

LMV7251/LMV7255

1.8V to 5.0V

11µA

14nA

200pA

+/-0.3mV

670ns (20mV overdrive)

0.1V beyond rails

1.8V Low Voltage Comparator with Rail-to-Rail Input

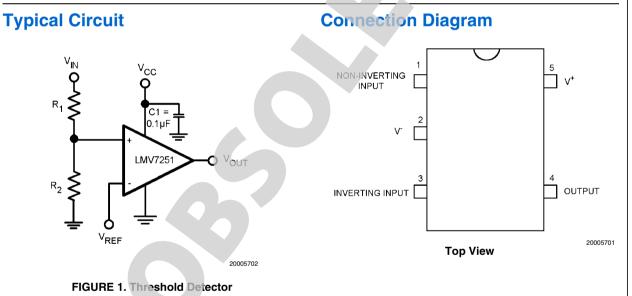
General Description

The LMV7251/LMV7255 are rail-to-rail input low voltage comparators, which can operate at supply voltage range of 1.8V to 5.0V. The LMV7251/LMV7255 are available in space saving SC-70 or SOT23-5 packages. These comparators are ideal for low voltage and space critical designs.

The LMV7251 features a push-pull output stage. This feature allows operation with minimum power consumption when driving a load.

The LMV7255 features an open drain output. This allows the connection of an external resistor at the output. The output of the comparator can be used as a level shifter.

The IC's are built with National Semiconductor's advance Submicron Silicon-Gate BiCMOS process. The LMV7251/ LMV7255 have bipolar inputs for improved noise performance and CMOS outputs for better rail-to-rail output performance.


Features

 $(V_{S} = 1.8V, T_{A} = 25^{\circ}C, Typical values unless specified).$

- Single or Dual Supplies
- Low supply voltage
- Ultra low supply current
- Low input bias current
- Low input offset current
- Low input offset voltage
- Response time
- Input common mode voltage

Applications

- Mobile communications
- Laptops and PDA's
- Battery powered electronics
- General purpose low voltage applications

© 2011 National Semiconductor Corporation 200057

www.national.com

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

ESD Tolerance	1KV (Note 2)
	200V (Note 6)
V _{IN} Differential	+/-Supply Voltage
Supply Voltage (V+ - V-)	5.5V
Voltage at Input/Output pins	V+ +0.1V, V ⁻ -0.1V
Soldering Information	
Infrared or Convection (20 sec.)	235°C

Wave Soldering (10 sec.) Storage Temperature Range		260°C –65°C to +150°C
Junction Temperature (Note 4)		+150°C
Operating Ratings	(Note 1)	

Supply Voltage V+	1.8V to 5.0V
Junction Temperature Range (Note 3)	-40°C to +85°C
Package Thermal Resisance (Note 3)	
SOT23-5	325°C/W
SC-70	265°C/W

1.8V Electrical Characteristics

Unless otherwise specified, all limits guaranteed for $T_J = 25^{\circ}C$, V⁺ = 1.8V, V⁻ = 0V. **Boldface** limits apply at the temperature extremes.

Symbol	Parameter	Condition	Typ (Note 4)	Limits (Note 5)	Units
V _{OS}	Input Offset Voltage		0.3	6 8	mV max
TC V _{OS}	Input Offset Average Drift	V _{CM} = 0.9V (Note 7)	10		uV/C
I _B	Input Bias Current		14		nA
I _{os}	Input Offset Current		200		pА
I _S	Supply Current		11	15 17	μA max
I _{SC}	Output Short Circuit Current	Sourcing, V _O = 0.9V (LMV7251 only)	8	4	mA min
		Sinking, $V_0 = 0.9V$	11.6	5	
I _{LEAKAGE}	Output Leakage Current	V _O = 1.8∨ (LMV7255 only)	300		pА
V _{OH}	Output Voltage High	l _o = 1.5mA (LMV7251 only)	1.72	1.675	V min
V _{OL}	Output Voltage Low	I ₀ = -1.5mA	65	125	mV max
V _{CM}	Input Common Voltage Range	CMRR > 45 dB		1.9	V max
				-0.1	V min
CMRR	Common Mode Rejection Ratio	0 < V _{CM} < 1.8V	72	47	dB min
PSRR	Power Supply Rejection Ratio	V+ = 1.8V to 5V	79	55	dB min

LMV7251/LMV7255

1.8V AC Electrical Characteristics

Unless otherwise specified, all limits guaranteed for $T_J = 25^{\circ}C$, $V^+ = 1.8V$, $V^- = 0V$, $V_{CM} = 0.5V$, $V_O = V^+/2$. **Boldface** limits apply at the temperature extremes.

Symbol	Parameter	Condition	Typ (Note 5)	Limits (Note 6)	Units
t _{PHL}	Propagation Delay (High to Low)	Input Overdrive = 20mV Load = $50 \text{pF} / 5 \text{k} \Omega$	720		ns
		Input Overdrive = $50mV$ Load = $50pF//5k\Omega$	380		ns
t _{PLH}	Propagation Delay (Low to High)	Input Overdrive = 20mV Load = 50pF//5kΩ	670		ns
		Input Overdrive = 50mV Load = 50pF//5kΩ	400		ns

2.7V Electrical Characteristics

Unless otherwise specified, all limits guaranteed for $T_J = 25^{\circ}C$, $V_{+} = 2.7V$, $V_{-} = 0V$. Boldface limits apply at the temperature extremes.

Symbol	Parameter	Conditions	Typ (Note 5)	Limits (Note 6)	Units
/ _{os}	Input Offset Voltage		0.03	6 8	mV max
rc v _{os}	Input Offset Average Drift	V _{CM} = 1.35V (Note 7)	10		μV/C
В	Input Bias Current		15		nA
OS	Input offset Current		210		pА
S	Supply Current		11	18 22	μA max
SC	Output Short Circuit Current	Sourcing, V _O = 1.35V (LMV7251 only)	28	15	mA
		Sinking, V _O = 1.35V	28	15	
LEAKAGE	Output Leakage Current	V _O = 2.7V, (LMV7255 only)	320		pА
/ _{он}	Output Voltage High	l _o = 2mA (LMV7251 only)	2.63	2.575	V min
/ _{OL}	Output Voltage Low	I _O = -2mA	61	125	mV max
/ _{СМ}	Input Common Voltage Range	CMRR > 45dB		2.8	V max
				-0.1	V min
CMRR	Common Mode Rejection Ratio	0 < V _{CM} < 2.7V	75	46	dB min
PSRR	Power Supply Rejection Ratio	V+ = 1.8V to 5V	79	55	dB min

2.7V AC Electrical Characteristics

Unless otherwise specified, all limits guaranteed for $T_J = 25^{\circ}C$, V⁺ = 2.7V, V⁻ = 0V.**Boldface** limits apply at the temperature extremes.

Symbol	Parameter	Condition	Typ (Note 5)	Limits (Note 6)	Units
t _{PHL}	Propagation Delay (High to Low)	Input Overdrive = $20mV$ Load = $50pF//5k\Omega$	830		ns
		Input Overdrive = $50mV$ Load = $50pF//5k\Omega$	430		ns
t _{PLH}	Propagation Delay (Low to High)	Input Overdrive = $20mV$ Load = $50pF//5k\Omega$	730		ns
		Input Overdrive = 50mV Load = 50pF//5kΩ	410		ns

5V Electrical Characteristics

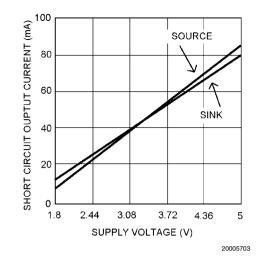
Unless otherwise specified, all limits guaranteed for $T_J = 25^{\circ}C$, $V^+ = 5V$, $V^- = 0V$. Boldface limits apply at the temperature extremes.

Symbol	Parameter	Conditions	Typ (Note 5)	Limits (Note 6)	Units
V _{OS}	Input Offset Voltage		0.03	6	mV
				8	max
TC V _{OS}	Input Offset Average Drift	V _{CM} = 2.5V (Note 7)	10		μV/C
I _B	Input Bias Current		16		nA
l _{os}	Input Offset Current		220		pА
I _s	Supply Current		12	20	μA
-				25	max
I _{SC}	Output Short Circuit Current	Sourcing, $V_0 = 2.5V$	82	50	
		(LMV7251 only)			mA
		Sinking, $V_{\odot} = 2.5V$	78	50	min
ILEAKAGE	Output Leakage Current	$V_{O} = 5V,$	375		pА
		(LMV7255 only)			
V _{OH}	Output Voltage High	$I_0 = 4mA$	4.9	4.82	V
					min
V _{OL}	Output Voltage Low	$I_0 = -4mA$	90	180	mV
					max

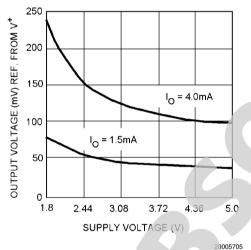
Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is intended to be functional, but specific performance is not guaranteed. For guaranteed specifications and the test conditions, see the Electrical Characteristics. **Note 2:** Human body model, 1.5kQ in series with 100pF.

Note 3: The maximum power dissipation is a function of $T_{J(max)}$, θ_{JA} , and T_{A} . The maximum allowable power dissipation at any ambient temperature is $P_{D} = (T_{J(max)} - T_{A})/\theta_{JA}$. All numbers apply for packages soldered directly into a PC board.

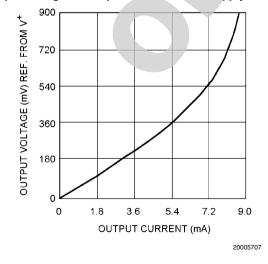
Note 4: Typical values represent the most likely parametric norm.

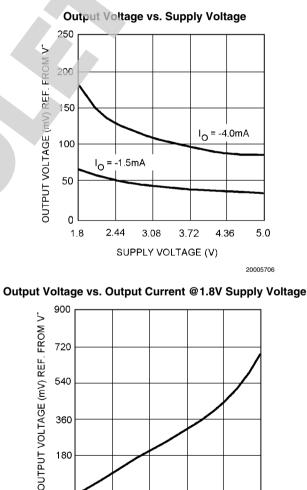

Note 5: All limits are guaranteed by testing or statistical analysis.

Note 6: Machine Model, 0Ω in series with 200pF.


Note 7: Offset Voltage average drift determined by dividing the change in V_{OS} at temperature extremes into the total temperature change.

Typical Performance Characteristics (T_A = 25°C, Unless otherwise specified).


Short Circuit Current vs. Supply Voltage


Output Voltage vs. Supply Voltage

Output Voltage vs. Output Current @1.8V Supply Voltage

Supply Current vs. Supply Voltage 14 85°C 12 SUPPLY CURRENT (µA) 10 8 25°C 6 -40°C 4 2 0 2.3 3.2 3.6 1.8 2.7 4.1 4.5 5.0 SUPPLY VOLTAGE (V) 20005704 Output Voltage vs. Supply Voltage 250 FROM V 200 REF.

4.4

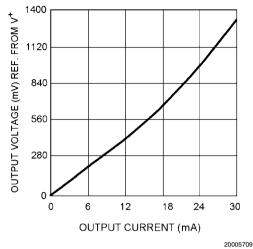
OUTPUT CURRENT (mA)

6.6

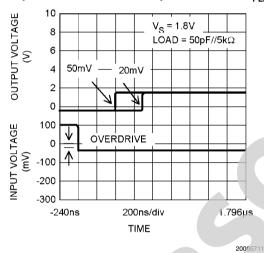
8.8

11.0

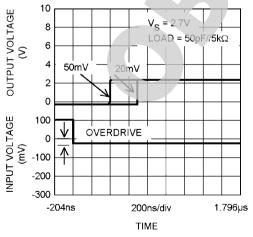
20005708

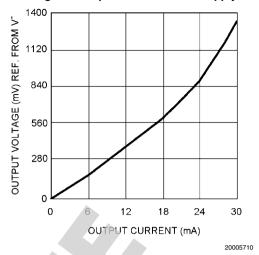

www.national.com

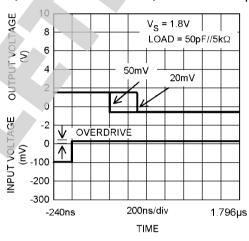
0


0

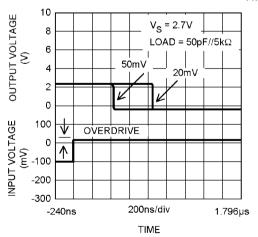
2.2






Response Time for Various Input Overdrives - t_{PLH}

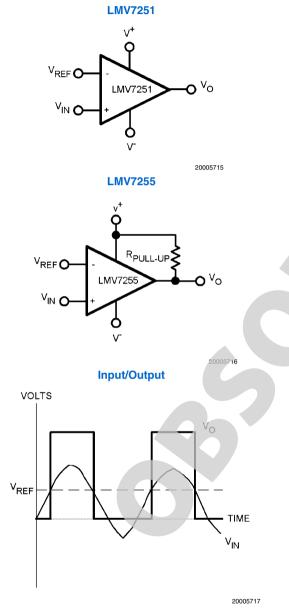
20005713



Response Time for Various Input Overdrives - t_{PHL}

20005712

Response Time for Various Input Overdrives - t_{PHL}



20005714

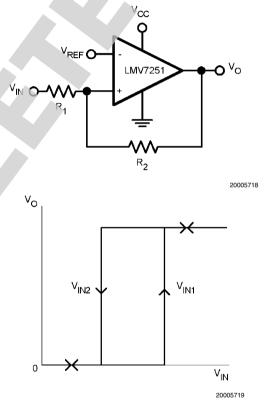
Application Info

BASIC COMPARATORS

A comparator is quite often used to convert an analog signal to a digital signal. The comparator compares an input voltage $(V_{\rm IN})$ at the non-inverting pin to the reference voltage $(V_{\rm REF})$ at the inverting pin. If $V_{\rm IN}$ is less than $V_{\rm REF}$ the output (V_O) is low (V_{OL}) . However, if $V_{\rm IN}$ is greater than $V_{\rm REF}$, the output voltage (V_O) is high (V_{OH}) .

HYSTERESIS

The basic comparator configuration may oscillate or produce a noisy output if the applied differential input is near the comparator's input offset voltage. This tends to occur when the voltage on the input is equal or very close to the other input voltage. Adding hysteresis can prevent this problem. Hysteresis creates two switching thresholds (one for the rising input voltage and the other for the falling input voltage). Hysteresis is the voltage difference between the two switching thresholds. When both inputs are nearly equal, hysteresis causes one input to effectively move quickly pass the other. Thus, effectively moving the input out of region that oscillation may occur.


Hysteresis can easily be added to a comparator in a non-inverting configuration with two resistors and positive feedback Figure 3. The output will switch from low to high when $V_{\rm IN}$ rises up to $V_{\rm IN1}$, where $V_{\rm IN1}$ is calculated by

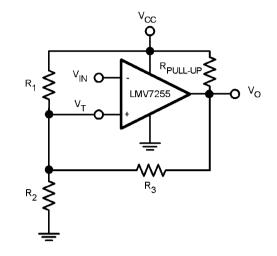
The output will switch from high to low when $V_{\rm IN}$ falls to $V_{\rm IN2},$ where $V_{\rm IN2}$ is calculated by

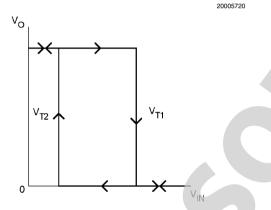
 $V_{IN2} = (V_{REF} (R1 + R2) - V_{CC} R1) / R2$

The Hysteresis is the difference between V_{IN1} and $V_{\text{IN2}}.$

 $\begin{array}{l} \Delta V_{IN} = V_{IN1} \text{-} \ V_{IN2} = ((V_{REF} \ (R1 + R2)) \ / \ R2) \text{-} ((V_{REF} \ (R1 + R2) \text{-} \ V_{CC} \ R1) \ / \ R2) = V_{CC} \ R1 \ / \ R2. \end{array}$

FIGURE 3. Non-Inverting Comparator Configuration — LMV7251


For an inverting configured comparator, hysteresis can be added with a three resistor network and positive feedback. When input voltage $(V_{\rm IN})$ at the inverting node is less than non-inverting node $(V_{\rm T})$, the output is high. The equivalent circuit for the three resistor network is R1 in parallel with R3 and in series with R2. The lower threshold voltage $V_{\rm T1}$ is calculated by:


When V_{IN} is greater than V_T , the output voltage is low. The equivalent circuit for the three resistor network is R2 in parallel with R3 and in series with R1. The upper threshold voltage V_{T2} is calculated by:

 $V_{T2} = V_{CC} ((R2 R3) / (R2 + R3)) / ((R1 + ((R2 R3) / (R2 + R3))))$

The hysteresis is defined as

 $\begin{array}{l} \Delta V_{\text{IN}} = V_{\text{T1}} - V_{\text{T2}} = ((V_{\text{CC}} \ \text{R2}) \ / \ ((\text{R1} \ \text{R3}) \ / \ (\text{R1+R3})) + \ \text{R2}) - \\ (V_{\text{CC}} \ ((\text{R2} \ \text{R3}) \ / \ (\text{R2+R3})) \ / \ ((\text{R1} + \ ((\text{R2} \ \text{R3}) \ / \ (\text{R2+R3}))) \end{array}$

2000572

INPUT STAGE

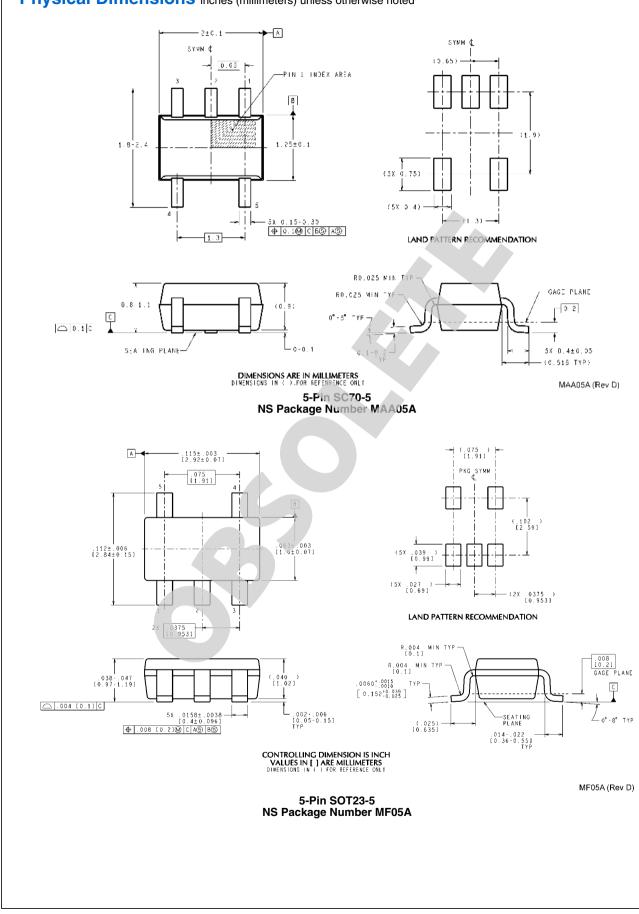
The LMV7251 and LMV7255 have rail-to-rail input stages. The input common mode voltage range is from -100mV to (V_{CC} + 100mV).

OUTPUT STAGE

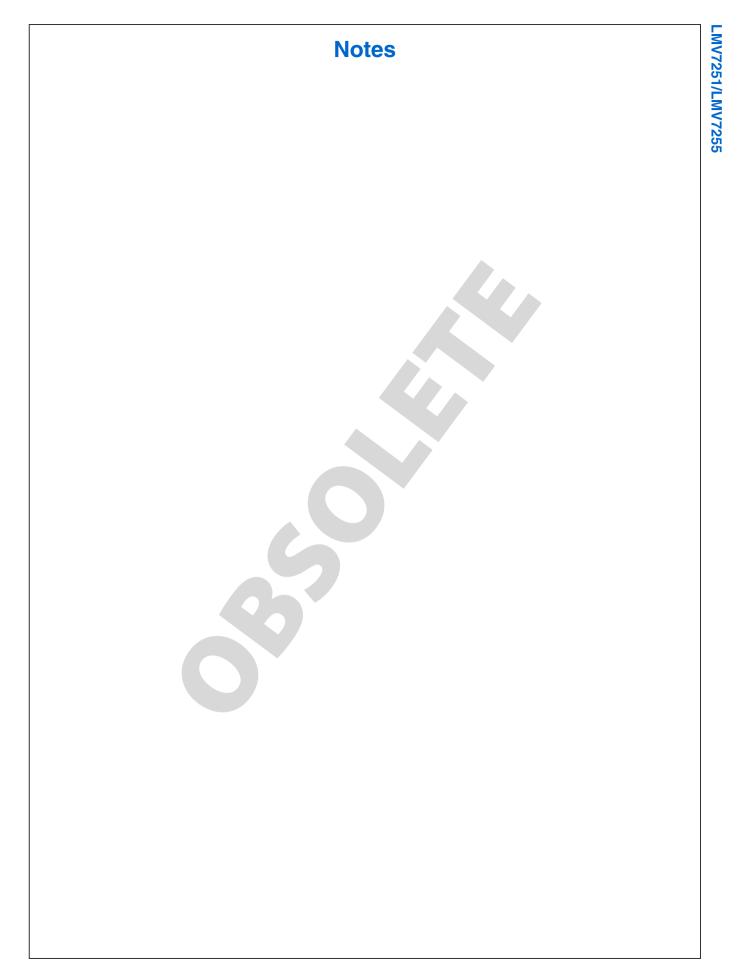
The LMV7251 has a push-pull CMOS output stage. Large push-pull output drivers allows rail-to-rail output swings with load currents in the miliampere range.

The LMV7255 has a open drain CMOS output stage. This requires an external pull-up resistor connected between the positive supply voltage and the output. The external pull-up resistor should be high enough resistance so to avoid excessive power dissipation. In addition, the pull-up resistor should be low enough resistance to enable the comparator to switch with the load circuitry connected.

POWER SUPPLY CONSIDERATIONS


The LMV7251/LMV7255 are well suited for many batterypowered applications. The LMV7251/LMV7255 can operate from single power supply of +1.8V to +5V. The device typically consumes only 11 μ A with a 2.7V supply. With a high power supply rejection ratio (PSRR) of 79 dB (typical), the comparator is well suited for operating under conditions of a decaying battery voltage.

Power supply decoupling is critical and improves stability. Place decoupling capacitors 0.1μ F as close as possible to the V+ pin. For split supply applications, place decoupling capacitors 0.1μ F on both the V+ and V- pins. The decoupling capacitors will help keep the comparator from oscillating under various load conditions.


FIGURE 4. Inverting Configured Comparator — LMV7255

Ordering Information					
Package	Ordering Info	Pkg Marking	Supplied As	NSC Drawing	
5-Pin SOT23-5	LMV7251M5	C16A	1k Units Tape and Reel	MF05A	
	LMV7251M5X	C16A	3k units Tape and Reel		
	LMV7255M5	C18A	1k Units Tape and Reel		
	LMV7255M5X	C18A	3k units Tape and Reel		
5-Pin SC-70	LMV7251M7	C17	1k Units Tape and Reel	MAA05A	
	LMV7251M7X	C17	3k units Tape and Reel		
	LMV7255M7	C19	1k Units Tape and Reel		
	LMV7255M7X	C19	3k units Tape and Reel		

Physical Dimensions inches (millimeters) unless otherwise noted

LMV7251/LMV7255

Notes

For more National Semiconductor product information and proven design tools, visit the following Web sites at: www.national.com

Products		Design Support	
Amplifiers	www.national.com/amplifiers	WEBENCH® Tools	www.national.com/webench
Audio	www.national.com/audio	App Notes	www.national.com/appnotes
Clock and Timing	www.national.com/timing	Reference Designs	www.national.com/refdesigns
Data Converters	www.national.com/adc	Samples	www.national.com/samples
Interface	www.national.com/interface	Eval Boards	www.national.com/evalboards
LVDS	www.national.com/lvds	Packaging	www.national.com/packaging
Power Management	www.national.com/power	Green Compliance	www.national.com/quality/green
Switching Regulators	www.national.com/switchers	Distributors	www.national.com/contacts
LDOs	www.national.com/ldo	Quality and Reliability	www.national.com/quality
LED Lighting	www.national.com/led	Feedback/Support	www.national.com/feedback
Voltage References	www.national.com/vref	Design Made Easy	www.national.com/easy
PowerWise® Solutions	www.national.com/powerwise	Applications & Markets	www.national.com/solutions
Serial Digital Interface (SDI)	www.national.com/sdi	Mil/Aero	www.national.com/milaero
Temperature Sensors	www.national.com/tempsensors	SolarMagic™	www.national.com/solarmagic
PLL/VCO	www.national.com/wireless	PowerWise® Design University	www.national.com/training

THE CONTENTS OF THIS DOCUMENT ARE PROVIDED IN CONNECTION WITH NATIONAL SEMICONDUCTOR CORPORATION ("NATIONAL") PRODUCTS. NATIONAL MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE CONTENTS OF THIS PUBLICATION AND RESERVES THE RIGHT TO MAKE CHANGES TO SPECIFICATIONS AND PRODUCT DESCRIPTIONS AT ANY TIME WITHOUT NOTICE. NO LICENSE, WHETHER EXPRESS, IMPLIED, ARISING BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT.

TESTING AND OTHER QUALITY CONTROLS ARE USED TO THE EXTENT NATIONAL DEEMS NECESSARY TO SUPPORT NATIONAL'S PRODUCT WARRANTY. EXCEPT WHERE MANDATED BY GOVERNMENT REQUIREMENTS, TESTING OF ALL PARAMETERS OF EACH PRODUCT IS NOT NECESSARILY PERFORMED. NATIONAL ASSUMES NO LIABILITY FOR APPLICATIONS ASSISTANCE OR BUYER PRODUCT DESIGN. BUYERS ARE RESPONSIBLE FOR THEIR PRODUCTS AND APPLICATIONS USING NATIONAL COMPONENTS. PRIOR TO USING OR DISTRIBUTING ANY PRODUCTS THAT INCLUDE NATIONAL COMPONENTS, BUYERS SHOULD PROVIDE ADEQUATE DESIGN, TESTING AND OPERATING SAFEGUARDS.

EXCEPT AS PROVIDED IN NATIONAL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, NATIONAL ASSUMES NO LIABILITY WHATSOEVER, AND NATIONAL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY RELATING TO THE SALE AND/OR USE OF NATIONAL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS PRIOR WRITTEN APPROVAL OF THE CHIEF EXECUTIVE OFFICER AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

Life support devices or systems are devices which (a) are intended for surgical implant into the body, or (b) support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in a significant injury to the user. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system or to affect its safety or effectiveness.

National Semiconductor and the National Semiconductor logo are registered trademarks of National Semiconductor Corporation. All other brand or product names may be trademarks or registered trademarks of their respective holders.

Copyright© 2011 National Semiconductor Corporation

For the most current product information visit us at www.national.com

Wu.national.com Wu.national.com Wu.national.com Wational Semiconductor Americas Technical Support Center Email: support@nsc.com Tel: 1-800-272-9959

National Semiconductor Europe Technical Support Center Email: europe.support@nsc.com National Semiconductor Asia Pacific Technical Support Center Email: ap.support@nsc.com National Semiconductor Japan Technical Support Center Email: jpn.feedback@nsc.com