesseeesssssssssnnnmnnnes 487
(137 =151 (03 12T 1 1= Lo To) | PR 498
OSTASKDEI().eeeeeeemmnnnnennnnnrrrrrrrrrsererreerrerrreessnsnnmnmsssssssssssssssssssssseseereerene 500
(O15] =TS (B =Y | 2 (oY o] (| PR 502
L@ 1S =TS (@] =T o T [R 504
(O3] [F=T5] (@] 2710 To 1N oo o { | TS PP 507
OSTaSKQPOSH() ..ecumrerrrermmrerrrssmrrrrssssmrersssssmneesssssneessssssnsessssssnneessessnns 509
OSTaskRegGet().....cuurrrrrmrrrrrrrmrrr i 512
OSTaSKREGSE() .uueerrrrerrrrriisirissnnmnerrrerrerssssssssssssnmseesssressssssssssssnsnnssnsnees 514
OSTaskReturnHOOK()cccceemmmemee e 516
OSTasSkRESUME().ucmerirerriiiiiiieennnmnenrrerr s s e sssssssssmmmn e e e e s se s sesss s mmmne e neees 518
(@15 =13 165 T=T o1 o= o o [520
OSTaskSemPendADOI().......cocrrrrrrrririrreccemmeeer e mmme e 523
OSTaskSEMPOSH() -eveerereiiiaiiiiimmmrrrrr e s sss e smnnne e 525
(O 1S =17 16T g S 1= | 527
OSTaskStatHOOK().....eeeeiiieiaecmme e 529
OSTaSKSIKChK() ...uuererrermereririieeersrccssee e s ssssmee e s ssssse e e s ssssme e e s sessmne e e snssnns 531
OSTasSKSTKINIT()...ceeeerreeemreerrremee e e rrcsmre e e e emn e smne e e 534

Table of Contents

Appendix B
B-1
B-2
B-3

Appendix C
C-1
C-2
C-3
C-4
C-4-1
C-4-2
C-4-3
C-4-4
C-4-5
C-4-6
C-4-7
C-4-8

10

(O 13 =51 ST L] o= T [) P 538
OSTasSkSWHOOK() «eevrereriiiiiiiccimnemrrereressssssssssssssseessee s esssssssssssnsmssnsssneees 540
OSTaskTimeQuantaSet()ccccerrrrrrsrerrrsrsrre e rrssne e s e e s sme e eennns 543
OSTICKISR() eeeerreernmererssssnnrerrssssneessssssneessssssneessssssnseessssssnsessssssnsessssssnns 545
L@ S] 0 1= S 547
OSTIMEDIYHMSM() .coeeeeeieecreresssmr e e essssmr e s ssssmne e s ssssmme e s e smme e e ensnns 550
OSTIimeDIyReSUME()uumriiiiieir i 553
OSTIMEGEL() cevrrrreemmmmnmnnnnnrrrrrrrrrrerrrerrrrrrrerrrrererernnnnnmnnnnssssssssssssssssesseees 555
OSTIMESEL() .uuurmmmrerrrrriiiiiiisisrrnmrerre e e e s e s sss s e ssnnme e e e s e e s es s s s snsmnnneeeneees 556
OSTIMETICK() +ereeermererrasrnererrsssnrressssssnneessesssseessssssnseessssssnesesssssnseessessnns 558
(137 110 0 1Y I Te] 1z Lo T o) (| ISR 559
OSTMICreate() .ceeeeeerrriiiiiecccrsnecrrierere s rs s s s smsne e e e s s mnmne e e e e e es 561
L@ 1S 0 41T [PR 567
(@153 I 41 3 1= 4 0 F= 11 L T= | 569
(@10 0 41633 = T | OSSR 571
L@ 1S 0 41633 €= 1 (=L €T | PR 573
(O 15 10 41633 (o] o | OSSR 575
OSVErSION()..uuuremncmerireiiriisssssssssnmnnnreere e e s sssssssssssmms e e e e s eessassssssnnnmnnnssnnnnes 577
pHC/OS-IIl Configuration Manualcccceeemiincissnnnnerr s 579
HC/OS-IIl Features (OS_CFG.H)cooovviiiiiiieieeee e 583
Data Types (OS_TYPE.H) ... e 593
uC/OS-lll Stacks, Pools and other (OS_CFG_APP.H)cccccrvreennnn. 594
Migrating from pC/OS-Il to HC/OS-III ... 599
Differences in Source File Names and Contentsc.cccccecceerrrcnncen. 602
Convention Changescccccceriiiimrrsiniser s 605
Variable Name Changescccviiiccccismmmereeesnnsssssssssssssssesssssnssssssnnnes 611
Y o 07 4T T T T 612
=T g O = T T 613
Message MailDOXEScecummeeeecrirrrrrrrrr e e e s s e s e s e e e 615
Memory Managementccccciiiimmninmnr e 617
Mutual Exclusion SEmMaphorescccccceevemmrmrreen e eeeees 618
Message QUEUESceiiirceceerirree e e e e e s smr e s e e e s 620
SEMAPNOreS ... e 622
Task Managementcccccccemmriiiiiie s 624
Time Management ... s s s e s e s s e r e e e e e n s nnnnns 628

C-4-9
C-4-10
c-4-11

Appendix D
D-1
D-2
D-3
D-4
D-5

Appendix E

Appendix F

Timer Managementccveeiiiniiniinsseee s 629
MiscellanEous ... ——— 631
HOOKS and Port ... 633
MISRA-C:2004 and PC/OS-1II ...coeeeeiiiicccceemerree e e e e 637
MISRA-C:2004, Rule 8.5 (Required)ccccureeecerrrrcesmerrescseeeeeseseeeens 638
MISRA-C:2004, Rule 8.12 (Required)cccccccerrrrrrririsscccsssnmnceeeeeennens 638
MISRA-C:2004, Rule 14.7 (Required)cccccccrrerrrririssnccssnnnceenenennens 639
MISRA-C:2004, Rule 15.2 (Required)ccccoeeeecerrrrccmmerrescseee s 640
MISRA-C:2004, Rule 17.4 (Required)cccccccerrerrmrrriissccscnnnceeeeeennens 641
Bibliographyeeeieieiiiiiiiiiierrrre s 643
I ToT=Y L= o T o] oY 645
.. 647

11

Table of Contents

12

Preface

WHAT IS uC/0S-1lII?

pC/OS-III (pronounced “Micro C O S Three) is a scalable, ROMable, preemptive real-time
kernel that manages an unlimited number of tasks. pC/OS-III is a third-generation kernel
and offers all of the services expected from a modern real-time kernel, such as resource
management, synchronization, inter-task communications, and more. However, nC/OS-III
offers many unique features not found in other real-time kernels, such as the ability to
complete performance measurements at run-time, to directly signal or send messages to
tasks, achieve pending on multiple kernel objects, and more.

WHY A NEW pC/0S VERSION?

The pC/OS series, first introduced in 1992, has undergone a number of changes over the
years based on feedback from thousands of people using and deploying its evolving
versions.

pC/OS-I1T is the sum of this feedback and experience. Rarely used nC/OS-1II features were
eliminated and newer, more efficient features and services, were added. Probably the most
common request was to add round robin scheduling, which was not possible for pC/OS-II,
but is now a feature of pC/OS-III.

pC/OS-TIT also provides additional features that better exploit the capabilities of today’s

newer processors. Specifically, pC/OS-III was designed with 32-bit processors in mind,
although it certainly works well with 16- and even several 8-bit processors.

13

Preface

HC/0S-Ill GOALS

The main goal of pC/OS-III is to provide a best-in-class real-time kernel that literally shaves
months of development time from an embedded-product schedule. Using a commercial
real-time kernel such as pC/OS-III provides a solid foundation and framework to the design
engineer dealing with the growing complexity of embedded designs.

Another goal for pC/OS-III, and therefore this book, is to explain inner workings of a

commercial-grade kernel. This understanding will assist the reader in making logical design
decisions and informed tradeoffs between hardware and software that make sense.

14

Chapter

Introduction

Real-time systems are systems whereby the correctness of the computed values and their
timeliness are at the forefront. There are two types of real-time systems, hard and soft real time.

What differentiates hard and soft real-time systems is their tolerance to missing deadlines
and the consequences associated with those misses. Correctly computed values after a
deadline has passed are often useless.

For hard real-time systems, missing deadlines is not an option. In fact, in many cases,
missing a deadline often results in catastrophe, which may involve human lives. For soft
real-time systems, however, missing deadlines is generally not as critical.

Real-time applications cover a wide range, but many real-time systems are embedded. An embedded
system is a computer built into a system and not acknowledged by the user as being a computer.
The following list shows just a few examples of embedded systems:

Aerospace Communications Process control

M Flight management systems B Routers M Chemical plants

B Jet engine controls B Switches B Factory automation
B Weapons systems B Cell phones B Food processing
Audio Computer peripherals Robots

B MP3 players M Printers Video

B Amplifiers and tuners M Scanners B Broadcasting equipment
Automotive Domestic B HD Televisions

B Antilock braking systems B Air conditioning units And many more

B Climate control B Thermostats

B Engine controls Bl White goods

B Navigation systems (GPS) Office automation

B FAX machines / copiers

Real-time systems are typically more complicated to design, debug, and deploy than
non-real-time systems.

15

Chapter 1

1-1 FOREGROUND/BACKGROUND SYSTEMS

Small systems of low complexity are typically designed as foreground/background systems
or super-loops. An application consists of an infinite loop that calls modules (i.e., tasks) to
perform the desired operations (background). Interrupt Service Routines (ISRs) handle
asynchronous events (foreground). Foreground is also called interrupt level; background is
called task level.

Critical operations that should be performed at the task level must unfortunately be handled
by the ISRs to ensure that they are dealt with in a timely fashion. This causes ISRs to take
longer than they should. Also, information for a background module that an ISR makes
available is not processed until the background routine gets its turn to execute, which is
called the task-level response. The worst-case task-level response time depends on how
long a background loop takes to execute since the execution time of typical code is not
constant, the time for successive passes through a portion of the loop is nondeterministic.
Furthermore, if a code change is made, the timing of the loop is affected.

Most high-volume and low-cost microcontroller-based applications (e.g., microwave ovens,
telephones, toys, etc.) are designed as foreground/background systems.

Super Loop
(Background)
| B -
Task 2
. Task 3 ISR
Time (Foreground)
i i ISR
Infinite ¢
Loop
Task 3
v Task 4 Nested ISR
—_ SR (Foreground)
5 I —mg
1 1
: : «—
: : ISR
<+
Task 4

Figure 1-1 Foreground/Background (SuperLoops) systems

16

Introduction

1-2 REAL-TIME KERNELS

A real-time kernel is software that manages the time and resources of a microprocessor,
microcontroller or Digital Signal Processor (DSP).

The design process of a real-time application involves splitting the work into tasks, each
responsible for a portion of the job. A task (also called a thread) is a simple program that
thinks it has the Central Processing Unit (CPU) completely to itself. On a single CPU, only
one task executes at any given time.

The kernel is responsible for the management of tasks. This is called multitasking. Multitasking
is the process of scheduling and switching the CPU between several tasks. The CPU switches
its attention between several sequential tasks. Multitasking provides the illusion of having
multiple CPUs and maximizes the use of the CPU. Multitasking also helps in the creation of
modular applications. One of the most important aspects of multitasking is that it allows the
application programmer to manage the complexity inherent in real-time applications.
Application programs are easier to design and maintain when multitasking is used.

pC/OS-IIT is a preemptive kernel, which means that pC/OS-III always runs the most
important task that is ready to run as shown in Figure 1-2.

— ’ Wait for Event (2)
v Low Priority (1) Event that
Task High Priority Task
is Waiting for
I >
1 1
i ! 1 ISR 3
Tlme : : Wait for Event (4) ()
1 I ‘V\
1]
1 1
: :
High Priorit,
v i L(8)] e Infinite
Infinite : : Loop
Loop 1 1
1 1
1 1

“
(6)

Low Priority
Task (7)

Figure 1-2 pC/0OS-lll is a preemptive kernel

17

Chapter 1

F1-2(1)

F1-2(2)

F1-2(3)

F1-2(4)

F1-2(5)

F1-2(6)

F1-2(7)

A low-priority task is executing.

An interrupt occurs, and the CPU vectors to the ISR responsible for servicing
the interrupting device.

The ISR services the interrupt device, but actually does very little work. The ISR
will signal or send a message to a higher-priority task that will be responsible
for most of the processing of the interrupting device. For example, if the
interrupt comes from an Ethernet controller, the ISR simply signals a task,
which will process the received packet.

When the ISR finishes, nC/OS-III notices that a more important task has been
made ready to run by the ISR and will not return to the interrupted task, but
instead context switch to the more important task.

The higher-priority task executes and performs the necessary processing in
response to the interrupt device.

When the higher-priority task completes its work, it loops back to the
beginning of the task code and makes a pC/OS-III function call to wait for the
next interrupt from the device.

The low-priority task resumes exactly at the point where it was interrupted, not
knowing what happened.

Kernels such as pC/OS-III are also responsible for managing communication between tasks,

and managing system resources (memory and I/O devices).

A kernel adds overhead to a system because the services provided by the kernel require

time to execute. The amount of overhead depends on how often these services are invoked.

In a well-designed application, a kernel uses between 2% and 4% of a CPU’s time. And,

since pC/OS-II is software that is added to an application, it requires extra ROM (code

space) and RAM (data space).

Low-end single-chip microcontrollers are generally not able to run a real-time kernel such

as pC/OS-I1I since they have access to very little RAM. pC/OS-III requires between 1 Kbyte

and 4 Kbytes of RAM, plus each task requires its own stack space. It is possible for

pC/OS-TIT to work on processors having as little as 4 Kbytes of RAM.

18

Introduction

Finally, pC/OS-III allows for better use of the CPU by providing approximately 70
indispensable services. After designing a system using a real-time kernel such as nC/OS-III,
you will not return to designing a foreground/background system.

1-3 RTOS (REAL-TIME OPERATING SYSTEM)

A Real Time Operating System generally contains a real-time kernel and other higher-level
services such as file management, protocol stacks, a Graphical User Interface (GUD), and
other components. Most additional services revolve around I/O devices.

Micripm offers a complete suite of RTOS components including: nC/FS (an Embedded File
System), nC/TCP-IP (a TCP/IP stack), pC/GUI (a Graphical User Interface), pC/USB (a USB
device, host and OTG stack), and more. Most of these components are designed to work
standalone. Except for pC/TCP-IP, a real-time kernel is not required to use the components
in an application. In fact, users can pick and choose only the components required for the
application. Contact Micripm (www.micrium.com) for additional details and pricing.

1-4 uC/0S-Ill

pC/OS-IIT is a scalable, ROMable, preemptive real-time kernel that manages an unlimited
number of tasks. pnC/OS-1II is a third-generation kernel, offering all of the services expected
from a modern real-time kernel including resource management, synchronization, inter-task
communication, and more. However, pC/OS-III also offers many unique features not found
in other real-time kernels, such as the ability to perform performance measurements at run
time, directly signal or send messages to tasks, and pending (i.e., waiting) on such multiple
kernel objects as semaphores and message queues.

Here is a list of features provided by pC/OS-III:

Source Code: nC/OS-III is provided in ANSI-C source form to licensees. The source code
for pC/OS-1II is arguably the cleanest and most consistent kernel code available. Clean
source is part of the corporate culture at Micripm. Although many commercial kernel
vendors provide source code for their products, unless the code follows strict coding
standards and is accompanied by complete documentation with examples to show how the

19

Chapter 1

code works, these products may be cumbersome and difficult to harness. With this book,
you will gain a deep understanding of the inner workings of pC/OS-III, which will protect
your investment.

Intuitive Application Programming Interface (API): nC/OS-III is highly intuitive. Once
familiar with the consistent coding conventions used, it is simple to predict the functions to
call for the services required, and even predict which arguments are needed. For example, a
pointer to an object is always the first argument, and a pointer to an error code is always the
last one.

Preemptive multitasking: pnC/OS-1III is a preemptive multi-tasking kernel and therefore,
pC/OS-IIT always runs the most important ready-to-run task.

Round robin scheduling of tasks at equal priority: nC/OS-III allows multiple tasks to
run at the same priority level. When multiple tasks at the same priority are ready to run, and
that priority level is the most important level, pC/OS-III runs each task for a user-specified
time called a time quanta. Each task can define its own time quanta, and a task can also
give up the CPU to another task at the same priority if it does not require the full time
quanta.

Low interrupt disable time: pC/OS-III has a number of internal data structures and
variables that it needs to access atomically. To ensure this, pC/OS-III is able to protect these
critical regions by locking the scheduler instead of disabling interrupts. Interrupts are
therefore disabled for very little time. This ensures that nC/OS-III is able to respond to some
of the fastest interrupt sources.

Deterministic: Interrupt response with pC/OS-1III is deterministic. Also, execution times of
most services provided by pC/OS-III are deterministic.

Scalable: The footprint (both code and data) can be adjusted based on the requirements of
the application. This assumes access to the source code for pC/OS-III since adding and
removing features (i.e., services) is performed at compile time through approximately 40
#defines (see OS_CFG.H). pC/OS-II also performs a number of run-time checks on
arguments passed to nC/OS-III services. Specifically, nC/OS-III verifies that the user is not
passing NULL pointers, not calling task level services from ISRs, that arguments are within
allowable range, and options specified are valid, etc.. These checks can be disabled (at
compile time) to further reduce the code footprint and improve performance. The fact that
pC/OS-I1T is scalable allows it to be used in a wide range of applications and projects.

20

Introduction

Portable: pC/OS-III can be ported to a large number of CPU architectures. Most nC/OS-II ports
are easily converted to work on pC/OS-IIT with minimal changes in just a matter of minutes and
therefore benefit from more than 45 CPU architectures already supported by nC/OS-1I.

ROMable: nC/OS-III was designed especially for embedded systems and can be ROMed
along with the application code.

Run-time configurable: pC/OS-III allows the user to configure the kernel at run time.
Specifically, all kernel objects such as tasks, stacks, semaphores, event-flag groups, message
queues, number of messages, mutual exclusion semaphores, memory partitions and timers, are
allocated by the user at run time. This prevents over-allocating resources at compile time.

Unlimited number of tasks: nC/OS-III supports an unlimited number of tasks. From a
practical standpoint, however, the number of tasks is actually limited by the amount of
memory (both code and data space) that the processor has access to. Each task requires its
own stack space and, pC/OS-III provides features to allow stack growth of the tasks to be
monitored at run-time.

pC/OS-TIT does not impose any limitations on the size of each task, except that there be a
minimum size based on the CPU used.

Unlimited number of priorities: pC/OS-III supports an unlimited number of priority
levels. However, configuring nC/OS-1II for between 32 and 256 different priority levels is
more than adequate for most applications.

Unlimited number of kernel objects: nC/OS-III allows for any number of tasks,
semaphores, mutual exclusion semaphores, event flags, message queues, timers, and
memory partitions. The user at run-time allocates all kernel objects.

Services: nC/OS-III provides all the services expected from a high-end real-time kernel,
such as task management, time management, semaphores, event flags, mutexes, message
queues, software timers, fixed-size memory pools, etc.

Mutual Exclusion Semaphores (Mutexes): Mutexes are provided for resource
management. Mutexes are special types of semaphores that have built-in priority
inheritance, which eliminate unbounded priority inversions. Accesses to a mutex can be
nested and therefore, a task can acquire the same mutex up to 250 times. Of course, the
mutex owner needs to release the mutex an equal number of times.

21

Chapter 1

Nested task suspension: pC/OS-III allows a task to suspend itself or another task.
Suspending a task means that the task will not be allowed to execute until the task is
resumed by another task. Suspension can be nested up to 250 levels deep. In other words,
a task can suspend another task up to 250 times. Of course, the task must be resumed an
equal number of times for it to become eligible to run on the CPU.

Software timers: Define any number of “one-shot” and/or “periodic” timers. Timers are
countdown counters that perform a user-definable action upon counting down to 0. Each
timer can have its own action and, if a timer is periodic, the timer is automatically reloaded
and the action is executed every time the countdown reaches zero.

Pend on multiple objects: nC/OS-III allows an application to wait (i.e., pend) on multiple
events at the same time. Specifically, a task can wait on multiple semaphores and/or
message queues to be posted. The waiting task wakes up as soon as one of the events
occurs.

Task Signals: pC/OS-III allows an ISR or task to directly signal a task. This avoids having to
create an intermediate kernel object such as a semaphore or event flag just to signal a task,
and results in better performance.

Task Messages: nC/OS-III allows an ISR or a task to send messages directly to a task. This
avoids having to create and use a message queue, and also results in better performance.

Task registers: Each task can have a user-definable number of “task registers.” Task
registers are different than CPU registers. Task registers can be used to hold “errno” type
variable, IDs, interrupt disable time measurement on a per-task basis, and more.

Error checking: pC/OS-III verifies that NULL pointers are not passed, that the user is not
calling task-level services from ISRs, that arguments are within allowable range, that options
specified are valid, that a handler is passed to the proper object as part of the arguments to
services that manipulate the desired object, and more. Each pnC/OS-III API function returns
an error code concerning the outcome of the function call.

Built-in performance measurements: pC/OS-III has built-in features to measure the
execution time of each task, stack usage of each task, number of times a task executes, CPU
usage, ISR-to-task and task-to-task response time, peak number of entries in certain lists,
interrupt disable and scheduler lock time on a per-task basis, and more.

22

Introduction

Can easily be optimized: nC/OS-III was designed so that it could easily be optimized
based on the CPU architecture. Most data types used in pC/OS-III can be changed to make
better use of the CPU’s natural word size. Also, the priority resolution algorithm can easily
be written in assembly language to benefit from special instructions such as bit set and
clear, as well as count-leading-zeros (CLZ), or find-first-one (FF1) instructions.

Deadlock prevention: All of the pC/OS-III “pend” services include timeouts, which help
avoid deadlocks.

Tick handling at task level: The clock tick manager in pC/OS-III is accomplished by a
task that receives a trigger from an ISR. Handling delays and timeouts by a task greatly
reduces interrupt latency. Also, pC/OS-III uses a hashed delta list mechanism, which further
reduces the amount of overhead in processing delays and timeouts of tasks.

User definable hooks: nC/OS-III allows the port and application programmer to define
“hook” functions, which are called by pC/OS-III. A hook is simply a defined function that
allows the user to extend the functionality of pC/OS-III. One such hook is called during a
context switch, another when a task is created, yet another when a task is deleted, etc.

Timestamps: For time measurements, pC/OS-III requires that a 16-bit or 32-bit free running
counter be made available. This counter can be read at run time to make time
measurements of certain events. For example, when an ISR posts a message to a task, the
timestamp counter is automatically read and saved as part of the message posted. When the
recipient receives the message, the timestamp is provided to the recipient, and by reading
the current timestamp, the time it took for the message to be received can be determined.

Built-in support for Kernel Awareness debuggers: This feature allows kernel
awareness debuggers to examine and display pC/OS-III variables and data structures in a
user-friendly way, but only when the debugger hits a breakpoint. Instead of a static view of
the environment the kernel awareness support in pC/OS-IIT is also used by pC/Probe to
display the same information at run-time.

Object names: Each pC/OS-III kernel object can have a name associated with it. This
makes it easy to recognize what the object is assigned to. Assign an ASCII name to a task, a
semaphore, a mutex, an event flag group, a message queue, a memory partition, and a
timer. The object name can have any length, but must be NUL terminated.

23

Chapter 1

1-5 pC/0S, pC/0S-1l AND uC/0S-Ill FEATURES COMPARISON

Table 1-1 shows the evolution of pC/OS over the years, comparing the features available in
each version.

Feature pC/0S ucC/0S-l pC/0Ss-1ll
Year introduced 1992 1998 2009
Book Yes Yes Yes
Source code available Yes Yes Yes

(Licensees only)

Preemptive Multitasking Yes Yes Yes
Maximum number of tasks 64 255 Unlimited
Number of tasks at each priority level 1 1 Unlimited
Round Robin Scheduling No No Yes
Semaphores Yes Yes Yes
Mutual Exclusion Semaphores No Yes Yes (Nestable)
Event Flags No Yes Yes
Message Mailboxes Yes Yes No (not needed)
Message Queues Yes Yes Yes
Fixed Sized Memory Management No Yes Yes
Signal a task without requiring a semaphore No No Yes
Send messages to a task without requiring a No No Yes

message queue

Software Timers No Yes Yes
Task suspend/resume No Yes Yes (Nestable)
Deadlock prevention Yes Yes Yes
Scalable Yes Yes Yes
Code Footprint 3K to 8K 6K to 26K 6K to 20K
Data Footprint 1K+ 1K+ 1K+
ROMable Yes Yes Yes

24

Introduction

Feature HC/0S ucC/0S-Il pC/0Ss-1ll
Run-time configurable No No Yes
Compile-time configurable Yes Yes Yes
ASCII names for each kernel object No Yes Yes
Pend on multiple objects No Yes Yes
Task registers No Yes Yes
Built-in performance measurements No Limited Extensive
User definable hook functions No Yes Yes
Time stamps on posts No No Yes
Built-in Kernel Awareness support No Yes Yes
Optimizable Scheduler in assembly language No No Yes
Tick handling at task level No No Yes
Source code available Yes Yes Yes
Number of services ~20 ~90 ~70
MISRA-C:1998 No Yes N/A
(except 10 rules)
MISRA-C:2004 No No Yes
(except 7 rules)
DO178B Level A and EUROCAE ED-12B No Yes In progress
Medical FDA pre-market notification (510(k)) No Yes In progress
and pre-market approval (PMA)
SIL3/SIL4 IEC for transportation and nuclear systems No Yes In progress
IEC-61508 No Yes In progress

Table 1-1 pC/OS-Il and pC/0S-lll Features Comparison Chart

25

Chapter 1

1-6 HOW THE BOOK IS ORGANIZED
This book consists of two books in one.

Part I describes pC/OS-III and is not tied to any specific CPU architecture. Here, the reader
will learn about real-time kernels through pC/OS-III. Specifically, critical sections, task
management, the ready list, scheduling, context switching, interrupt management, wait lists,
time management, timers, resource management, synchronization, memory management,
how to use pC/OS-III's API, how to configure pC/OS-III, and how to port pC/OS-III to
different CPU architectures, are all covered.

Part II describes the port of a popular CPU architecture. Here, learn about this CPU
architecture and how pC/OS-IIT gets the most out of the CPU. Examples are provided to
actually run code on the evaluation board that is available with this book.

As T just mentioned, this book assumes the presence of an evaluation board that allows the
user to experiment with the wonderful world of real-time kernels, and specifically
pC/OS-III. The book and board are complemented by a full set of tools that are provided
free of charge either in a companion CD/DVD, or downloadable through the Internet. The
tools and the use of nC/OS-1II are free as long as they are used with the evaluation board,
and there is no commercial intent to use them on a project. In other words, there is no
additional charge except for the initial cost of the book, evaluation board and tools, as long
as they are used for educational purposes.

The book also comes with a trial version of an award-winning tool from Micripm called
pC/Probe. The trial version allows the user to monitor and change up to five variables in a
target system.

1-7 pC/PROBE

uC/Probe is a Microsoft Windows™ based application that enables the user to visualize
variables in a target at run time. Specifically, display or change the value of any variable in a
system while the target is running. These variables can be displayed using such graphical
elements as gauges, meters, bar graphs, virtual LEDs, numeric indicators, and many more.
Sliders, switches, and buttons can be used to change variables. This is accomplished
without the user writing a single line of code!

26

Introduction

pC/Probe interfaces to any target (8-, 16-, 32-, 64-bit, or even DSPs) through one of the
many interfaces supported (J-Tag, RS-232C, USB, Ethernet, etc.). pC/Probe displays or
changes any variable (as long as they are global) in the application, including pC/OS-IIIs
internal variables.

uC/Probe works with any compiler/assembler/linker able to generate an ELF/DWARF or
IEEEG95 file. This is the exact same file that the user will download to the evaluation board
or a final target. From this file, nC/Probe is able to extract symbolic information about
variables, and determine where variables are stored in RAM or ROM.

pC/Probe also allows users to log the data displayed into a file for analysis of the collected
data at a later time. pC/Probe also provides nC/OS-III kernel awareness as a built-in feature.

The trial version that accompanies the book is limited to the display or change of up to five
variables.

pC/Probe is a tool that serious embedded software engineers should have in their toolbox. The full
version of pC/Probe is included when licensing pC/OS-11I. See www.micrium.com for more details.

1-8 CONVENTIONS

There are a number of conventions in this book.

First, notice that when a specific element in a figure is referenced, the element has a
number next to it in parenthesis. A description of this element follows the figure and in this
case, the letter “F” followed by the figure number, and then the number in parenthesis. For
example, F3-4(2) indicates that this description refers to Figure 3-4 and the element (2) in
that figure. This convention also applies to listings (starts with an “L”) and tables (starts with
a “I”).

Second, notice that sections and listings are started where it makes sense. Specifically, do
not be surprised to see the bottom half of a page empty. New sections begin on a new
page, and listings are found on a single page, instead of breaking listings on two pages.

Third, code quality is something I've been avidly promoting throughout my whole career. At

Micripm, we pride ourselves in having the cleanest code in the industry. Examples of this
are seen in this book. I created and published a coding standard in 1992 that was published

27

Chapter 1

in the original pC/OS book. This standard has evolved over the years, but the spirit of the
standard has been maintained throughout. The Micripm coding standard is available for
download from the Micripm website, www.micrium.com

One of the conventions used is that all functions, variables, macros and #define constants
are prefixed by “OS” (which stands for Operating System) followed by the acronym of the
module (e.g., Sem), and then the operation performed by the function. For example
OSSemPost () indicates that the function belongs to the OS (uC/OS-IID), that it is part of
the Semaphore services, and specifically that the function performs a Post (i.e., signaD)
operation. This allows all related functions to be grouped together in the reference manual,
and makes those services intuitive to use.

Notice that signaling or sending a message to a task is called posting, and waiting for a
signal or a message is called pending. In other words, an ISR or a task signals or sends a
message to another task by using 0S???Post (), where 2?2 is the type of service: Sem,
TaskSem, Flag, Mutex, Q, and TaskQ. Similarly, a task can wait for a signal or a message by
calling 0S???Pend().

1-9 CHAPTER CONTENTS

Figure 1-3 shows the layout and flow of Part I of the book. This diagram should be useful to
understand the relationship between chapters. The first column on the left indicates
chapters that should be read in order to understand pC/OS-III's structure. The second
column shows chapters that are related to additional services provided by pC/OS-III. The
third column relates to chapters that will help port pC/OS-III to different CPU architectures.
The top of the fourth column explains how to obtain valuable run-time and compile-time
statistics from pC/OS-III. This is especially useful if developing a kernel awareness plug-in
for a debugger, or using pC/Probe. The middle of column four contains the pC/OS-III API
and configuration manuals. Reference these sections regularly when designing a product
using pC/OS-II1. Finally, the bottom of the last column contains miscellaneous appendices.

28

Introduction

Preface

Introduction

Directories
and
Files

Getting Started
with

uC/OS-il
1

Critical
Sections

Task
Management

The
Ready
List

Scheduling

Context
Switching

Interrupt
Management

Pend Lists

(1

()

©)]

4

®)

(6)

@

(®)

)

HC/0S-111

The Real-Time Kernel

10
Time ()
Management
(1)
Timer
Management
12
Resource ()
Management
(13)
Synchronization
14
N (14)
Passing
Pending (15)
on Multiple
Objects
Porting
HC/OS-Il
Memory (16) Migrating from
@ —| wucosHito
Management uC/OS-Ill

they are protected.

Chapter 1, Introduction. This chapter.

initialize and start a nC/OS-IlI-based application.

they should be placed, which module does what, and more.

(7

(©)

Figure 1-3 pC/OS-Ill Book Layout

(18)

(A)

(8)

(D)

(E)

(F)

Run-Time
Statistics

pC/OS-IIl API
Reference
Manual

pC/OS-ll
Configuration
Manual

HC/OS-lIl
and
MISRA-C:2004

Bibliography

Licensing
Policy

Chapter 2, Directories and Files. This chapter explains the directory structure and files
needed to build a pC/OS-III-based application. Learn about the files that are needed, where

Chapter 3, Getting Started with pC/OS-III. In this chapter, learn how to properly

Chapter 4, Critical Sections. This chapter explains what critical sections are, and how

Chapter 1

Chapter 5, Task Management. This chapter is an introduction to one of the most important
aspects of a real-time kernel, the management of tasks in a multitasking environment.

Chapter 6, The Ready List. In this chapter, learn how pC/OS-1II efficiently keeps track of
all of the tasks that are waiting to execute on the CPU.

Chapter 7, Scheduling. This chapter explains the scheduling algorithms used by
pC/OS-111, and how it decides which task will run next.

Chapter 8, Context Switching. This chapter explains what a context switch is, and
describes the process of suspending execution of a task and resuming execution of a
higher-priority task.

Chapter 9, Interrupt Management. Here is how nC/OS-III deals with interrupts and an
overview of services that are available from Interrupt Service Routines (ISRs). Learn how
pC/OS-IIT supports nearly any interrupt controller.

Chapter 10, Pend Lists (or Wait Lists). Tasks that are not able to run are most likely
blocked waiting for specific events to occur. Pend Lists (or wait lists), are used to keep track
of tasks that are waiting for a resource or event. This chapter describes how pnC/OS-III
maintains these lists.

Chapter 11, Time Management. In this chapter, learn about pC/OS-III's services that allow
users to suspend a task until some time expires. With pC/OS-1III, specify to delay execution of a
task for an integral number of clock ticks or until the clock-tick counter reaches a certain value.
The chapter will also show how a delayed task can be resumed, and describe how to get the
current value of the clock tick counter, or set this counter, if needed.

Chapter 12, Timer Management. pC/OS-III allows users to define any number of
software timers. When a timer expires, a function can be called to perform some action.
Timers can be configured to be either periodic or one-shot. This chapter also explains how
the timer-management module works.

Chapter 13, Resource Management. In this chapter, learn different techniques so that
tasks share resources. Each of these techniques has advantages and disadvantages that will
be discussed. This chapter also explains the internals of semaphores, and mutual exclusion
semaphore management.

30

Introduction

Chapter 14, Synchronization. pC/OS-III provides two types of services for
synchronization: semaphores and event flags and these are explained in this chapter, as well
as what happens when calling specific services provided in this module.

Chapter 15, Message Passing. nC/OS-III allows a task or an ISR to send messages to a
task. This chapter describes some of the services provided by the message queue
management module.

Chapter 16, Pending on multiple objects. In this chapter, see how pC/OS-III allows an
application to pend (or wait) on multiple kernel objects (semaphores or message queues) at
the same time. This feature makes the waiting task ready to run as soon as any one of the
objects is posted (i.e., OR condition), or a timeout occurs.

Chapter 17, Memory Management. Here is how pC/OS-III's fixed-size memory partition
manager can be used to allocate and deallocate dynamic memory.

Chapter 18, Porting pC/OS-III. This chapter explains, in generic terms, how to port
pC/OS-III to any CPU architecture.

Chapter 19, Run-Time Statistics. pC/OS-III provides a wealth of information about the
run-time environment, such as number of context switches, CPU usage (as a percentage),
stack usage on a per-task basis, pnC/OS-III RAM usage, maximum interrupt disable time,
maximum scheduler lock time, and more.

Appendix A, pnC/OS-II1 API Reference Manual. This appendix provides a alphabetical
reference for all user-available services provided by pC/OS-III.

Appendix B, pC/OS-III Configuration Manual. This appendix describes how to
configure a pC/OS-lI-based application. OS_CFG.H configures the pC/OS-III features
(semaphores, queues, event flags, etc.), while OS_CFG_APP.H configures the run-time
characteristics (tick rate, tick wheel size, stack size for the idle task, etc.).

Appendix C, Migrating from pC/OS-II to nC/OS-III. nC/OS-III has its roots in nC/OS-1I and,
in fact, most of the pC/OS-II ports can be easily converted to nC/OS-III. However, most APIs have

changed from pC/OS-II to nC/OS-111, and this appendix describes some of the differences.

Appendix D, MISRA-C:2004 rules and pC/OS-III. pC/OS-III follows most of the
MISRA-C:2004, except for 7 of these rules.

31

Chapter 1

Appendix E, Bibliography.

Appendix F, Licensing pC/OS-III.

1-10 LICENSING

This book contains pC/OS-III precompiled in linkable object form, an evaluation board, and
tools (compiler/assembler/linker/debugger). Use nC/OS-III for free, as long as it is only
used with the evaluation board that accompanies this book. You will need to purchase a
license when using this code in a commercial project, where the intent is to make a profit.
Users do not pay anything beyond the price of the book, evaluation board and tools, as
long as they are used for educational purposes.

You will need to license pnC/OS-III if you intend to use pC/OS-III in a commercial product
where you intend to make a profit. You need to purchase this license when you make the
decision to use pC/OS-III in a design, not when you are ready to go to production.

If you are unsure about whether you need to obtain a license for your application, please
contact Micripm and discuss your use with a sales representative.

1-11 CONTACTING MICRIUM

Do not hesitate to contact Micripm should you have any licensing questions regarding
pC/OS-III.

Micripm

11290 Weston Road, Suite 306
Weston, FL 33326

USA

Phone: +1 954 217 2036
Fax: +1 954 217 2037

E-mail: Licensing@Micrium.com
Web: www.Micrium.com

32

Chapter

Directories and Files

pC/OS-1I11 is fairly easy to use once it is understood exactly which source files are needed to
make up a pC/OS-IlI-based application. This chapter will discuss the modules available for
pC/OS-TIT and how everything fits together.

Figure 2-1 shows the pC/OS-III architecture and its relationship with hardware. Of course,
in addition to the timer and interrupt controller, hardware would most likely contain such
other devices as Universal Asynchronous Receiver Transmitters (UARTs), Analog to Digital
Converters (ADCs), Ethernet controller(s) and more.

This chapter assumes development on a Windows®-based platform and makes references
to typical Windows-type directory structures (also called Folder). However, since nC/OS-III
is available in source form, it can also be used on Unix, Linux or other development
platforms.

The names of the files are shown in upper case to make them “stand out”. However, file
names are actually lower case.

33

Chapter 2

0S_CFG.H APP.C
0S_CFG_APP.H (8 APP.H (1)
HC/0S-Ill HC/LIB
CPU Independent Libraries
0S_CFG_APP.C LIB ASCII.C
0S_TYPE.H LIB ASCII.H
0S_CORE.C LIB DEF.H
0S_DBG.C LIB MATH.C
0S_FLAG.C LIB MATH.H
0S_INT.C LIB MEM A.ASM
0S_MEM.C LIB MEM.C
0S_MSG.C LIB MEM.H
OS_MUTEX.C (‘;) LIB STR.C
0S_PEND MULTI.C LIB STR.H
0S_PRIO.C
0s_Q.cC
0S_SEM.C
OS_STAT.C
0S_TASK.C
0S_TICK.C
0S_TIME.C
0S_TMR.C
0S.H
0S_VAR.C
HC/0S-Ill HC/CPU BSP CPU
CPU Specific CPU Specific Board Support Package
(5) (6) (3) (2)
OS_CPU.H CPU.H BSP.C *.C
OS_CPU_A.ASM CPU_A.ASM BSP.H * . H
0S_CPU_C.C CPU_CORE.C
Software/Firmware
CPU Timer Interrupt
Controller

34

HC/0S-lll Configuration

Application Code

Figure 2-1 uC/0OS-Ill Architecture

Directories and Files

F2-1(1)

F2-1(2)

F2-1(3)

F2-1(4)

F2-1(5)

F2-1(6)

F2-1(7)

F2-1(8)

The application code consists of project or product files. For convenience,
these are simply called APP.C and APP.H, however an application can contain
any number of files that do not have to be called APP.*. The application code
is typically where one would find main().

Semiconductor manufacturers often provide library functions in source form for
accessing the peripherals on their CPU or MCU. These libraries are quite useful
and often save valuable time. Since there is no naming convention for these
files, *.C and *.H are assumed.

The Board Support Package (BSP) is code that is typically written to interface
to peripherals on a target board. For example such code can turn on and off
Light Emitting Diodes (LEDs), turn on and off relays, or code to read switches,
temperature sensors, and more.

This is the pC/OS-III processor-independent code. This code is written in
highly portable ANSI C and is available to pC/OS-III licensees only.

This is the nC/OS-III code that is adapted to a specific CPU architecture and is
called a port. pC/OS-III has its roots in pC/OS-1I and benefits from being able
to use most of the 45 or so ports available for pC/OS-1I. pC/OS-1I ports,
however, will require small changes to work with pC/OS-III. These changes are
described in Appendix C, “Migrating from pC/OS-II to nC/OS-III” on page 599.

At Micripm, we like to encapsulate CPU functionality. These files define
functions to disable and enable interrupts, CPU ??? data types to be
independent of the CPU and compiler used, and many more functions.

pC/LIB is of a series of source files that provide common functions such as
memory copy, string, and ASCII-related functions. Some are occasionally used to
replace stdlib functions provided by the compiler. The files are provided to
ensure that they are fully portable from application to application and especially,
from compiler to compiler. pC/OS-III does not use these files, but pC/CPU does.

pC/OS-IIT configuration files defines pC/OS-III features (0S_CFG.H) to include
in the application, and specifies the size of certain variables and data structures
expected by nC/OS-III (0S_CFG_APP.H), such as idle task stack size, tick rate,
size of the message pool, etc.

35

Chapter 2

2-1 APPLICATION CODE

When Micripm provides example projects, they are placed in a directory structure shown
below. Of course, a directory structure that suits a particular project/product can be used.

\Micrium
\Software
\EvalBoards
\<manufacturer>
\<board_name>
\<compiler>
\<project name>

,

\Micrium
This is where we place all software components and projects provided by Micripm. This
directory generally starts from the root directory of the computer.

\Software
This sub-directory contains all software components and projects.

\EvalBoards
This sub-directory contains all projects related to evaluation boards supported by Micripm.

\<manufacturer>
This is the name of the manufacturer of the evaluation board. The “<” and “>” are not part

of the actual name.

\<board name>
This is the name of the evaluation board. A board from Micripm will typically be called
uC-Eval-xxxx where “xxxx” represents the CPU or MCU used on the board. The “<” and

“>” are not part of the actual name.
\<compiler>

This is the name of the compiler or compiler manufacturer used to build the code for the
evaluation board. The “<” and “>” are not part of the actual name.

36

Directories and Files

\<project name>

The name of the project that will be demonstrated. For example, a simple pC/OS-III project
might have a project name of “0S-Ex1”. The “-Ex1” represents a project containing only
pC/OS-II. The project name 0S-Probe-Ex1 contains pC/OS-III and pC/Probe.

,
These are the project source files. Main files can optionally be called APP*.*. This directory
also contains configuration files 0S_CFG.H, OS_CFG_APP.H and other required source files.

2-2 CPU

The directory where you will find semiconductor manufacturer peripheral interface source
files is shown below. Any directory structure that suits the project/product may be used.

\Micrium
\Software
\CPU
\<manufacturer>
\<architecture>
*, *

\Micrium
The location of all software components and projects provided by Micripm.

\Software
This sub-directory contains all software components and projects.

\CPU
This sub-directory is always called CPU.

\<manufacturer>
Is the name of the semiconductor manufacturer providing the peripheral library.

\<architecture>
The name of the specific library, generally associated with a CPU name or an architecture.

* *

Indicates library source files. The semiconductor manufacturer names the files.

37

Chapter 2

2-3 BOARD SUPPORT PACKAGE (BSP)

The Board Support Package (BSP) is generally found with the evaluation or target board as
it is specific to that board. In fact, when well written, the BSP should be used for multiple

projects.

\Micrium
\Software
\EvalBoards
\<manufacturer>
\<board name>

\<compiler>
\BSP

*, %

\Micrium
Contains all software components and projects provided by Micripm.

\Software
This sub-directory contains all software components and projects.

\EvalBoards
This sub-directory contains all projects related to evaluation boards.

\<manufacturer>
The name of the manufacturer of the evaluation board. The “<” and “>” are not part of the

actual name.

\<board name>
The name of the evaluation board. A board from Micripm will typically be called
uC-Eval-xxxx where “xxxx” is the name of the CPU or MCU used on the evaluation board.

The “<” and “>” are not part of the actual name.
\<compiler>

The name of the compiler or compiler manufacturer used to build code for the evaluation
board. The “<” and “>” are not part of the actual name.

38

Directories and Files

\BSP
This directory is always called BSP.

.

The source files of the BSP. Typically all of the file names start with BSP. It is therefore
normal to find BSP.C and BSP.H in this directory. BSP code should contain such functions
as LED control functions, initialization of timers, interface to Ethernet controllers and more.

2-4 pC/0S-Ill, CPU INDEPENDENT SOURCE CODE

The files in these directories are available to nC/OS-III licensees (see Appendix F, “Licensing
Policy” on page 645).

\Micrium
\Software
\uCOS-III

\Cfg\Template
\OS_APP_HOOKS.C
\OS_CFG.H
\OS_CFG_APP.H

\Source
\OS_CFG_APP.C
\OS_CORE.C
\OS_DBG.C
\0S_FLAG.C
\OS_INT.C
\O0S_MEM.C
\0S_MSG.C
\0S_MUTEX.C
\OS_PEND_MULTI.C
\0S_PRIO.C
\os_o.c
\OS_SEM.C
\OS_STAT.C
\OS_TASK.C
\0S_TICK.C
\OS_TIME.C

39

Chapter 2

\0S_TMR.C
\OS_VAR
\0S.H
\OS_TYPE.H

\Micrium
Contains all software components and projects provided by Micripm.

\Software
This sub-directory contains all software components and projects.

\uCOS-III
This is the main pC/OS-III directory.

\Cfg\Template
This directory contains examples of configuration files to copy to the project directory. You
will then modify these files to suit the needs of the application.

OS_APP_HOOKS.C shows how to write hook functions that are called by pC/OS-III.
Specifically, this file contains eight empty functions.

OS_CFG.H specifies which features of pC/OS-III are available for an application. The file
is typically copied into an application directory and edited based on which features are
required from pC/OS-III. If pC/OS-II is provided in linkable object code format, this file
will be provided to indicate features that are available in the object file. See
Appendix B, “puC/OS-III Configuration Manual” on page 579.

OS_CFG APP.H is a configuration file to be copied into an application directory and
edited based on application requirements. This file enables the user to determine the
size of the idle task stack, the tick rate, the number of messages available in the
message pool and more. See Appendix B, “pC/OS-II Configuration Manual” on
page 579.

\Source

The directory containing the CPU-independent source code for pC/OS-III. All files in this
directory should be included in the build (assuming you have the source code). Features
that are not required will be compiled out based on the value of #define constants in
0S_CFG.H and OS_CFG _APP.H.

40

Directories and Files

OS_CFG_APP.C declares variables and arrays based on the values in OS_CFG APP.H.

OS_CORE.C contains core functionality for nC/OS-III such as OSInit() to initialize pC/OS-III,
0SSched () for the task level scheduler, 0SIntExit () for the interrupt level scheduler, pend
list (or wait list) management (see Chapter 10, “Pend Lists (or Wait Lists)” on page 177), ready
list management (see Chapter 6, “The Ready List” on page 123), and more.

0S_DBG.C contains declarations of constant variables used by a kernel aware debugger
or pC/Probe.

OS_FLAG.C contains the code for event flag management. See Chapter 14,
“Synchronization” on page 251 for details about event flags.

OS_INT.C contains code for the interrupt handler task, which is used when

OS_CFG_ISR POST DEFERRED EN (see OS CFG.H) is set to 1. See Chapter 9, “Interrupt
Management” on page 157 for details regarding the interrupt handler task.

OS_MEM.C contains code for the pC/OS-III fixed-size memory manager, see Chapter 17,
“Memory Management” on page 323.

0S_MSG.C contains code to handle messages. nC/OS-III provides message queues and
task specific message queues. 0S_MSG.C provides common code for these two services.
See Chapter 15, “Message Passing” on page 289.

OS_MUTEX.C contains code to manage mutual exclusion semaphores, see Chapter 13,
“Resource Management” on page 209.

OS_PEND_MULTI.C contains the code to allow code to pend on multiple semaphores or
message queues. This is described in Chapter 16, “Pending On Multiple Objects” on
page 313.

0S_PRIO.C contains the code to manage the bitmap table used to keep track of which
tasks are ready to run, see Chapter 6, “The Ready List” on page 123. This file can be
replaced by an assembly language equivalent to improve performance if the CPU used
provides bit set, clear and test instructions, and a count leading zeros instruction.

41

Chapter 2

42

=«

0S_0.C contains code to manage message queues. See Chapter 15, “Message Passing”
on page 289.

OS_SEM.C contains code to manage semaphores used for resource management and/or
synchronization. See Chapter 13, “Resource Management” on page 209 and Chapter 14,
“Synchronization” on page 251.

OS_STAT.C contains code for the statistic task, which is used to compute the global
CPU usage and the CPU usage of each of tasks. See Chapter 5, “Task Management” on
page 75.

OS_TASK.C contains code for managing tasks using OSTaskCreate(), OSTaskDel(),
OSTaskChangePrio(), and many more. See Chapter 5, “Task Management” on page 75.

OS_TICK.C contains code to manage tasks that have delayed themselves or that are
pending on a kernel object with a timeout. See Chapter 5, “Task Management” on
page 75.

OS_TIME.C contains code to allow a task to delay itself until some time expires. See
Chapter 11, “Time Management” on page 183.

OS_TMR.C contains code to manage software timers. See Chapter 12, “Timer
Management” on page 193.

OS_VAR.C contains the pC/OS-IIT global variables. These variables are for pC/OS-III to
manage and should not be accessed by application code.

O0S.H contains the main pC/OS-MII header file, which declares constants, macros,
pC/OS-II global variables (for use by pC/OS-III only), function prototypes, and more.

OS_TYPE.H contains declarations of pC/OS-III data types that can be changed by the
port designed to make better use of the CPU architecture. In this case, the file would
typically be copied to the port directory and then modified. pC/OS-III in linkable object
library format provides this file to enable the user to know what each data type maps
to. See Appendix B, “pC/OS-III Configuration Manual” on page 579.

Directories and Files

2-5 pC/0S-Ill, CPU SPECIFIC SOURCE CODE

The pC/OS-III port developer provides these files. See also Chapter 18, “Porting nC/OS-111”
on page 335.

\Micrium
\Software
\uCOS-III
\Ports
\<architecture>
\<compiler>

\0OS_CPU.H
\OS_CPU_A.ASM
\0S_CPU_C.C

\Micrium
Contains all software components and projects provided by Micripm.

\Software
This sub-directory contains all software components and projects.

\uCoOs-III
The main pC/OS-III directory.

\Ports
The location of port files for the CPU architecture(s) to be used.

\<architecture>
This is the name of the CPU architecture that pC/OS-III was ported to. The “<” and “>” are

not part of the actual name.
\<compiler>
The name of the compiler or compiler manufacturer used to build code for the port. The “<”

and “>” are not part of the actual name.

The files in this directory contain the pC/OS-III port, see Chapter 18, “Porting pC/OS-III” on
page 335 for details on the contents of these files.

43

Chapter 2

OS_CPU.H contains a macro declaration for OS _TASK SW(), as well as the function
prototypes for at least the following functions: OSCtxSw(), OSIntCtxSw() and
OSStartHighRdy ().

OS_CPU_A.ASM contains the assembly language functions to implement at least the
following functions: OSCtxSw(), OSIntCtxSw() and OSStartHighRdy().

0S_CPU_C.C contains the C code for the port specific hook functions and code to
initialize the stack frame for a task when the task is created.

2-6 uC/CPU, CPU SPECIFIC SOURCE CODE

pC/CPU consists of files that encapsulate common CPU-specific functionality and CPU and
compiler-specific data types. See Chapter 18, “Porting nC/OS-III” on page 335.

\Micrium
\Software
\uC-CPU
\CPU_CORE.C
\CPU_CORE.H
\CPU_DEF.H
\Cfg\Template
\CPU_CFG.H
\<architecture>
\<compiler>
\CPU.H
\CPU_A.ASM
\CPU_C.C

\Micrium
Contains all software components and projects provided by Micripm.

\Software
This sub-directory contains all software components and projects.

44

Directories and Files

\uC-CPU
This is the main pC/CPU directory.

CPU_CORE.C contains C code that is common to all CPU architectures. Specifically, this
file contains functions to measure the interrupt disable time of the
CPU_CRITICAL ENTER() and CPU_CRITICAL EXIT() macros, a function that emulates a
count leading zeros instruction and a few other functions.

CPU_CORE.H contains function prototypes for the functions provided in CPU_CORE.C
and allocation of the variables used by the module to measure interrupt disable time.

CPU_DEF . H contains miscellaneous #define constants used by the pC/CPU module.

\Cfg\Template
This directory contains a configuration template file (CPU_CFG.H) that must be copied to the
application directory to configure the nC/CPU module based on application requirements.

CPU_CFG.H determines whether to enable measurement of the interrupt disable time,
whether the CPU implements a count leading zeros instruction in assembly language, or
whether it will be emulated in C, and more.

\<architecture>
The name of the CPU architecture that pC/CPU was ported to. The “<” and “>” are not part

of the actual name.

\<compiler>
The name of the compiler or compiler manufacturer used to build code for the nC/CPU
port. The “<” and “>” are not part of the actual name.

The files in this directory contain the pC/CPU port, see Chapter 18, “Porting nC/OS-1II” on
page 335 for details on the contents of these files.

CPU.H contains type definitions to make pC/OS-III and other modules independent of
the CPU and compiler word sizes. Specifically, one will find the declaration of the
CPU_INT16U, CPU_INT32U, CPU FP32 and many other data types. This file also specifies
whether the CPU is a big or little endian machine, defines the CPU_STK data type used
by pnC/OS-II, defines the macros OS CRITICAL ENTER() and OS_CRITICAL EXIT(),
and contains function prototypes for functions specific to the CPU architecture, and more.

45

Chapter 2

CPU_A.ASM contains the assembly language functions to implement code to disable and
enable CPU interrupts, count leading zeros (if the CPU supports that instruction), and
other CPU specific functions that can only be written in assembly language. This file
may also contain code to enable caches, setup MPUs and MMU, and more. The
functions provided in this file are accessible from C.

CPU_C.C contains C code of functions that are based on a specific CPU architecture but
written in C for portability. As a general rule, if a function can be written in C then it
should be, unless there is significant performance benefits available by writing it in
assembly language.

2-7 pC/LIB, PORTABLE LIBRARY FUNCTIONS

pC/LIB consists of library functions meant to be highly portable and not tied to any specific
compiler. This facilitates third-party certification of Micripm products. pC/OS-III does not
use any pC/LIB functions, however the nC/CPU assumes the presence of LIB DEF.H for
such definitions as: DEF_YES, DEF_NO, DEF_TRUE, DEF_FALSE, DEF _ON, DEF_OFF and more.

\Micrium
\Software
\uC-LIB

\LIB ASCII.C

\LIB_ASCII.H

\LIB_DEF.H

\LIB_MATH.C

\LIB_MATH.H

\LIB_MEM.C

\LIB_MEM.H

\LIB_STR.C

\LIB_STR.H

\Cfg\Template
\LIB_CFG.H

\Ports
\<architecture>

\<compiler>
\LIB_MEM A.ASM

46

Directories and Files

\Micrium
Contains all software components and projects provided by Micripm.

\Software
This sub-directory contains all software components and projects.

\uC-LIB
This is the main pC/LIB directory.

\Cfg\Template

This directory contains a configuration template file (LIB CFG.H) that are required to be
copied to the application directory to configure the pC/LIB module based on application
requirements.

LIB_CFG.H determines whether to enable assembly language optimization (assuming there
is an assembly language file for the processor, i.e., LIB MEM A.ASM) and a few other
#defines.

2-8 SUMMARY

Below is a summary of all directories and files involved in a nC/OS-Ill-based project. The
“<-Cfg” on the far right indicates that these files are typically copied into the application
(i.e., project) directory and edited based on the project requirements.

\Micrium
\Software
\EvalBoards
\<manufacturer>
\<board name>
\<compiler>
\<project name>
\APP.C
\APP.H
\other
\CPU
\<manufacturer>
\<architecture>

* . *

47

Chapter 2

\uCOS-III
\Cfg\Template
\OS_APP_HOOKS.C
\OS_CFG.H <-Cfg
\OS_CFG_APP.H <-Cfg
\Source
\OS_CFG_APP.C
\OS_CORE.C
\0OS_DBG.C
\0S_FLAG.C
\OS_INT.C
\0OS_MEM.C
\0S_MSG.C
\0S_MUTEX.C
\OS_PEND_MULTI.C
\0S_PRIO.C
\0s_0.C
\OS_SEM.C
\OS_STAT.C
\OS_TASK.C
\0S_TICK.C
\0S_TIME.C
\0S_TMR.C
\OS_VAR.C
\0S.H
\OS_TYPE.H <-Cfg
\Ports
\<architecture>
\<compiler>
\0OS_CPU.H
\OS_CPU_A.ASM
\0sS_CPU_C.C
\uC-CPU
\CPU_CORE.C
\CPU_CORE.H
\CPU_DEF.H
\Cfg\Template
\CPU_CFG.H <-Cfg

48

Directories and Files

\<architecture>
\<compiler>
\CPU.H
\CPU_A.ASM
\CPU_C.C
\uC-LIB
\LIB_ASCII.C
\LIB_ASCII.H
\LIB_DEF.H
\LIB_MATH.C
\LIB_MATH.H
\LIB_MEM.C
\LIB_MEM.H
\LIB_STR.C
\LIB_STR.H
\Cfg\Template
\LIB_CFG.H <-Cfg
\Ports
\<architecture>
\<compiler>
\LIB_MEM A.ASM

49

Chapter 2

50

Chapter

Getting Started with pC/OS-lI

pC/OS-1IT provides services to application code in the form of a set of functions that
perform specific operations. pC/OS-III offers services to manage tasks, semaphores,
message queues, mutual exclusion semaphores and more. As far as the application is
concerned, it calls the pC/OS-III functions as if they were any other functions. In other
words, the application now has access to a library of approximately 70 new functions.

In this chapter, the reader will appreciate how easy it is to start using pC/OS-III. Refer to
Appendix A, “pC/OS-III API Reference Manual” on page 375, for the full description of
several of the pC/OS-III services presented in this chapter.

It is assumed that the project setup (files and directories) is as described in the previous

chapter, and that a C compiler exists for the target processor that is in use. However, this
chapter makes no assumptions about the tools or the processor that is used.

51

Chapter 3

3-

1 SINGLE TASK APPLICATION

Listing 3-1 shows the top portion of a simple application file called APP.C.

L3-

52

/*
Khkkhkhkkhkhkhkhkhhhhhhhhhkhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhkhhhhhhhhhhdhhhdhhhhhhkhhhhhhhhhhhhhkhhhhkkd
& INCLUDE FILES
Khkkhkhkkkhhkhkhhhkhhhhhhkhhhhhhhkhhhhhhhhhhhhhhkhhhhhhhhhhhkhhbhhkhhhhhhhhhhbhhhhhhkhhhkhhhhhhhhhhkhhhkhkhhkxk
*/

#include <app_cfg.h> (1)

#include <bsp.h>
#include <os.h>
/*

T

* LOCAL GLOBAL VARIABLES

EEE RS SRR SRR SRS SRR R R SRR SRR SRS R RS SRS E RS EEE SRR SRR R RS R R EEEEEEEEEEEEES
*/

static OS_TCB AppTaskStartTCB; (2)

static CPU_STK AppTaskStartStk[APP_TASK START STK SIZE]; (3)

/*
Khkkhkhkkhhhhkhhhkhhdhhhhhhhhhhhhdhhhdhhhhdhkhhhhhhhhhhhhhkhhhhkkd
& FUNCTION PROTOTYPES
Khkkdhkhkkkhhkhkhkhhkhhhhhhkhhhhhhhkhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhkhhhhhhhhhhhhhhhhhkhhhhkhhhhhhhhhkhhhkhkhhhkkd
*/

static void AppTaskStart (void *p_arg); (4)

Listing 3-1 APP.C (1st Part)

1(D As with any C programs, include the necessary headers to build the

application.

APP CFG.H is a header file that configures the application. For our example,
APP CFG.H contains #define constants to establish task priorities, stack sizes,

and other application specifics.

BSP.H is the header file for the Board Support Package (BSP), which defines
#defines and function prototypes, such as BSP Init(), BSP_LED On(),

0S_TS_GET() and more.

Getting Started with uC/OS-lll

0S.H is the main header file for pC/OS-III, and includes the following header files:

0S_CFG.H
CPU.H
CPU_CFG.H
CPU_CORE.H
0S_TYPE.H
0S_CPU.H

L3-1(2) We will be creating an application task and it is necessary to allocate a task
control block (0S_TCB) for this task.

L3-1(3) Each task created requires its own stack. A stack must be declared using the
CPU_STK data type. The stack can be allocated statically as shown here, or
dynamically from the heap using malloc(). It should not be necessary to free
the stack space, because the task should never be stopped, and the stack will
always be used.

L3-1(4) This is the function prototype of the task that we will create.

Most C applications start at main() as shown in Listing 3-2.

53

Chapter 3

void main (void)

{

(CPU_STK_SIZE)APP TASK START STK SIZE, (10)
(0S_MSG_QTY)0,
(0S_TICK)0,
(void *)0,
(0S_OPT) (OS_OPT_TASK_STK_CHK | OS_OPT TASK_STK_CLR), (11)
(OS_ERR *)gerr); (12)
if (err != OS_ERR NONE) {
/* The task didn’t get created. Lookup the value of the error code ... */
/* ... in 0S.H for the meaning of the error */
}
OSStart(&err); (13)
if (err != 0S_ERR NONE) {
/* Your code is NEVER supposed to come back to this point. */
}
}
Listing 3-2 APP.C (2nd Part)
L3-2(D) Start main() by calling a BSP function that disables all interrupts. On most
processors, interrupts are disabled at startup until explicitly enabled by application
code. However, it is safer to turn off all peripheral interrupts during startup.
L3-2(2) Call 0SInit(), which is responsible for initializing pC/OS-III. OSInit()

54

OS_ERR err;

BSP_IntDisAll();
0SInit(&err);
if (err != OS_ERR NONE) {
/* Something didn’t get initialized correctly ...

/* ... check 0S.H for the meaning of the error code, see OS_ERR xxxx */

}

OSTaskCreate((0S_TCB *)&AppTaskStartTCB,
(CPU_CHAR *)”App Task Start”,
(OS_TASK_PTR)AppTaskStart,
(void *)0,
(0S_PRIO)APP_TASK_START PRIO,
(CPU_STK *)&AppTaskStartStk([0],
(CPU_STK_SIZE)APP_TASK START STK SIZE / 10,

initializes internal variables and data structures, and also creates two (2) to five (5)
internal tasks. At a minimum, pC/OS-III creates the idle task (0S_IdleTask()),
which executes when no other task is ready to run. pC/OS-III also creates the

tick task, which is responsible for keeping track of time.

(1)
(2)

(3)
(4)
(3)
(6)
(7)
(8)
(9)

Getting Started with uC/OS-lll

L3-2(3)

L3-2(4)

L3-2(5)

Depending on the value of #define constants, pC/OS-III will create the statistic
task (OS_StatTask()), the timer task (OS TmrTask()), and the interrupt
handler queue management task (0OS_IntQTask()). Those are discussed in
Chapter 5, “Task Management” on page 75.

Most of pC/OS-1II's functions return an error code via a pointer to an 0OS_ERR
variable, err in this case. If 0SInit() was successful, err will be set to
OS_ERR NONE. If OSInit() encounters a problem during initialization, it will
return immediately upon detecting the problem and set err accordingly. If this
occurs, look up the error code value in 0S.H. Specifically, all error codes start
with OS_ERR .

It is important to note that 0SInit () must be called before any other pC/OS-III
function.

Create a task by calling OSTaskCreate(). OSTaskCreate() requires 13
arguments. The first argument is the address of the OS_TCB that is declared for this
task. Chapter 5, “Task Management” on page 75 provides additional information
about tasks.

OSTaskCreate() allows a name to be assigned to each of the tasks. pC/OS-III
stores a pointer to the task name inside the 0S_TCB of the task. There is no
limit on the number of ASCII characters used for the name.

The third argument is the address of the task code. A typical pC/OS-III task is
implemented as an infinite loop as shown:

void MyTask (void *p_arg)
{
/* Do something with “p arg”.
while (1) {
/* Task body */
}

The task receives an argument when it first starts. As far as the task is
concerned, it looks like any other C function that can be called by the code.
However, the code must not call MyTask(). The call is actually performed
through pC/OS-I1I.

55

Chapter 3

L3-2(6)

L3-2(7)

L3-2(8)

L3-2(9)

L3-2(10)

L3-2(11)

56

The fourth argument of OSTaskCreate() is the actual argument that the task
receives when it first begins. In other words, the “p _arg” of MyTask(). In the
example a NULL pointer is passed, and thus “p_arg” for AppTaskStart() will
be a NULL pointer.

The argument passed to the task can actually be any pointer. For example, the
user may pass a pointer to a data structure containing parameters for the task.

The next argument to OSTaskCreate() is the priority of the task. The
priority establishes the relative importance of this task with respect to the
other tasks in the application. A low-priority number indicates a high
priority (or more important task). Set the priority of the task to any value
between 1 and 0S_CFG PRIO MAX-2, inclusively. Avoid using priority #0, and
priority OS_CFG_PRIO MAX-1, because these are reserved for pC/OS-IIL
0S_CFG_PRIO MAX is a compile time configuration constant, which is declared
in 0S_CFG.H.

The sixth argument to OSTaskCreate() is the base address of the stack
assigned to this task. The base address is always the lowest memory location of
the stack.

The next argument specifies the location of a “watermark” in the task’s stack
that can be used to determine the allowable stack growth of the task. See
Chapter 5, “Task Management” on page 75 for more details on using this
feature. In the code above, the value represents the amount of stack space (in
CPU_STK elements) before the stack is empty. In other words, in the example,
the limit is reached when there is 10% of the stack left.

The eighth argument to OSTaskCreate () specifies the size of the task’s stack in
number of CPU_STK elements (not bytes). For example, if allocating 1 Kbyte of
stack space for a task and the CPU_STK is a 32-bit word, then pass 256.

The next three arguments are skipped as they are not relevant for the current
discussion. The next argument to OSTaskCreate() specifies options. In this
example, we specify that the stack will be checked at run time (assuming the
statistic task was enabled in OS_CFG.H), and that the contents of the stack will
be cleared when the task is created.

Getting Started with uC/OS-lll

L3-2(12) The last argument of OSTaskCreate() is a pointer to a variable that will
receive an error code. If OSTaskCreate() is successful, the error code will be
0S_ERR NONE otherwise, look up the value of the error code in 0S.H (See
0S_ERR xxxx) to determine the problem with the call.

L3-2(13) The final step in main() is to call OSStart(), which starts the multitasking
process. Specifically, nC/OS-1II will select the highest-priority task that was
created before calling OSStart(). The highest-priority task is always
OS_IntQTask() if that task is enabled in OS CFG.H (through the
0OS_CFG ISR POST DEFERRED EN constant). If this is the case, OS_IntQTask()
will perform some initialization of its own and then pC/OS-III will switch to the
next most important task that was created.

A few important points are worth noting. For one thing, create as many tasks as you want
before calling OSStart (). However, it is recommended to only create one task as shown in
the example because, having a single application task allows pC/OS-III to determine how
fast the CPU is, in order to determine the percentage of CPU usage at run-time. Also, if the
application needs other kernel objects such as semaphores and message queues then it is
recommended that these be created prior to calling OSStart(). Finally, notice that that
interrupts are not enabled. This will be discussed next by examining the contents of
AppTaskStart (), which is shown in Listing 3-3.

57

Chapter 3

static void AppTaskStart (void *p_arg) (1)

{
OS_ERR err;

p_arg = p_arg;

BSP_Init(); (2)
CPU_Init(); (3)
BSP_Cfg Tick(); (4)
BSP_LED Off(0); (5)
while (1) { (6)

BSP_LED Toggle(0); (7)

0STimeDlyHMSM((CPU_INT16U) 0, (8)

(CPU_INT16U) O,
(CPU_INT16U) O,
(CPU_INT32U)100,
(0S_OPT)OS_OPT_TIME HMSM STRICT,
(OS_ERR *)&err);
/* Check for ‘err’ */

Listing 3-3 APP.C (3rd Part)

L3-3(D) As previously mentioned, a task looks like any other C function. The argument
“p_arg” is passed to AppTaskStart () by OSTaskCreate(), as discussed in the
previous listing description.

L3-3(2) BSP_Init() is a Board Support Package (BSP) function that is responsible for
initializing the hardware on an evaluation or target board. The evaluation
board might have General Purpose Input Output (GPIO) lines that might
need to be configured, relays, sensors and more. This function is found in a
file called BSP.C.

L3-3(3) CPU_Init() initializes the pC/CPU services. pC/CPU provides services to measure
interrupt latency, receive time stamps, and provides emulation of the count leading
zeros instruction if the processor used does not have that instruction and more.

L3-3(4) BSP_Cfg Tick() sets up the pC/OS-II tick interrupt. For this, the function
needs to initialize one of the hardware timers to interrupt the CPU at a rate of:
0SCfg_TickRate Hz, which is defined in OS _CFG APP.H (See
0S_CFG_TICK RATE HZ).

58

Getting Started with uC/OS-lll

L3-3(5)

L3-3(6)

L3-3(7)

L3-3(8)

BSP_LED Off() is a function that will turn off all LEDs because the function is
written so that a zero argument means all the LEDs.

Most pC/OS-III tasks will need to be written as an infinite loop.

This BSP function toggles the state of the specified LED. Again, a zero indicates
that all the LEDs should be toggled on the evaluation board. Simply change the
zero to 1 and this will cause LED #1 to toggle. Exactly which LED is LED #1?
That depends on the BSP developer. Specifically, encapsulate access to
LEDs through such functions as BSP_LED On(), BSP LED Off() and
BSP_LED Toggle(). Also, we prefer to assign LEDs logical values (1, 2, 3, etc.)
instead of specifying which port and which bit on each port.

Finally, each task in the application must call one of the pC/OS-1II functions

«

that will cause the task to “wait for an event.” The task can wait for time to
expire (by calling 0STimeDly(), or OSTimeD1yHMSM()), or wait for a signal or a
message from an ISR or another task. Chapter 11, “Time Management” on

page 183 provides additional information about time delays.

59

Chapter 3

3-2 MULTIP