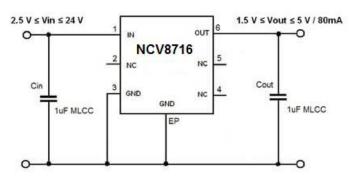
Low Dropout Regulator -**Ultra-Low Iq, Wide Input** Voltage

80 mA


The NCV8716 is 80 mA LDO Linear Voltage Regulator. It is a very stable and accurate device with ultra-low ground current consumption (4.7 µA over the full output load range) and a wide input voltage range (up to 24 V). The regulator incorporates several protection features such as Thermal Shutdown and Current Limiting.

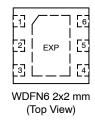
Features

- Operating Input Voltage Range: 2.5 V to 24 V
- Fixed Voltage Options Available: 1.5 V to 5.0 V
- Ultra Low Quiescent Current: Max. 5.8 µA over Temperature
- ±2% Accuracy over Full Load, Line and Temperature Variations
- PSRR: 60 dB at 100 kHz
- Noise: 200 µV_{RMS} from 200 Hz to 100 kHz
- Thermal Shutdown and Current Limit Protection
- Available in wDFN6, 2x2x0.8 mm Package
- NCV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable; Device Temperature Grade 1: -40°C to +125°C Ambient Operating Temperature Range
- These Devices are Pb-Free, Halogen Free/BFR Free and are RoHS Compliant

Typical Applications

- Portable Equipment
- Communication Systems

Figure 1. Typical Application Schematic


ON Semiconductor®

www.onsemi.com

XX = Specific Device Code М = Date Code

PIN CONNECTIONS

ORDERING INFORMATION

See detailed ordering, marking and shipping information on page 17 of this data sheet.

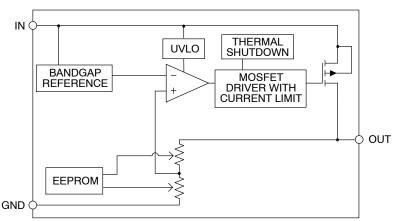


Figure 2. Simplified Block Diagram

Table 1. PIN FUNCTION DESCRIPTION

Pin No.	Pin Name	Description
6	OUT	Regulated output voltage pin. A small 0.47 μ F ceramic capacitor is needed from this pin to ground to assure stability.
2	N/C	No connection. This pin can be tied to ground to improve thermal dissipation or left disconnected.
3, EXP	GND	Power supply ground. Exposed pad EXP must be tied with GND pin 3.
4	N/C	No connection. This pin can be tied to ground to improve thermal dissipation or left disconnected.
5	N/C	No connection. This pin can be tied to ground to improve thermal dissipation or left disconnected.
1	IN	Input pin. A small capacitor is needed from this pin to ground to assure stability.

Table 2. ABSOLUTE MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Input Voltage (Note 1)	V _{IN}	-0.3 to 24	V
Output Voltage	V _{OUT}	–0.3 to 6	V
Output Short Circuit Duration	t _{SC}	Indefinite	S
Maximum Junction Temperature	T _{J(MAX)}	150	°C
Operating Ambient Temperature Range	T _A	-40 to 125	°C
Storage Temperature Range	T _{STG}	-55 to 150	°C
ESD Capability, Human Body Model (Note 2)	ESD _{HBM}	2000	V
ESD Capability, Machine Model (Note 2)	ESD _{MM}	200	V

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

1. Refer to ELECTRICAL CHARACTERISTICS and APPLICATION INFORMATION for Safe Operating Area.

2. This device series incorporates ESD protection and is tested by the following methods:

ESD Human Body Model tested per EIA/JESD22-A114

ESD Machine Model tested per EIA/JESD22-A115

Latch up Current Maximum Rating tested per JEDEC standard: JESD78.

Table 3. THERMAL CHARACTERISTICS

Rating	Symbol	Value	Unit
Thermal Characteristics, wDFN6, 2 mm x 2 mm Thermal Resistance, Junction-to-Air	R_{\thetaJA}	120	°C/W

Table 4. RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Min	Max	Unit
Input Voltage	V _{IN}	2.5	24	V
Junction Temperature	Т _Ј	-40	125	°C

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

Table 5. ELECTRICAL CHARACTERISTICS Voltage version 1.5 V

 $-40^{\circ}C \le T_J \le 125^{\circ}C$; $V_{IN} = 3.0 \text{ V}$; $I_{OUT} = 1 \text{ mA}$, $C_{IN} = C_{OUT} = 1.0 \mu$ F, unless otherwise noted. Typical values are at $T_J = +25^{\circ}C$. (Note 5)

			31		5 (,	
Parameter	Test Conditions		Symbol	Min	Тур	Max	Unit	
Operating Input Voltage	I _{OUT} ≤ 10 mA		V _{IN}	2.5		24	V	
	10 mA < I _{OUT} < 80 n	nA		3.0		24		
Output Voltage Accuracy	3.0 V < V _{IN} < 24 V, 0 < I _{OUT}	_T < 80 mA	V _{OUT}	1.455	1.5	1.545	V	
Line Regulation	3.0 V \leq V _{IN} \leq 24 V, I _{OUT} \approx	= 1 mA	Reg _{LINE}		20	25	mV	
Load Regulation	I _{OUT} = 0 mA to 80 m	nA	Reg _{LOAD}		20	25	mV	
Dropout voltage (Note 3)								
Maximum Output Current	(Note 6)		I _{OUT}	110			mA	
Ground current	0 < I _{OUT} < 80 mA, V _{IN} =	= 24 V	I _{GND}		3.4	5.8	μA	
Power Supply Rejection Ratio	$\begin{array}{l} V_{IN}=3.0 \text{ V}, V_{OUT}=1.5 \text{ V} \\ V_{PP}=200 \text{ mV modulation} \\ I_{OUT}=1 \text{ mA}, C_{OUT}=10 \mu\text{F} \end{array}$	V _{PP} = 200 mV modulation			56		dB	
Output Noise Voltage	V _{OUT} = 1.5 V, I _{OUT} = 80 mA f = 200 Hz to 100 kHz		V _N		120		μV _{rms}	
Thermal Shutdown Temperature (Note 4)	Temperature increasing from $T_J = +25^{\circ}C$		T _{SD}		155		°C	
Thermal Shutdown Hysteresis (Note 4)	Temperature falling from	n T _{SD}	T _{SDH}	-	25	-	°C	

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. 3. Not Characterized at $V_{IN} = 3.0 \text{ V}$, $V_{OUT} = 1.5 \text{ V}$, $I_{OUT} = 80 \text{ mA}$ 4. Guaranteed by design and characterization.

 Performance guaranteed over the indicated operating temperature range by design and/or characterization production tested at T_J = T_A = 25°C. Low duty cycle pulse techniques are used during testing to maintain the junction temperature as close to ambient as possible. 6. Respect SOA

Table 6. ELECTRICAL CHARACTERISTICS Voltage version 1.8 V

 $-40^{\circ}C \le T_J \le 125^{\circ}C$; $V_{IN} = 3.0 \text{ V}$; $I_{OUT} = 1 \text{ mA}$, $C_{IN} = C_{OUT} = 1.0 \mu$ F, unless otherwise noted. Typical values are at $T_J = +25^{\circ}C$. (Note 9)

			51				
Parameter	Test Conditions		Symbol	Min	Тур	Max	Unit
Operating Input Voltage	$I_{OUT} \le 10 \text{ mA}$		V _{IN}	2.8		24	V
	10 mA < I _{OUT} < 80 r	mA		3.0		24	
Output Voltage Accuracy	3.0 V < V _{IN} < 24 V, 0 < I _{OU} -	_T < 80 mA	V _{OUT}	1.746	1.8	1.854	V
Line Regulation	3.0 V \leq V_{IN} \leq 24 V, I_{OUT}	= 1 mA	Reg _{LINE}		15	20	mV
Load Regulation	I _{OUT} = 0 mA to 80 n	nA	Reg _{LOAD}		15	20	mV
Dropout voltage (Note 7)							
Maximum Output Current	(Note 10)		I _{OUT}	110			mA
Ground current	0 < I _{OUT} < 80 mA, V _{IN} =	= 24 V	I _{GND}		3.4	5.8	μA
Power Supply Rejection Ratio	$\begin{array}{l} V_{IN}=3.0 \text{ V}, V_{OUT}=1.8 \text{ V} \\ V_{PP}=200 \text{ mV modulation} \\ I_{OUT}=1 \text{ mA}, C_{OUT}=10 \ \mu\text{F} \end{array}$	V _{PP} = 200 mV modulation			60		dB
Output Noise Voltage	V _{OUT} = 1.8 V, I _{OUT} = 80 mA f = 200 Hz to 100 kHz		V _N		140		μV_{rms}
Thermal Shutdown Temperature (Note 8)	Temperature increasing from $T_J = +25^{\circ}C$		T _{SD}		155		°C
Thermal Shutdown Hysteresis (Note 8)	Temperature falling fror	n T _{SD}	T _{SDH}	-	25	-	°C

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. 7. Not Characterized at $V_{IN} = 3.0 \text{ V}$, $V_{OUT} = 1.8 \text{ V}$, $I_{OUT} = 80 \text{ mA}$ 8. Guaranteed by design and characterization.

9. Performance guaranteed over the indicated operating temperature range by design and/or characterization production tested at $T_J = T_A = 25^{\circ}$ C. Low duty cycle pulse techniques are used during testing to maintain the junction temperature as close to ambient as possible. 10. Respect SOA

Table 7. ELECTRICAL CHARACTERISTICS Voltage version 2.5 V

 $-40^{\circ}C \le T_J \le 125^{\circ}C$; $V_{IN} = 3.5$ V; $I_{OUT} = 1$ mA, $C_{IN} = C_{OUT} = 1.0 \ \mu$ F, unless otherwise noted. Typical values are at $T_J = +25^{\circ}C$. (Note 13)

				,,		`	· /	
Parameter	Test Conditions	6	Symbol	Min	Тур	Max	Unit	
Operating Input Voltage	I _{OUT} = 80 mA		V _{IN}	3.5		24	V	
Output Voltage Accuracy	3.5 V < V _{IN} < 24 V, 0 < I _{OL}	_{JT} < 80 mA	V _{OUT}	2.45	2.5	2.55	V	
Line Regulation	V_{OUT} + 1 V \leq V _{IN} \leq 24 V, I	OUT = 1mA	Reg _{LINE}		15	20	mV	
Load Regulation	I _{OUT} = 0 mA to 80	mA	Reg _{LOAD}		15	20	mV	
Dropout voltage (Note 11)	$V_{DO} = V_{IN} - (V_{OUT(NOM)} - 125 \text{ mV})$ $I_{OUT} = 80 \text{ mA}$		V _{DO}		400	640	mV	
Maximum Output Current	(Note 14)		I _{OUT}	110			mA	
Ground current	0 < I _{OUT} < 80 mA, V _{IN}	= 24 V	I _{GND}		3.4	5.8	μA	
Power Supply Rejection Ratio		f = 100 kHz	PSRR		60		dB	
Output Noise Voltage	V _{OUT} = 2.5 V, I _{OUT} = 80 mA f = 200 Hz to 100 kHz		V _N		160		μV _{rms}	
Thermal Shutdown Temperature (Note 12)	Temperature increasing from $T_J = +25^{\circ}C$		T _{SD}		155		°C	
Thermal Shutdown Hysteresis (Note 12)	Temperature falling fro	m T _{SD}	T _{SDH}	-	25	-	°C	

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

11. Characterized when V_{OUT} falls 125 mV below the regulated voltage and only for devices with V_{OUT} = 2.5 V 12. Guaranteed by design and characterization.

13. Performance guaranteed over the indicated operating temperature range by design and/or characterization production tested at $T_J = T_A =$ 25°C. Low duty cycle pulse techniques are used during testing to maintain the junction temperature as close to ambient as possible.

Table 8. ELECTRICAL CHARACTERISTICS Voltage version 2.8 V

 $-40^{\circ}C \le T_J \le 125^{\circ}C$; $V_{IN} = 3.8$ V; $I_{OUT} = 1$ mA, $C_{IN} = C_{OUT} = 1.0 \ \mu$ F, unless otherwise noted. Typical values are at $T_J = +25^{\circ}C$. (Note 17)

Parameter	Test Conditions		Symbol	Min	Тур	Max	Unit
Operating Input Voltage	I _{OUT} = 80 mA		V _{IN}	3.8		24	V
Output Voltage Accuracy	3.8 V < V _{IN} < 24 V, 0 < I _{OL}	_{JT} < 80 mA	V _{OUT}	2.744	2.8	2.856	V
Line Regulation	V_{OUT} + 1 V \leq V _{IN} \leq 24 V, I ₀	DUT = 1 mA	Reg _{LINE}		4	10	mV
Load Regulation	I _{OUT} = 0 mA to 80	mA	Reg _{LOAD}		10	30	mV
Dropout voltage (Note 15)	V _{DO} = V _{IN} – (V _{OUT(NOM)} – 150 mV) I _{OUT} = 80 mA		V _{DO}		380	600	mV
Maximum Output Current	(Note 18)		I _{OUT}	110			mA
Ground current	0 < I _{OUT} < 80 mA, V _{IN}	= 24 V	I _{GND}		3.4	5.8	μΑ
Power Supply Rejection Ratio		f = 100 kHz	PSRR		58		dB
Output Noise Voltage	V _{OUT} = 2.8 V, I _{OUT} = 80 mA f = 200 Hz to 100 kHz		V _N		180		μV _{rms}
Thermal Shutdown Temperature (Note 16)	Temperature increasing from $T_J = +25^{\circ}C$		T _{SD}		155		°C
Thermal Shutdown Hysteresis (Note 16)	Temperature falling fro	m T _{SD}	T _{SDH}	-	25	-	°C

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

15. Characterized when V_{OUT} falls 140 mV below the regulated voltage and only for devices with V_{OUT} = 2.8 V

16. Guaranteed by design and characterization.

17. Performance guaranteed over the indicated operating temperature range by design and/or characterization production tested at $T_J = T_A =$ 25°C. Low duty cycle pulse techniques are used during testing to maintain the junction temperature as close to ambient as possible.

Table 9. ELECTRICAL CHARACTERISTICS Voltage version 3.0 V

 $-40^{\circ}C \le T_J \le 125^{\circ}C$; $V_{IN} = 4.0$ V; $I_{OUT} = 1$ mA, $C_{IN} = C_{OUT} = 1.0 \ \mu$ F, unless otherwise noted. Typical values are at $T_J = +25^{\circ}C$. (Note 21)

Parameter	Test Conditions		Symbol	Min	Тур	Max	Unit
Operating Input Voltage	I _{OUT} = 80 mA		V _{IN}	4.0		24	V
Output Voltage Accuracy	4.0 V < V _{IN} < 24 V, 0 < I _{OL}	_{JT} < 80 mA	V _{OUT}	2.94	3.0	3.06	V
Line Regulation	V_{OUT} + 1 V \leq V _{IN} \leq 24 V, I ₀	DUT = 1 mA	Reg _{LINE}		4	10	mV
Load Regulation	I _{OUT} = 0 mA to 80	mA	Reg _{LOAD}		10	30	mV
Dropout voltage (Note 19)	V _{DO} = V _{IN} – (V _{OUT(NOM)} – 150 mV) I _{OUT} = 80 mA		V _{DO}		370	580	mV
Maximum Output Current	(Note 22)		I _{OUT}	110			mA
Ground current	0 < I _{OUT} < 80 mA, V _{IN}	= 24 V	I _{GND}		3.4	5.8	μΑ
Power Supply Rejection Ratio		f = 100 kHz	PSRR		58		dB
Output Noise Voltage	V _{OUT} = 3.0 V, I _{OUT} = 80 mA f = 200 Hz to 100 kHz		V _N		190		μV _{rms}
Thermal Shutdown Temperature (Note 20)	Temperature increasing from $T_J = +25^{\circ}C$		T _{SD}		155		°C
Thermal Shutdown Hysteresis (Note 20)	Temperature falling fro	m T _{SD}	T _{SDH}	-	25	-	°C

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

19. Characterized when V_{OUT} falls 150 mV below the regulated voltage and only for devices with V_{OUT} = 3.0 V

20. Guaranteed by design and characterization.

21. Performance guaranteed over the indicated operating temperature range by design and/or characterization production tested at T_J = T_A = 25°C. Low duty cycle pulse techniques are used during testing to maintain the junction temperature as close to ambient as possible.

Table 10. ELECTRICAL CHARACTERISTICS Voltage version 3.3 V

 $-40^{\circ}C \le T_J \le 125^{\circ}C$; $V_{IN} = 4.3 \text{ V}$; $I_{OUT} = 1 \text{ mA}$, $C_{IN} = C_{OUT} = 1.0 \mu$ F, unless otherwise noted. Typical values are at $T_J = +25^{\circ}C$. (Note 25)

Parameter	Test Conditions		Symbol	Min	Тур	Max	Unit
Operating Input Voltage	I _{OUT} = 80 mA		V _{IN}	4.3		24	V
Output Voltage Accuracy	4.3 V < V _{IN} < 24 V, 0 < I _{OL}	_{JT} < 80 mA	V _{OUT}	3.234	3.3	3.366	V
Line Regulation	V_{OUT} + 1 V \leq V _{IN} \leq 24 V, I ₀	out = 1 mA	Reg _{LINE}		4	10	mV
Load Regulation	I _{OUT} = 0 mA to 80	mA	Reg _{LOAD}		10	30	mV
Dropout voltage (Note 23)	V _{DO} = V _{IN} – (V _{OUT(NOM)} – 165 mV) I _{OUT} = 80 mA		V _{DO}		350	560	mV
Maximum Output Current	(Note 26)		I _{OUT}	110			mA
Ground current	0 < I _{OUT} < 80 mA, V _{IN}	= 24 V	I _{GND}		3.4	5.8	μΑ
Power Supply Rejection Ratio		f = 100 kHz	PSRR		60		dB
Output Noise Voltage	V _{OUT} = 4.3 V, I _{OUT} = 80 mA f = 200 Hz to 100 kHz		V _N		200		μV _{rms}
Thermal Shutdown Temperature (Note 24)	Temperature increasing from $T_J = +25^{\circ}C$		T _{SD}		155		°C
Thermal Shutdown Hysteresis (Note 24)	Temperature falling fro	m T _{SD}	T _{SDH}	-	25	-	°C

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

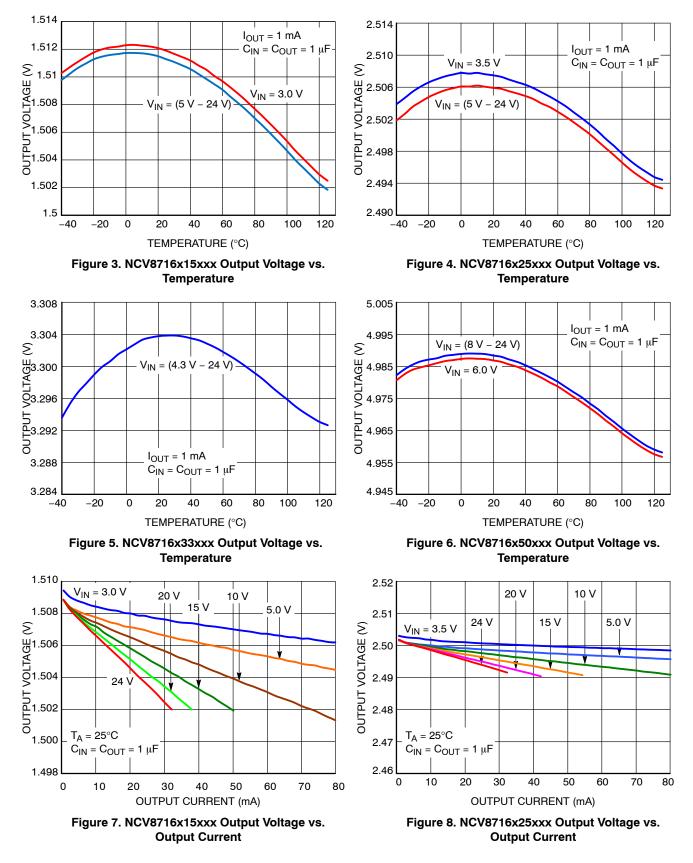
23. Characterized when V_{OUT} falls 165 mV below the regulated voltage and only for devices with V_{OUT} = 3.3 V

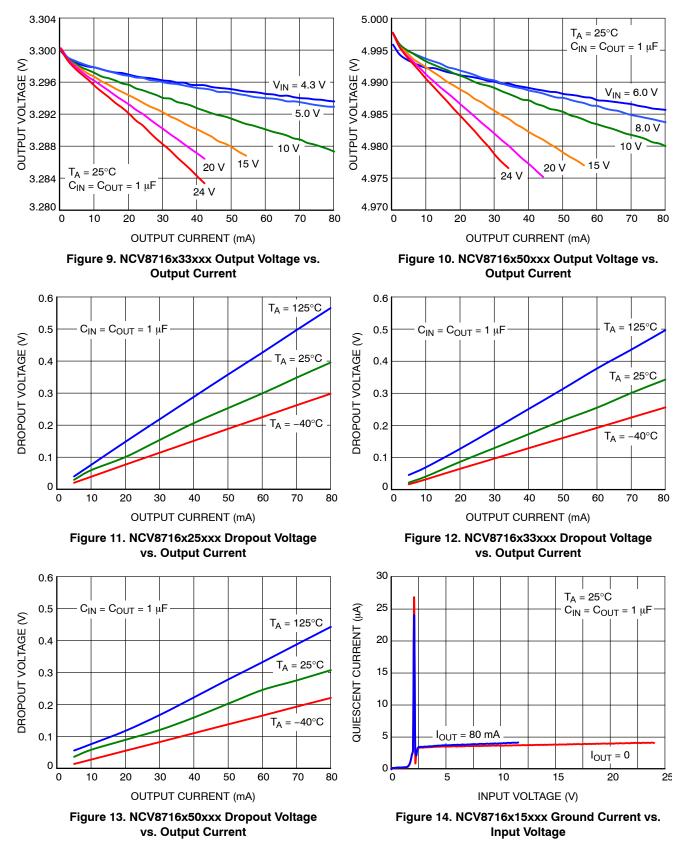
24. Guaranteed by design and characterization.

25. Performance guaranteed over the indicated operating temperature range by design and/or characterization production tested at T_J = T_A = 25°C. Low duty cycle pulse techniques are used during testing to maintain the junction temperature as close to ambient as possible.

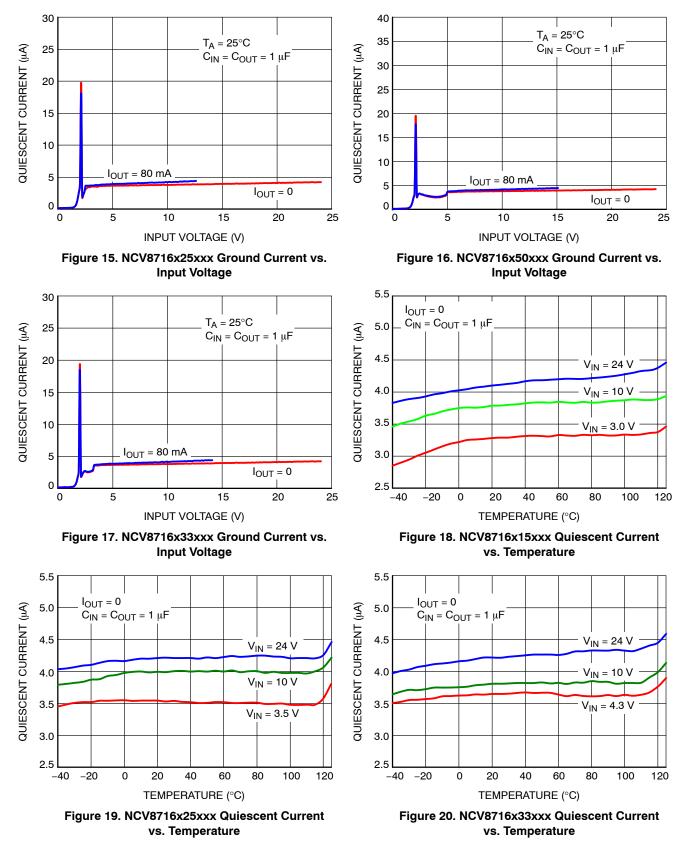
Table 11. ELECTRICAL CHARACTERISTICS Voltage version 5.0 V

 -40° C \leq T_J \leq 125 $^{\circ}$ C; V_{IN} = 6.0 V; I_{OUT} = 1 mA, C_{IN} = C_{OUT} = 1.0 μ F, unless otherwise noted. Typical values are at T_J = +25 $^{\circ}$ C. (Note 29)

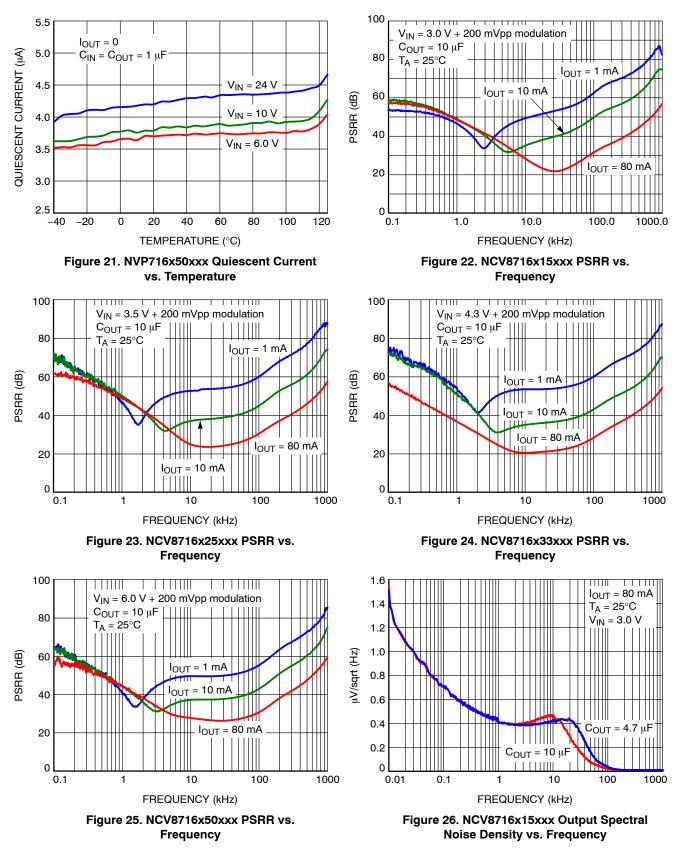

			51		31 0		()	
Parameter	Test Conditions		Symbol	Min	Тур	Max	Unit	
Operating Input Voltage	I _{OUT} = 80 mA		V _{IN}	6.0		24	V	
Output Voltage Accuracy	6.0 V < V _{IN} < 24 V, 0 < I _{OL}	_{JT} < 80 mA	V _{OUT}	4.9	5.0	5.1	V	
Line Regulation	V_{OUT} + 1 V \leq V _{IN} \leq 24 V, I ₀	DUT = 1 mA	Reg _{LINE}		4	10	mV	
Load Regulation	I _{OUT} = 0 mA to 80	mA	Reg _{LOAD}		10	30	mV	
Dropout voltage (Note 27)	$V_{DO} = V_{IN} - (V_{OUT(NOM)} - 250 \text{ mV})$ $I_{OUT} = 80 \text{ mA}$		V _{DO}		310	500	mV	
Maximum Output Current	(Note 30)		I _{OUT}	110			mA	
Ground current	0 < I _{OUT} < 80 mA, V _{IN}	= 24 V	I _{GND}		3.4	5.8	μΑ	
Power Supply Rejection Ratio	$\begin{array}{l} V_{IN} = 6.0 \text{ V}, V_{OUT} = 5.0 \text{ V} \\ V_{PP} = 200 \text{ mV modulation} \\ I_{OUT} = 1 \text{ mA}, C_{OUT} = 10 \ \mu\text{F} \end{array}$	f = 100 kHz	PSRR		54		dB	
Output Noise Voltage	V _{OUT} = 5.0 V, I _{OUT} = 80 mA f = 200 Hz to 100 kHz		V _N		220		μV _{rms}	
Thermal Shutdown Temperature (Note 28)	Temperature increasing from $T_J = +25^{\circ}C$		T _{SD}		155		°C	
Thermal Shutdown Hysteresis (Note 28)	Temperature falling fro	m T _{SD}	T _{SDH}	-	25	-	°C	

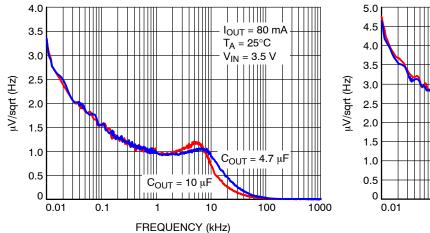

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

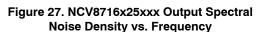
27. Characterized when V_{OUT} falls 250 mV below the regulated voltage and only for devices with V_{OUT} = 5.0 V


28. Guaranteed by design and characterization.

29. Performance guaranteed over the indicated operating temperature range by design and/or characterization production tested at T_J = T_A = 25°C. Low duty cycle pulse techniques are used during testing to maintain the junction temperature as close to ambient as possible.







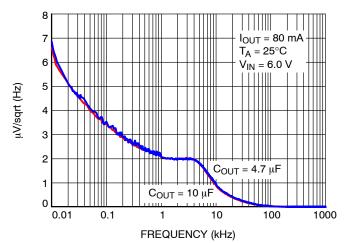


Figure 29. NCV8716x50xxx Output Spectral Noise Density vs. Frequency

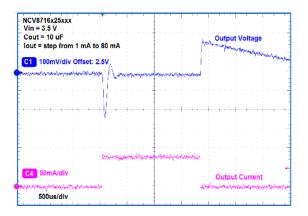


Figure 31. Load Transient Response

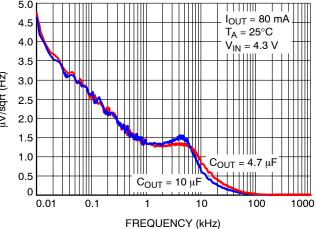


Figure 28. NCV8716x33xxx Output Spectral Noise Density vs. Frequency

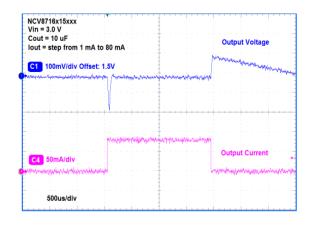


Figure 30. Load Transient Response

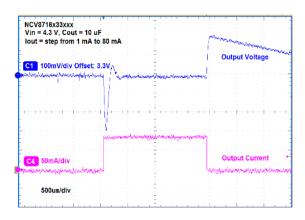


Figure 32. Load Transient Response

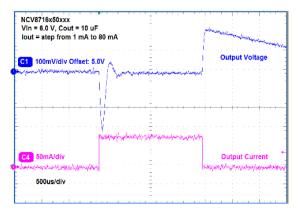


Figure 33. Load Transient Response

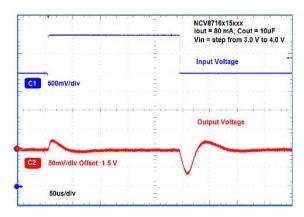


Figure 34. Line Transient Response

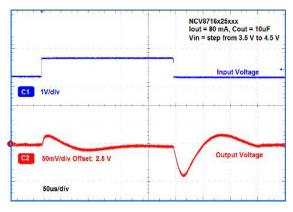


Figure 35. Line Transient Response

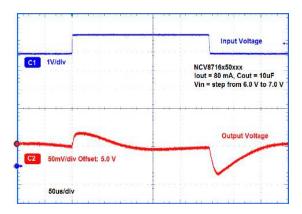


Figure 37. Line Transient Response

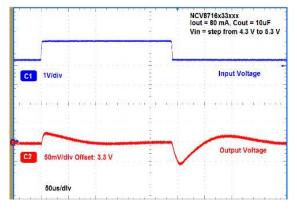


Figure 36. Line Transient Response

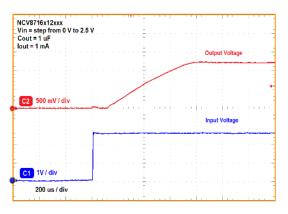


Figure 38. Input Voltage Turn-On Response

TYPICAL CHARACTERISTICS

Figure 39. Input Voltage Turn-On Response

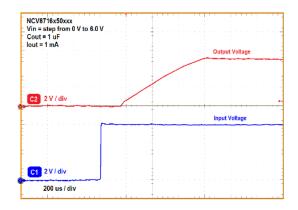


Figure 40. Input Voltage Turn-On Response

APPLICATIONS INFORMATION

The NCV8716 is the member of new family of Wide Input Voltage Range Low Dropout Regulators which delivers Ultra Low Ground Current consumption, Good Noise and Power Supply Rejection Ratio Performance.

Input Decoupling (CIN)

It is recommended to connect at least $0.1 \,\mu\text{F}$ Ceramic X5R or X7R capacitor between IN and GND pin of the device. This capacitor will provide a low impedance path for any unwanted AC signals or Noise superimposed onto constant Input Voltage. The good input capacitor will limit the influence of input trace inductances and source resistance during sudden load current changes.

Higher capacitance and lower ESR Capacitors will improve the overall line transient response.

Output Decoupling (COUT)

The NCV8716 does not require a minimum Equivalent Series Resistance (ESR) for the output capacitor. The device is designed to be stable with standard ceramics capacitors with values of $0.47 \,\mu\text{F}$ or greater up to $10 \,\mu\text{F}$. The X5R and X7R types have the lowest capacitance variations over temperature thus they are recommended.

Power Dissipation and Heat sinking

The maximum power dissipation supported by the device is dependent upon board design and layout. Mounting pad configuration on the PCB, the board material, and the ambient temperature affect the rate of junction temperature rise for the part. The maximum power dissipation the NCV8716 can handle is given by:

$$P_{D(MAX)} = \frac{\left[T_{J(MAX)} - T_{A}\right]}{R_{\partial JA}}$$
 (eq. 1)

The power dissipated by the NCV8716 for given application conditions can be calculated from the following equations:

$$\label{eq:P_D} \textbf{P}_{D} \approx \textbf{V}_{\text{IN}} \big(\textbf{I}_{\text{GND}}(\textbf{I}_{\text{OUT}}) \big) + \textbf{I}_{\text{OUT}} \big(\textbf{V}_{\text{IN}} - \textbf{V}_{\text{OUT}} \big) \quad (\text{eq. 2})$$

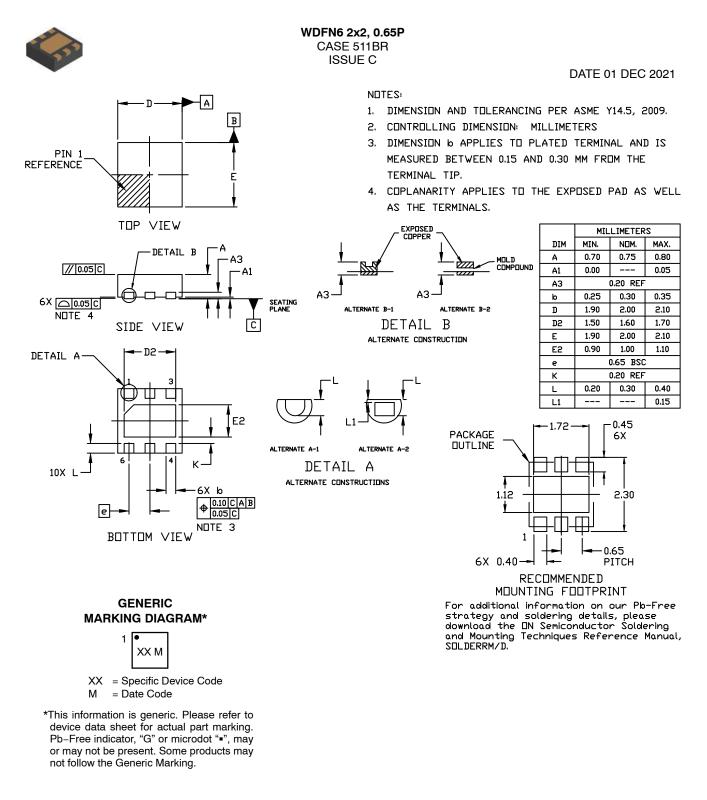
or

$$V_{\text{IN(MAX)}} \approx \frac{\mathsf{P}_{\text{D(MAX)}} + \left(V_{\text{OUT}} \times I_{\text{OUT}} \right)}{I_{\text{OUT}} + I_{\text{GND}}} \qquad (\text{eq. 3})$$

For reliable operation, junction temperature should be limited to $+125^{\circ}$ C maximum.

Hints

VIN and GND printed circuit board traces should be as wide as possible. When the impedance of these traces is high, there is a chance to pick up noise or cause the regulator to malfunction. Place external components, especially the output capacitor, as close as possible to the NCV8716, and make traces as short as possible.


Device	Voltage Option	Marking	Package	Shipping [†]
NCV8716MT15TBG	1.5 V	7C		
NCV8716MT18TBG	1.8 V	7D		
NCV8716MT25TBG	2.5 V	7E		
NCV8716MT28TBG	2.8 V	7J	WDFN6 (Pb-Free)	3000 / Tape & Reel
NCV8716MT30TBG	3.0 V	7F		
NCV8716MT33TBG	3.3 V	7G]	
NCV8716MT50TBG	5.0 V	7H		

ORDERING INFORMATION

+ For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

MECHANICAL CASE OUTLINE PACKAGE DIMENSIONS

onsemi

DOCUMENT NUMBER:	98AON55829E	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	
DESCRIPTION:	WDFN6 2X2, 0.65P		PAGE 1 OF 1

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or indental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification. Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs,

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

Technical Library: www.onsemi.com/design/resources/technical-documentation onsemi Website: www.onsemi.com ONLINE SUPPORT: <u>www.onsemi.com/support</u> For additional information, please contact your local Sales Representative at www.onsemi.com/support/sales