

Clid

Highlights & Features

- Universal AC input voltage range
- Power will not de-rate for the entire input voltage range
- Rugged and compact design (Vibration 5 G, Shock 30 G)
- Conforms to harmonics current IEC/EN 61000-3-2, Class A •
- Wide operating temperature range -20°C to 70°C .
- Overvoltage / Overcurrent / Over Temperature / Short Circuit . Protections
- Certified according to IEC/EN/UL 62368-1

Safety Standards

CB Certified for worldwide use

Model Number: Unit Weight: Dimensions (L x W x D): 100 x 32 x 100.6 mm

DRP-24V48W1AZ 0.22 kg (0.49 lb) (3.94 x 1.26 x 3.96 inch)

General Description

The DRP-24V48W1AZ has a power rating of 48W with 24V output voltage. Its rugged plastic casing has a compact body at only 32 mm wide and operates within a wide temperature range from -20°C to 70°C. Like its CliQ predecessors, the DRP-24V48W1AZ comes with universal AC input and complies with major industrial standards like UL 508 (Safety for Industrial Control Equipment), EMI according to EN 55011 (Industrial, scientific and medical (ISM) radio-frequency equipment) and EMS according to EN 61000-6-2 (Immunity for industrial environments). For broader application compatibility, the product is also certified for ITE (Information Technology Equipment) standard according to IEC/EN/UL 60950-1 and IEC/EN/UL 62368-1 Audio/video, Information and Communication Technology Equipment.

Model Information

CliQ DIN Rail Power Supply

Model Number	Input Voltage Range	Rated Output Voltage	Rated Output Current
DRP-24V48W1AZ	85-264 Vac (120-375 Vdc)	24 Vdc	2.00 A

Model Numbering

1

DR	P –	24V	48W	1	Α	Z
DIN Rail	Power Supply	Output Voltage	Output Power	Single Phase	CliQ Series	Plastic Case

Specifications

Input Ratings / Characteristics

Nominal Input Voltage		100-240 Vac	
Input Voltage Range		85-264 Vac	
Nominal Input Frequency		50-60 Hz	
Input Frequency Range		47-63 Hz	
Nominal DC Input Voltage		125-250 Vdc	
DC Input Voltage Range*		120-375 Vdc	
Input Current		< 1.40 A @ 115 Vac, < 0.70 A @ 230 Vac	
Efficiency at 100% Load		> 87.0% @ 115 Vac & 230 Vac	
Max Power Dissipation	0% load	< 0.3 W @ 115 Vac & < 0.5 W @ 230 Vac	
-	100% load	< 7.0 W @ 115 Vac & 230 Vac	
Max Inrush Current (Cold Start)		< 28 A @ 115 Vac, < 56 A @ 230 Vac	
Leakage Current		< 1 mA @ 240 Vac	

*Fulfills tested conditions

Output Ratings / Characteristics**

Nominal Output Voltage	24 Vdc
Factory Set Point Tolerance	24 Vdc ± 1%
Output Voltage Adjustment Range	22-26 Vdc
Output Current	2.00 A (48 W max.)
Output Power	48 W
Line Regulation	< 1.0% (@ 85-264 Vac input, 100% load)
Load Regulation	< 1.0% (@ 85-264 Vac input, 0-100% load)
PARD*** (20 MHz)	< 480 mVpp
Rise Time	< 50 ms @ nominal input (100% load)
Start-up Time	< 3,000 ms @ nominal input (100% load)
Hold-up Time	> 10 ms @ 115 Vac,
	> 60 ms @ 230 Vac (100% load)
Dynamic Response (Overshoot & Undershoot O/P Voltage)	± 5% @ 85-264 Vac input, 10-100% load (Slew Rate: 0.1 A/μs, 50% duty cycle @ 5 Hz to 1 KHz)
Start-up with Capacitive Loads	1,000 µF Max

For power de-rating from 50°C to 70°C, see power de-rating on page 3. *PARD is measured with an AC coupling mode, 5 cm wires, and in parallel with 0.1 μF ceramic capacitor.

Mechanical

Case Cover / Chassis		Plastic
Dimensions (L x W x D)		100 x 32 x 100.6 mm (3.94 x 1.26 x 3.96 inch)
Unit Weight		0.22 kg (0.49 lb)
Indicator	Green LED	DC OK
Cooling System		Convection
Terminal	Input / Output	5 Pins (Rated 300 V/15 A)
Wire		AWG 20-14
Mounting Rail		Standard TS35 DIN Rail in accordance with EN 60715
Noise (1 Meter from power supply)		Sound Pressure Level (SPL) < 25 dBA

Environment

Surrounding Air Temperature	Operating	-20°C to +7	O°C
	Storage	-25°C to +8	5°C
Power De-rating	Vertical Mounting		0°C de-rate power by 1% / °C,
	Horizontal Mounting		C de-rate power by 2% / °C, rate power by 2.5% / °C
Operating Humidity		5 to 95% R	H (Non-Condensing)
Operating Altitude		0 to 2,000 M	Vleters (6,560 ft)
Shock Test	Non-Operating		2-27, 30 G (300 m/S² for a duration of 18 ms, direction, 2 times in total
Vibration	Non-Operating		2-6, 10 Hz to 150 Hz @ 50 m/S² (5 G peak); axis for all X, Y, Z direction
Bump Test	Operating		2-29, Half Sine Wave: 10 G for a duration of 11 ms, s per direction, 6,000 times in total
Over Voltage Category		111	According to IEC/EN 62477-1 / EN 60204-1 (clearance and creepage distances)
Pollution Degree		2	

Protections

Overvoltage	< 32.4 V, SELV Output, Latch Mode
Overload / Overcurrent	> 105~180% of rated load current, Hiccup Mode, Non-Latching (Auto-Recovery)
Over Temperature	< 75°C Surrounding Air Temperature @ 100% load, Latch Mode
Short Circuit	Hiccup Mode, Non-Latching (Auto-Recovery when the fault is removed)
Internal Fuse at L pin	T3.15AH
Protection Against Shock	Class I with PE* connection

*PE: Primary Earth

Reliability Data

MTBF	> 500,000 hrs. as per Telcordia SR-332 I/P: 115 Vac, O/P: 100% load, Ta: 25°C
Expected Cap Life Time	10 years (115 Vac & 230 Vac, 50% load @ 40°C)

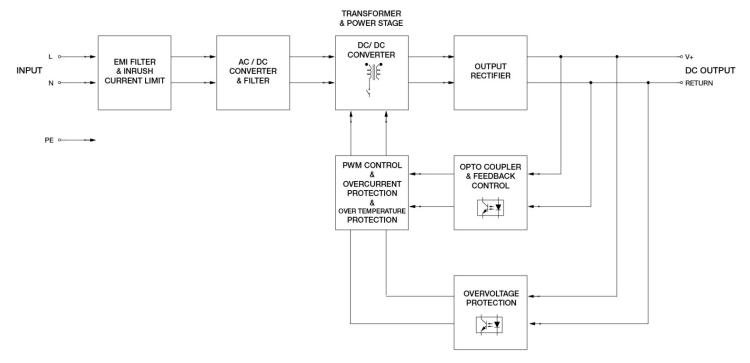
All parameters are specified at 25°C ambient and AC input unless otherwise indicated. www.DeltaPSU.com (September 2021, Rev. 06)

Safety Standards / Directives

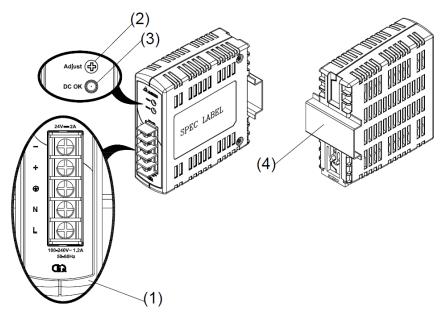
Electrical Equipment of Machines		EN 60204-1 (over voltage category III)
Electrical Equipment for Use in Electri	cal Power Installations	IEC/EN/BS EN 62477-1
Safety Entry Low Voltage		SELV (IEC 60950-1)
Electrical Safety	SIQ Bauart	EN 62368-1
	UL/cUL recognized	UL 60950-1 and CSA C22.2 No. 60950-1 (File No. E191395) UL 62368-1 and CSA C22.2 No. 62368-1 (File No. E191395)
	CB Scheme	IEC 60950-1, IEC 62368-1
	UKCA	BS EN 62368-1
Industrial Control Equipment	UL/cUL listed	UL 508 and CSA C22.2 No. 107.1-01 (File No. E315355)
CSA		CSA C22.2 No. 107.1-01 (File No. 181564)
CCC		GB9254, GB17625.1 and GB4943.1 仅适用于海拔 2000m 以下地区安全使用
CE		In conformance with EMC Directive 2014/30/EU and Low Voltage Directive 2014/35/EU
UKCA		In conformance with Electrical Equipment (Safety) Regulations 2016 No. 1011 and
		The Electromagnetic Compatibility Regulations 2016 No. 1091
Galvanic Isolation	Input to Output	3.0 KVac
	Input to Ground	1.5 KVac
	Output to Ground	0.5 KVac

4

EMC


Emissions (CE & RE)		Generic Standards: CISPR32, EN/BS EN 55032, KN 32 CISPR11, EN/BS EN 55011, FCC Title 47: Class B
Immunity		Generic Standards: EN/BS EN 55024, KN 35, EN/BS EN 61000-6-2
Electrostatic Discharge	IEC 61000-4-2	Level 3 Criteria A ¹⁾ Air Discharge: 8 kV Contact Discharge: 6 kV
Radiated Field	IEC 61000-4-3	Level 3 Criteria A ¹⁾ 80 MHz-1 GHz, 10 V/M, 80% modulation (1 KHz) 1.4 GHz-2 GHz, 3 V/M, 80% modulation (1 KHz) 2 GHz-2.7 GHz, 1 V/M, 80% modulation (1 KHz)
Electrical Fast Transient / Burst	IEC 61000-4-4	Level 3 Criteria A ¹⁾ 2 kV
Surge	IEC 61000-4-5	Level 3 Criteria A ¹⁾ Common Mode ²⁾ : 2 kV Differential Mode ³⁾ : 1 kV
Conducted	IEC 61000-4-6	Level 3 Criteria A ¹⁾ 150 kHz-80 MHz, 10 Vrms
Power Frequency Magnetic Fields	IEC 61000-4-8	Criteria A ¹⁾ 30 A/Meter
Voltage Dips and Interruptions	IEC 61000-4-11	100% dip; 1 cycle (20 ms); Self Recoverable
Low Energy Pulse Test (Ring Wave)	IEC 61000-4-12	Level 3 Criteria A ¹⁾ Common Mode ²⁾ : 2 kV Differential Mode ³⁾ : 1 kV
Harmonic Current Emission		IEC/EN/BS EN 61000-3-2, Class A
Voltage Fluctuation and Flicker		IEC/EN/BS EN 61000-3-3

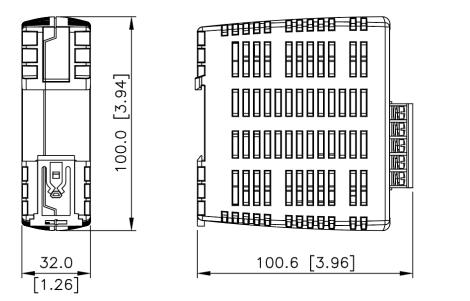
1) Criteria A: Normal performance within the specification limits

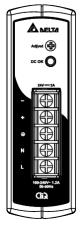

2) Asymmetrical: Common mode (Line to earth)3) Symmetrical: Differential mode (Line to line)

Block Diagram

Device Description

- 1) Input & Output terminal block connector
- 2) DC Voltage adjustment potentiometer
- 3) DC OK control LED (Green)

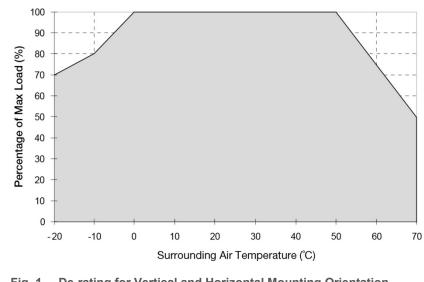

6

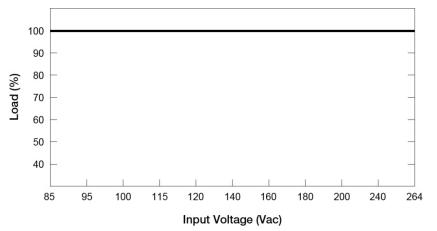

4) Universal mounting rail system

Dimensions

L x W x D: 100 x 32 x 100.6 mm (3.94 x 1.26 x 3.96 inch)

Engineering Data

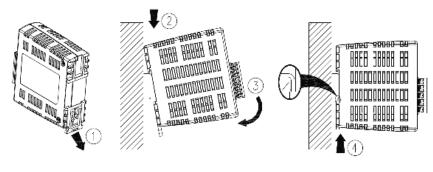



Fig. 1 De-rating for Vertical and Horizontal Mounting Orientation -20°C to -10°C de-rate power by 1% / °C, -10°C to 0°C de-rate power by 2% / °C, > 50°C de-rate power by 2.5% / °C

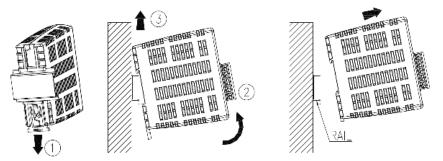
Note

- 1. Power supply components may degrade, or be damaged, when the power supply is continuously used outside the shaded region, refer to the graph shown in Fig. 1.
- 2. If the output capacity is not reduced when the surrounding air temperature exceeds its specification as defined on Page 3 under "Environment", the device may run into Over Temperature Protection. When activated, the output voltage will go into latch-off mode until the component temperature cools down and the AC power is recycled.
- In order for the device to function in the manner intended, it is also necessary to keep a safety distance as recommended in the safety instructions while the device is in operation.
- 4. Depending on the surrounding air temperature and output load delivered by the power supply, the device can be very hot!
- 5. If the device has to be mounted in any other orientation, please contact **info@deltapsu.com** for more details.

Output Load De-rating VS Input Voltage


No output power de-rating across the entire input voltage range

Assembly & Installation


The power supply unit (PSU) can be mounted on 35 mm DIN rails in accordance with EN60715. For Vertical Mounting, the device should be installed with input terminal block at the bottom. For Horizontal Mounting, the device should be installed with input terminal block on the left side.

Each device is delivered ready to install.

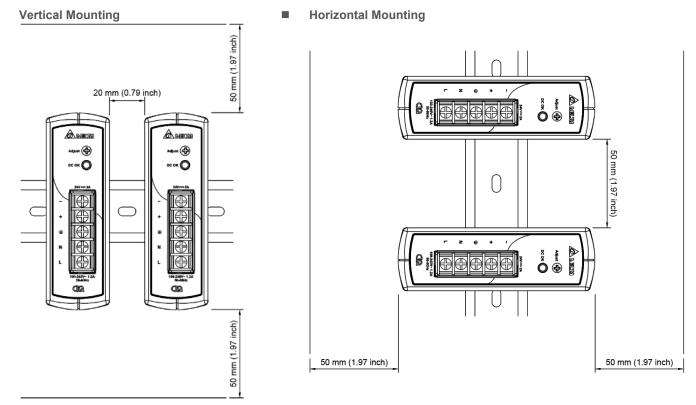
Mounting

Dismounting

Snap on the DIN rail as shown on the left:

- 1. Pull the unit's DIN rail latch OUT.
- 2. Tilt the unit slightly upwards, hook the top end onto the DIN rail and push downwards until stopped.
- 3. Position the bottom front end against the DIN rail.
- 4. Push the unit's latch DIN rail IN to lock.

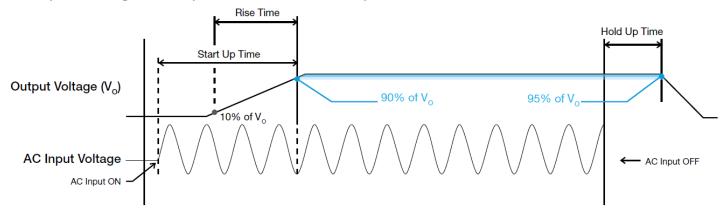
To uninstall:


- 1. Pull the unit's DIN rail latch OUT.
- 2. Tilt the bottom part of the unit out.
- 3. Push the unit up and pull out from the DIN rail.

In accordance to EN 60950 / UL 60950 and EN 62368 / UL 62368, flexible cables require ferrules. Use appropriate copper cables designed to sustain operating temperature of at least 75°C or more to fulfill UL requirements.

For stranded wires it is recommended to use suitable lug to crimp wires.

Safety Instructions



- ALWAYS switch mains of input power OFF before connecting and disconnecting the input voltage to the unit. If mains are not turned OFF, there is risk of explosion / severe damage.
- To guarantee sufficient convection cooling, please refer to the following instructions to ensure sufficient clearance around the device.
- <u>Vertical Mounting</u>: 50 mm (1.97 inch) above and below the device as well as a lateral distance of 20 mm (0.79 inch) to other units.
- <u>Horizontal Mounting</u>: 50 mm (1.97 inch) above and below the device as well as a lateral distance of 50 mm (1.97 inch) to other units.
- Note that the enclosure of the device can become very hot depending on the surrounding air temperature and load of the power supply. Risk of burns!
- The main power must be turned off before connecting or disconnecting wires to the terminals!
- DO NOT insert any objects into the unit.
- Hazardous voltages may be present for up to 5 minutes after the input mains voltage is disconnected. Do not touch the unit during this time.
- The power supplies unit should be installed in minimum IP54 rated enclosure.
- The power supplies are built in units and must be installed in a cabinet or room (condensation free environment and indoor location) that is relatively free of conductive contaminants.

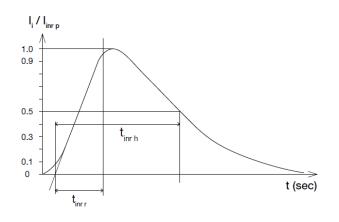
Functions

Graph illustrating the Start-up Time, Rise Time, and Hold-up Time

Start-up Time

The time required for the output voltage to reach 90% of its final steady state set value, after the input voltage is applied.

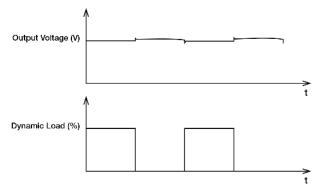
Rise Time


The time required for the output voltage to change from 10% to 90% of its final steady state set value.

Hold-up Time

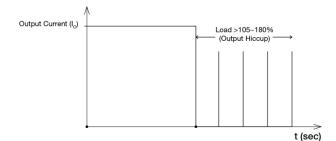
Time between the collapse of the AC input voltage, and the output falling to 95% of its steady state set value.

Inrush Current


Inrush current is the peak, instantaneous, input current measured and, occurs when the input voltage is first applied. For AC input voltages, the maximum peak value of inrush current will occur during the first half cycle of the applied AC voltage. This peak value decreases exponentially during subsequent cycles of AC voltage.

Dynamic Response

The power supply output voltage will remains within $\pm 5\%$ of its steady state value, when subjected to a dynamic load from 10% to 100% of its rated current.

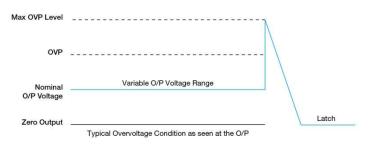

■ 50% duty cycle / 5 Hz to 1 KHz

Overload & Overcurrent Protections (Auto-Recovery)

The power supply's Overload (OLP) and Overcurrent (OCP) Protections will be activated when output current exceeds $105 \sim 180\%$ of I_O (Max load). In such occurrence, the V_O will start to droop and once the power supply has reached its maximum power limit, the protection is activated and the power supply will go into "Hiccup mode" (Auto-Recovery). The power supply will recover once the fault condition of the OLP and OCP is removed and I_O is back within the specifications.

Additionally, if the I₀ is <105-180% but >100% for a prolong period of time (depending on the load), the Over Temperature Protection (OTP) will be activated due to high temperature on critical components. The power supply will then go into "Latch mode" until the PSU cools down and the AC power is recycled.

Short Circuit Protection (Auto-Recovery)


The power supply's output OLP/OCP function also provides protection against short circuits. When a short circuit is applied, the output current will operate in "Hiccup mode", as shown in the illustration in the OLP/OCP section on this page. The power supply will return to normal operation after the short circuit is removed.

External Input Protection Device

The unit is protected at the L pin, with an internal fuse that cannot be replaced. The power supply has been tested and approved on 20 A (UL) and 16 A (IEC) branch circuits without additional protection device. An external protection device is only required if the supplying branch has an ampacity greater than above. Thus, if an external protective device is necessary, or, utilized, please refer a minimum value of 10 A B- or 6 A C- characteristic breaker.

Overvoltage Protection (Auto-Recovery)

The power supply's overvoltage circuit will be activated when its internal feedback circuit fails. The output voltage shall not exceed its specifications defined on Page 3 under "Protections".

Over Temperature Protection (Auto-Recovery)

As mentioned, the power supply also has Over Temperature Protection (OTP). This is activated when the overload condition persists for an extended duration and the output current is below the overload trigger point but >100% load. In the event of a higher operating condition at 100% load, the power supply will run into OTP when the surrounding air temperature is >75°C. When activated, the output voltage will go into latch-off mode until the component temperature cools down and the AC power is recycled.

Operating Mode

Redundant Operation

In order to ensure proper redundant operation for the power supply unit (PSU), the output voltage difference between the two units must be kept at 0.45~0.50 V for 24 V supplies. Follow simple steps given below to set them up for the redundant operation:

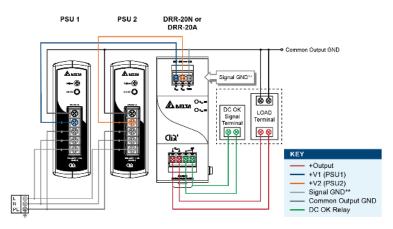
Step 1.

Measure output voltage of PSU 1 and PSU 2. If PSU 1 is the master unit, then V₀ of PSU 1 must be higher than PSU 2. In order to set the output voltage, individually connect the power supply to 50% of rated load at any line voltage from 85-264 Vac, and set the PSU 1 and PSU 2 output voltage.

Step 2.

Connect the power supply units PSU 1 and PSU 2 to Vin 1 & Vin 2, respectively, of the DRR-20N (or 20A) module shown on the diagram on the right.

Step 3.


Connect the system load from V_{out} . Please note that output voltage V_{out} from DRR module will be = V_0 (output voltage of power supply) – V_{drop}^* (in DRR module).

 $^*V_{drop}$ will vary from 0.60V to 0.90V (Typical 0.65V) depending on the load current and surrounding air temperature.

Parallel Operation

The power supply units (PSUs) can also be used for parallel operation in order to increase the output power. The difference in output voltage between the two units must be kept to within 25mV of each other. This difference must be verified with the same output load connected independently to each unit.

Parameters such as EMI, inrush current, leakage current, PARD, start up time will be different from those on the datasheet, when two units are connected in parallel. The user will need to verify that any differences will still allow the two power supplies connected in parallel will work properly in their product/application.

**The Signal GND in the DRR module is for the built-in LED and DC OK signals. The Output GND terminals from the two PSU's do not need to be connected to the Signal GND terminal.

Fig. 2 Redundant Operation Connection Diagram

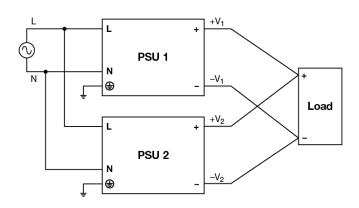


Fig. 3 Parallel Operation Connection Diagram

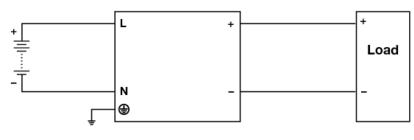
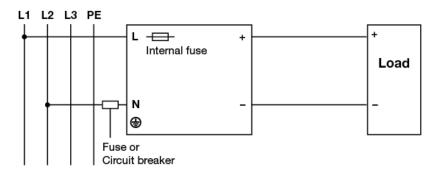


Fig. 4 DC Input Operation Connection Diagram

DC Input Operation

Step 1.


Use a battery or similar DC source.

Step 2.

Connect +pole to L and -pole to N.

Step 3.

Connect the PE terminal to an earth wire or to the machine ground.

■ 2 of 3 Phase System Input Operation

Delta's CliQ can use on 2 of 3 phase system. Please refer to the following step.

Step 1.

The input voltage applied from Line to Neutral is below the maximum rated input. The input voltage shall be below 240 Vac +10%.

Step 2.

The external protector is needed on N (Neutral) input line to secure a safety. N line does not have internal fuse protection. An appropriate fuse or circuit breaker should be connected in series with N input line connection like the following.

Others

Attention

Delta provides all information in the datasheets on an "AS IS" basis and does not offer any kind of warranty through the information for using the product. In the event of any discrepancy between the information in the catalog and datasheets, the datasheets shall prevail (please refer to **www.DeltaPSU.com** for the latest datasheets information). Delta shall have no liability of indemnification for any claim or action arising from any error for the provided information in the datasheets. Customer shall take its responsibility for evaluation of using the product before placing an order with Delta.

Delta reserves the right to make changes to the information described in the datasheets without notice.

Manufacturer and Authorized Representatives Information

Manufacturer

<u>Thailand</u> Delta Electronics (Thailand) PCL. 909 Pattana 1 Rd., Muang, Samutprakarn, 10280 Thailand

Authorized Representatives

<u>The Netherlands</u> Delta Greentech (Netherlands) B.V. Zandsteen 15, 2132 MZ Hoofddorp, The Netherlands Taiwan Delta Electronics, Inc. 3 Tungyuan Road, Chungli Industrial Zone, Taoyuan County 32063, Taiwan

<u>United Kingdom</u> Delta Electronics Europe Limited 1 Redwood Court, Peel Park Campus, East Kilbride, Glasgow, G74 5PF, United Kingdom