ESD7M5.0DT5G

ESD Protection Diode

Ultra-Low Capacitance

The ESD7M5.0DT5G is designed to protect voltage sensitive components from damage due to ESD in applications that require ultra low capacitance to preserve signal integrity. Excellent clamping capability, low leakage and fast response time are combined with an ultra low diode capacitance of 2.5 pF to provide best in class protection from IC damage due to ESD. The ultra small SOT-723 package is ideal for designs where board space is at a premium. The ESD7M5.0DT5G can be used to protect two uni-directional lines or one bi-directional line. When used to protect one bi-directional line, the effective capacitance is 1.25 pF. Because of its low capacitance, it is well suited for protecting high frequency signal lines such as USB2.0 high speed and antenna line applications.

Specification Features:

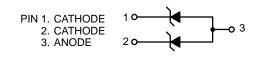
- Low Capacitance 2.5 pF Max
- Low Clamping Voltage
- Small Body Outline Dimensions: 0.047" x 0.047" (1.20 mm x 1.20 mm)
- Low Body Height: 0.020" (0.5 mm)
- Stand-off Voltage: 5 V
- Low Leakage
- Response Time is Typically < 1.0 ns
- IEC61000-4-2 Level 4 ESD Protection
- This is a Pb–Free Device

Mechanical Characteristics:

CASE: Void-free, transfer-molded, thermosetting plastic Epoxy Meets UL 94 V–0 LEAD FINISH: 100% Matte Sn (Tin) MOUNTING POSITION: Any QUALIFIED MAX REFLOW TEMPERATURE: 260°C Device Meets MSL 1 Requirements

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
IEC 61000–4–2 (ESD) Contact		±10	kV
Total Power Dissipation on FR–5 Board (Note 1) @ T _A = 25°C	P _D	150	mW
Storage Temperature Range	T _{stg}	-55 to +150	°C
Junction Temperature Range	TJ	-55 to +125	°C
Lead Solder Temperature – Maximum (10 Second Duration)	ΤL	260	°C


Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected. 1. FR-5 = $1.0 \times 0.75 \times 0.62$ in.

See Application Note AND8308/D for further description of survivability specs.

ON Semiconductor®

www.onsemi.com

SOT-723 CASE 631AA

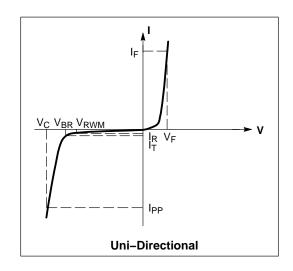
MARKING DIAGRAM

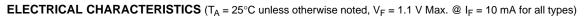
L7 = Specific Device Code M = Date Code

ORDERING INFORMATION

Device	Package	Shipping [†]
ESD7M5.0DT5G	SOT–723 (Pb–Free)	8000/Tape & Reel

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

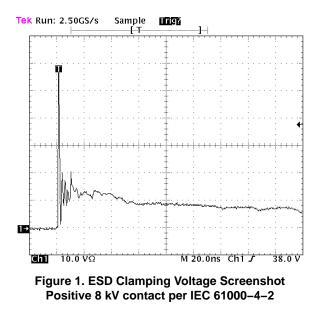

DEVICE MARKING INFORMATION

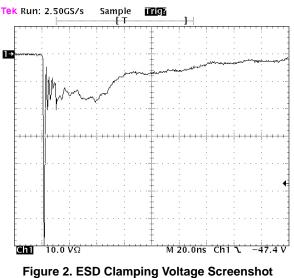

See specific marking information in the device marking column of the Electrical Characteristics tables starting on page 2 of this data sheet.

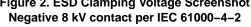
ELECTRICAL CHARACTERISTICS

 $(T_A = 25^{\circ}C \text{ unless otherwise noted})$

Symbol	Parameter
I _{PP}	Maximum Reverse Peak Pulse Current
V _C	Clamping Voltage @ IPP
V _{RWM}	Working Peak Reverse Voltage
I _R	Maximum Reverse Leakage Current @ V _{RWM}
V _{BR}	Breakdown Voltage @ I _T
Ι _Τ	Test Current
١ _F	Forward Current
V _F	Forward Voltage @ I _F
P _{pk}	Peak Power Dissipation
С	Capacitance @ $V_R = 0$ and f = 1.0 MHz

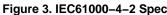

		V _{RWM} (V)	I _R (μΑ) @ V _{RWM}	V _{BR} (V) @ ヶ (Note 2)	Гт	C (pF), uni-directional (Note 3)	C (pF), bi–directional (Note 4)	V _C (V) @ I _{PP} = 1 A (Note 5)	Vc
Device	Device Marking	Max	Max	Min	mA	Max	Max	Max	Per IEC61000- 4-2 (Note 6)
ESD7M5.0DT5G	L7	5.0	1.0	5.4	1.0	2.5	1.25	10.4	Figures 1 and 2


Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.


2. V_{BR} is measured with a pulse test current I_T at an ambient temperature of 25°C. 3. Uni-directional capacitance at f = 1 MHz, $V_R = 0$ V, $T_A = 25$ °C (pin1 to pin 3; pin 2 to pin 3). 4. Bi-directional capacitance at f = 1 MHz, $V_R = 0$ V, $T_A = 25$ °C (pin1 to pin 2).

5. Surge current waveform per Figure 5.

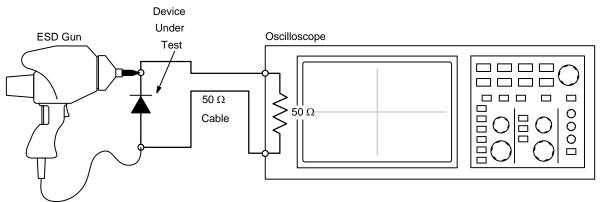
6. For test procedure see Figures 3 and 4 and Application Note AND8307/D.

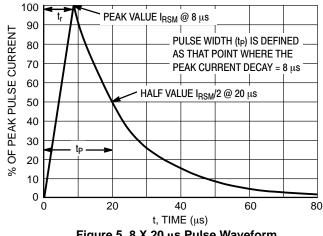


ESD7M5.0DT5G

IEC 61000-4-2 Spec.

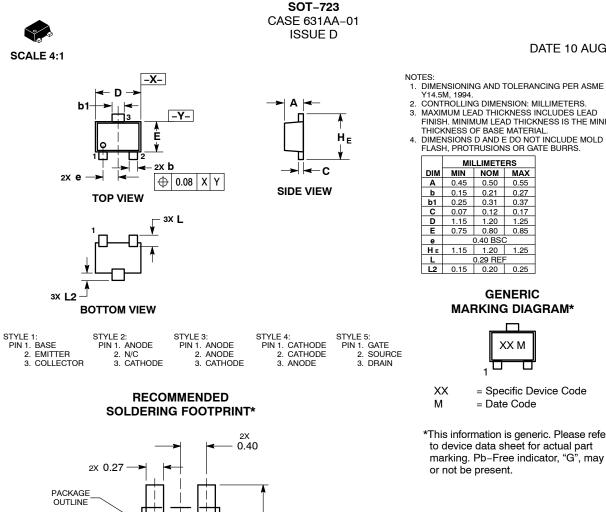
Level	Test Voltage (kV)	First Peak Current (A)	Current at 30 ns (A)	Current at 60 ns (A)
1	2	7.5	4	2
2	4	15	8	4
3	6	22.5	12	6
4	8	30	16	8




Figure 4. Diagram of ESD Test Setup

The following is taken from Application Note AND8308/D - Interpretation of Datasheet Parameters for ESD Devices.

ESD Voltage Clamping


For sensitive circuit elements it is important to limit the voltage that an IC will be exposed to during an ESD event to as low a voltage as possible. The ESD clamping voltage is the voltage drop across the ESD protection diode during an ESD event per the IEC61000-4-2 waveform. Since the IEC61000-4-2 was written as a pass/fail spec for larger

systems such as cell phones or laptop computers it is not clearly defined in the spec how to specify a clamping voltage at the device level. ON Semiconductor has developed a way to examine the entire voltage waveform across the ESD protection diode over the time domain of an ESD pulse in the form of an oscilloscope screenshot, which can be found on the datasheets for all ESD protection diodes. For more information on how ON Semiconductor creates these screenshots and how to interpret them please refer to AND8307/D.

1.50

DATE 10 AUG 2009

- THISH. MINIMUM LEAD THICKNESS INCLOSE LEAD FINISH. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF BASE MATERIAL. DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS.

	MILLIMETERS			
DIM	MIN	NOM	MAX	
Α	0.45	0.50	0.55	
b	0.15	0.21	0.27	
b1	0.25	0.31	0.37	
С	0.07	0.12	0.17	
D	1.15	1.20	1.25	
Е	0.75	0.80	0.85	
е	0.40 BSC			
ΗE	1.15	1.20	1.25	
L	0.29 REF			
L2	0.15	0.20	0.25	

GENERIC **MARKING DIAGRAM***

ĺ	XX N	1
1		Π

= Specific Device Code

= Date Code

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G", may or not be present.

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

0.36 DIMENSIONS: MILLIMETERS

DOCUMENT NUMBER:	98AON12989D	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.			
DESCRIPTION:	SOT-723		PAGE 1 OF 1		
ON Semiconductor and ()) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.					

© Semiconductor Components Industries, LLC, 2019

зх 0.52

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or indental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification. Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs,

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

Technical Library: www.onsemi.com/design/resources/technical-documentation onsemi Website: www.onsemi.com ONLINE SUPPORT: <u>www.onsemi.com/support</u> For additional information, please contact your local Sales Representative at www.onsemi.com/support/sales