

Oscillator JTP53HC(V) · (VC)TCXO

ACH Conflict

- precision temperature compensated crystal oscillator, 5.0 x 3.2 mm

- frequency stability of ± 50 ppb available

- temperature range up to -40°C ~ +105°C

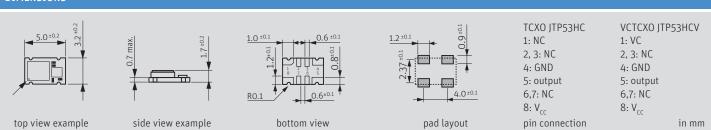
- JTP53HCV with frequency tuning option

for a Stratum 3 compliant version refer to JTS53HC(V)

GENERAL I	DATA				
ТҮРЕ		JTP53HC / JTP53HCV (HCMOS output)			
frequency range		9.60 ~ 50.0 MHz (see developed frequ.)			
frequency tolerance /	at +25 °C (*1)	± 1.0 ppm max.			
	after 2x reflow (*2)	± 0.5 ppm max.			
stability	temperature (*3)	see table 1			
	supply voltage (*4)	± 0.1 ppm max. (at V _{DC} ± 5%)			
	load change (*5)	± 0.1 ppm max. (at nom load ± 5%)			
	aging first year (*6)	± 1.0 ppm max. (at +25 °C)			
	aging per day (*7)	± 10.0 ppb max.			
	short term (ADEV)	0.2 ppb max. / 0.1 ppb typ. with τ = 1 sec			
current con	sumption max.	10.0 mA			
supply volt	age V _{DC}	3.3V (all ± 5%)			
tempera-	operating	see table 1			
ture	operable	-40 °C ~ +105 °C			
	storage	-55 °C ~ +105 °C			
output	rise/fall time max.	8ns (10% <-> 90% of VDC)			
	nominal load	15 pF			
	low level max.	0.4V			
	high level min.	V _{DC} - 0.4V			
start-up time max.		3.0 ms			
$V_{\rm c}$ frequ. tuning range JTP53HCV		examples in table 2 (ask for more options)			
V _C frequ. tuning voltage JTP53HCV		examples in table 3 (ask for more options)			

For (*1) ~ (*7) please refer to definitions shown on the 2nd page of this datashee	et.
--	-----

TABLE 1: FREQUENCY STABILITY CODE							
frequency stability temperature code		E ± 0.5 ppm	F*1 ± 0.28 ppm	H*1 ± 0.20 ppm	G* ¹ ± 0.10 ppm	J*1 ± 0.05 ppm	
-30 °C ~ +75 °C	G	0	0	0	0	0	
-40 °C ~ +85 °C	K	0	0	0	0	0	
-40 °C ~ +105 °C	Р	0	0	0	0	\triangleright	


O available > ask if available

 $^{^{*1}}$ frequency stability options F / H / G and J can be ordered as Stratum 3 compliant versions, see separate JTS53HC(V) datasheet

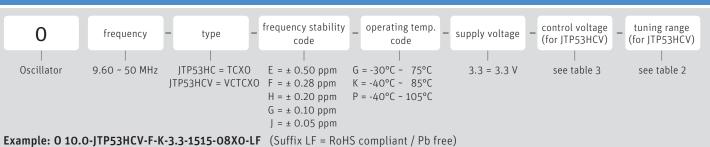

TABLE 2: VC DEPENDENT FREQUENCY TUNING RANGE CODING METHOD							
V _C frequency tuning range of JTP53HCV	code	minimal	maximal				
	0407	± 4.0 ppm	± 7.0 ppm				
table shows examples,	08X0	± 8.0 ppm	undefined				
ask for more options	1015	± 10.0 ppm	± 15.0 ppm				
	20X0	± 20.0 ppm	undefined				

TABLE 3: VC CODING METHOD (EXAMPLES)						
V _c center voltage and	code	center of V _c	range of V _c			
V _c range	1616	1.65 V	± 1.65 V	$1.65 \text{ V} \pm 1.65 \text{ V}$ at $\text{V}_{\text{DC}} = 3.3 \text{ V}$		
	1610	1.65 V	± 1.00 V	1.65 V \pm 1.00 V at $V_{DC} = 3.3 \text{ V}$		
	1515	1.50 V	± 1.50 V	$1.50 \text{ V} \pm 1.50 \text{ V}$ at $\text{V}_{\text{DC}} = 3.3 \text{ V}$		
	1510	1.50 V	± 1.00 V	1.50 V	± 1.00 V at V _{DC} = 3.3 V	
V _c properties	input impedance of $V_{\rm c}$ min.			100 k0hm		
	V _c frequency tuning linearity max.			10 %		

DIMENSIONS

ORDER INFORMATION

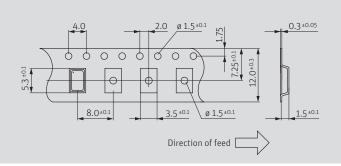
Oscillator JTP53HC(V) · Precision TCXO & VCTCXO

PHASE NOISE INFORMATION					
phase noise at f0 19.2 MHz, V _{DC} = 3.3 V @ +25 °C	at 10 Hz	-93 dBc/Hz typ.			
	at 100 Hz	-120 dBc/Hz typ.			
	at 1 KHz	-145 dBc/Hz typ.			
	at 10 KHz	-157 dBc/Hz typ.			
	at 100 KHz	-159 dBc/Hz typ.			

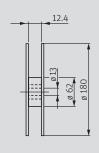
DEVELOPED FREQUENCIES						
all frequencies in MHz:	10.0	12.8	13.0	16.320	16.3840	
	18.4320	19.20	19.440	20.0	25.0	
	30.720	32.7680	38.880	40.0	50.0	

PACKAGING NOTE

- non-multiple packing units are only supplied taped / bulk
- moisture sensitivity: MSL2

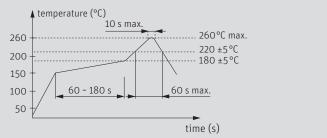

NOTE

- for best supply noise rejection, connect a capacitor of 100nF and a second capacitor of $10\mu F$ closely to the supply voltage pins
- a separate voltage supply rail ensures best phase noise
- keep digital or high frequency signals as far away from V_c pin as possible


DEFINITIONS

- *1: Measured frequency observed with T_A =+25°C and C_L =15pF, at nominal V_{DC} and nominal center V_C (if applicable) within 30 days after ex-factory. The measured frequency is referenced to the specified nominal frequency.
- *2: At specified reflow soldering profile, tested with T_a =+25 °C and C_i =15pF, at nominal V_{DC} and nominal center V_C (if applicable). At least 4 hours of static placement at room temperature is necessary after completion of 2 times reflow.
- *3: T_a varied in the specified operating temperature range, frequency variation is normalized to the middle point of whole frequency excursion, at nominal V_{pc} and nominal center V_c (if applicable), and at nominal output load, temperature variable speed less than 2°C per minute.
- *4: Frequency variation if V_{DC} is varied by ± 5% of nominal V_{DC} , frequency variation is normalized to frequency observed at nominal V_{DC} , nominal center V_{C} (if applicable), T_A=+25 °C and nominal load.
- *5: Frequency variation if the load is varied by ± 5% of nominal load, frequency variation is normalized to frequency observed at nominal V_{DC}, nominal center V_c (if applicable), $T_A = +25$ °C and nominal load.
- *6: The maximum 1st-year frequency deviation from the ex-factory status. T_A=+25 °C, at nominal V_{DC}, nominal center V_C (if applicable), T_A=+25 °C and nominal load. Normally, the largest frequency deviation occurs within the 1st year.
- *7: The maximum frequency deviation within 24 hours in a steady state. The initial status acquired at T_A = +25 °C, at nominal V_{pc} , nominal center V_c (if applicable), nominal load and after 1h of continuous operation.

TAPING SPECIFICATION



in mm

7: 2027

REFLOW SOLDERING PROFILE

note: parts are also suitable for soldering systems with lead (Pb) content

MARKING

frequency / internal code (optional) dot / D / date code (YWW) or dot / date code (YYWW)

date code: one digit for year and two digits for week

2: 2022 3: 2023 4: 2024 5: 2025 6: 2026

note: the date code on the metal lid does not show the datecode of the final assembly of the (VC)TCXO. The final assembly date is later than the datecode shown on the metal lid.

