

RF LDMOS Integrated Power Amplifier

This 12.5 W CW RF power integrated circuit is designed for RF energy applications operating in the 2450 MHz ISM band.

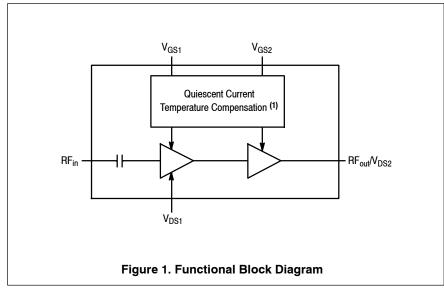
Typical Performance: V_{DD} = 28 Vdc, P_{in} = 11 dBm, I_{DQ1} = 15 mA, I_{DQ2} = 75 mA

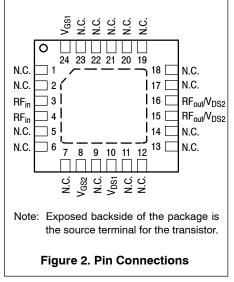
Frequency (MHz)	Signal Type	G _{ps} (dB)	PAE (%)	P _{out} (W)
2400	CW	30.1	51.3	13.0
2450		30.0	51.4	12.7
2500		29.7	50.5	11.7

Features

- High gain simplifies layout and reduced PCB area compared to a discrete design
- Qualified up to a maximum of 32 V_{DD} operation
- · On-chip input and interstage matching (50 ohm input)
- Integrated quiescent current temperature compensation with enable/disable function (1)
- Integrated ESD protection
- · 150°C case and junction temperature rating
- · Ideal as a driver for high power RF energy applications

Typical Applications


- · Driver for consumer and commercial cooking applications
- Driver for industrial heating applications, such as sterilization, pasteurization, drying, moisture-leveling process, curing and welding
- Driver for medical applications, such as microwave ablation, renal denervation and diathermy
- · Final stage for portable heating devices and portable medical systems


MHT2012N

2400–2500 MHz, 12.5 W CW, 28 V RF LDMOS INTEGRATED POWER AMPLIFIER

PLASTIC

1. Refer to AN1977, Quiescent Current Thermal Tracking Circuit in the RF Integrated Circuit Family, and to AN1987, Quiescent Current Control for the RF Integrated Circuit Device Family. Go to http://www.nxp.com/RF and search for AN1977 or AN1987.

Table 1. Maximum Ratings

Rating	Symbol	Value	Unit
Drain-Source Voltage	V _{DSS}	-0.5, +65	Vdc
Gate-Source Voltage	V _{GS}	-0.5, +10	Vdc
Operating Voltage	V _{DD}	32, +0	Vdc
Storage Temperature Range	T _{stg}	-65 to +150	°C
Case Operating Temperature Range	T _C	-40 to +150	°C
Operating Junction Temperature Range (1,2)	TJ	-40 to +150	°C
Input Power	P _{in}	20	dBm

Table 2. Thermal Characteristics

Characteristic	Symbol	Value (2,3)	Unit
Thermal Resistance, Junction to Case	$R_{ heta JC}$		°C/W
Case Temperature 81°C, 12.5 W, 2450 MHz			
Stage 1, 28 Vdc, I _{DQ1} = 12 mA		14	
Stage 2, 28 Vdc, I _{DQ2} = 72 mA		4.3	

Table 3. ESD Protection Characteristics

Test Methodology	Class
Human Body Model (per JS-001-2017)	1B, passes 500 V
Charge Device Model (per JS-002-2014)	C3, passes 1000 V

Table 4. Moisture Sensitivity Level

Test Methodology	Rating	Package Peak Temperature	Unit
Per JESD22-A113, IPC/JEDEC J-STD-020	3	260	°C

Table 5. Electrical Characteristics (T_A = 25°C unless otherwise noted)

Characteristic	Symbol	Min	Тур	Max	Unit
Stage 1 - Off Characteristics		•	•	•	•
Zero Gate Voltage Drain Leakage Current (V _{DS} = 65 Vdc, V _{GS} = 0 Vdc)	I _{DSS}	_	_	1	μAdc
Zero Gate Voltage Drain Leakage Current (V _{DS} = 32 Vdc, V _{GS} = 0 Vdc)	I _{DSS}	_	_	500	nAdc
Gate-Source Leakage Current (V _{GS} = 0.9 Vdc, V _{DS} = 0 Vdc)		_	_	200	nAdc
Stage 1 - On Characteristics	<u>.</u>		•		•
Gate Threshold Voltage (V _{DS} = 10 Vdc, I _D = 3 μAdc)	V _{GS(th)}	0.8	1.2	1.6	Vdc
Fixture Gate Quiescent Voltage (4) (V _{DS} = 28 Vdc, I _{DO1} = 12 mAdc)	$V_{GG(Q)}$	_	4.9	_	Vdc

- 1. Continuous use at maximum temperature will affect MTTF.
- MTTF calculator available at http://www.nxp.com/RF/calculators.
 Refer to AN1955, Thermal Measurement Methodology of RF Power Amplifiers. Go to http://www.nxp.com/RF and search for AN1955.
- 4. Data measured in NXP test fixture with 4.7 k Ω resistor in series with V $_{GS1}$ and V $_{GS2}$ pins.

(continued)

Table 5. Electrical Characteristics ($T_A = 25$ °C unless otherwise noted) (continued)

Characteristic	Symbol	Min	Тур	Max	Unit
Stage 2 - Off Characteristics	<u> </u>	1	•	•	
Zero Gate Voltage Drain Leakage Current (V _{DS} = 65 Vdc, V _{GS} = 0 Vdc)	I _{DSS}	_	_	1	μAdc
Zero Gate Voltage Drain Leakage Current (V _{DS} = 32 Vdc, V _{GS} = 0 Vdc)	I _{DSS}	_	_	500	nAdc
Gate-Source Leakage Current (V _{GS} = 0.9 Vdc, V _{DS} = 0 Vdc)	Igss	_	_	200	nAdc
Stage 2 - On Characteristics					
Gate Threshold Voltage $(V_{DS} = 10 \text{ Vdc}, I_D = 14 \mu \text{Adc})$	V _{GS(th)}	0.8	1.2	1.6	Vdc
Fixture Gate Quiescent Voltage (1) (V _{DS} = 28 Vdc, I _{DQ2} = 72 mAdc)	$V_{\mathrm{GG}(Q)}$	_	4.8	_	Vdc
Drain-Source On-Voltage (V _{GS} = 10 Vdc, I _D = 140 mAdc)	V _{DS(on)}	0.05	0.14	0.20	Vdc

Table 6. Typical Performance

In NXP Reference Circuit, 50 ohm system, V_{DD} = 28 Vdc, I_{DQ1} = 15 mA, I_{DQ2} = 75 mA, 2400–2500 MHz Bandwidth

Power Gain	G _{ps}	_	29.7	_	dB
Power Added Efficiency	PAE	_	50.5	_	%
Pout @ 1 dB Compression Point, CW	P1dB	_	11.7	_	W
Pout @ 3 dB Compression Point, CW	P3dB	_	14	_	W
Gain Variation over Temperature (–30°C to +85°C)	ΔG	_	0.036	_	dB/°C
Output Power Variation over Temperature (-30°C to +85°C)	ΔP1dB		0.004		dB/°C

Table 7. Load Mismatch/Ruggedness

In NXP Reference Circuit, 50 ohm system, I_{DQ1} = 12 mA, I_{DQ2} = 72 mA

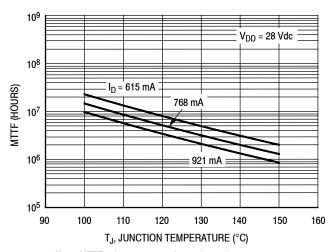

Frequency (MHz)	Signal Type	VSWR	P _{in} (dBm)	Test Voltage, V _{DD}	Result
2450	CW	10:1 at all Phase Angles	14 (3 dB Overdrive)	32	No Device Degradation

Table 8. Ordering Information

Device	Tape and Reel Information	Package
MHT2012NT1	T1 Suffix = 1000 Units, 16 mm Tape Width, 13-inch Reel	PQFN 8 × 8

^{1.} Data measured in NXP test fixture with 4.7 $k\Omega$ resistor in series with V_{GS1} and V_{GS2} pins.

TYPICAL CHARACTERISTICS

Note: MTTF value represents the total cumulative operating time under indicated test conditions.

MTTF calculator available at http://www.nxp.com/RF/calculators.

Figure 3. MTTF versus Junction Temperature – CW

Table 9. Load Pull Performance — Maximum Power Tuning

 V_{DD} = 28 Vdc, I_{DQ1} = 12 mA, I_{DQ2} = 73 mA, Pulsed CW, 10 μ sec(on), 10% Duty Cycle

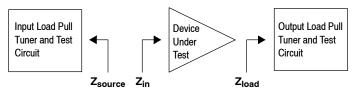
			Max Output Power						
				P1dB					
f (MHz)	Z _{source} (Ω)	Z _{in} (Ω)	Z _{load} ⁽¹⁾ (Ω)	Gain (dB)	(dBm)	(W)	η _D (%)	PAE (%)	
2400	40.9 + j23.6	48.3 – j23.1	7.22 – j4.32	30.0	42.2	17	49.8	49.7	
2450	38.1 + j30.8	47.3 – j30.9	7.06 – j3.92	29.9	42.3	17	51.9	51.8	
2500	32.9 + j30.7	40.4 – j32.8	6.76 – j3.83	30.0	42.4	18	52.6	52.5	

			Max Output Power					
			P3dB					
f (MHz)	Z _{source} (Ω)	Z _{in} (Ω)	Z _{load} ⁽²⁾ (Ω)	Gain (dB)	(dBm)	(W)	η _D (%)	PAE (%)
2400	40.9 + j23.6	42.8 – j26.8	7.50 – j4.46	27.9	42.8	19	49.4	49.3
2450	38.1 + j30.8	40.4 – j32.0	7.20 – j4.35	27.8	43.0	20	50.8	50.7
2500	32.9 + j30.7	33.9 – j32.4	7.05 – j4.26	27.9	43.0	20	51.2	51.1

⁽¹⁾ Load impedance for optimum P1dB power.

Note: Measurement made on a per side basis.

Table 10. Load Pull Performance — Maximum Efficiency Tuning


 V_{DD} = 28 Vdc, I_{DQ1} = 12 mA, I_{DQ2} = 73 mA, Pulsed CW, 10 μ sec(on), 10% Duty Cycle

			Max Efficiency					
				P1dB				
f (MHz)	Z _{source} (Ω)	Z _{in} (Ω)	Z _{load} ⁽¹⁾ (Ω)	Gain (dB)	(dBm)	(W)	η _D (%)	PAE (%)
2400	40.9 + j23.6	58.6 – j22.8	4.19 – j1.25	30.5	40.9	12	56.2	56.1
2450	38.1 + j30.8	56.8 – j34.4	4.01 – j1.06	30.2	41.0	13	56.8	56.7
2500	32.9 + j30.7	48.5 – j37.7	3.63 – j1.34	30.4	41.1	13	59.5	59.4

			Max Efficiency					
			P3dB					
f (MHz)	Z _{source} (Ω)	Z _{in} (Ω)	Z _{load} ⁽²⁾ (Ω)	Gain (dB)	(dBm)	(W)	η _D (%)	PAE (%)
2400	40.9 + j23.6	51.9 – j26.8	4.28 – j1.45	28.5	41.6	15	54.3	54.2
2450	38.1 + j30.8	48.5 – j35.0	4.19 – j1.50	28.2	41.9	15	55.2	55.1
2500	32.9 + j30.7	40.4 – j36.5	3.94 – j1.74	28.4	42.0	16	57.0	56.9

⁽¹⁾ Load impedance for optimum P1dB efficiency.

Note: Measurement made on a per side basis.

MHT2012N

⁽²⁾ Load impedance for optimum P3dB power.

Z_{source} = Measured impedance presented to the input of the device at the package reference plane.

Z_{in} = Impedance as measured from gate contact to ground.

Z_{load} = Measured impedance presented to the output of the device at the package reference plane.

⁽²⁾ Load impedance for optimum P3dB efficiency.

Z_{source} = Measured impedance presented to the input of the device at the package reference plane.

Z_{in} = Impedance as measured from gate contact to ground.

Z_{load} = Measured impedance presented to the output of the device at the package reference plane.

P3dB - TYPICAL LOAD PULL CONTOURS - 2450 MHz

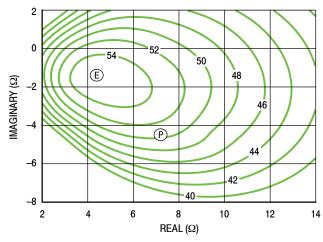


Figure 4. P3dB Load Pull Output Power Contours (dBm)

Figure 5. P3dB Load Pull Efficiency Contours (%)

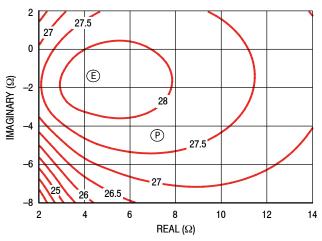


Figure 6. P3dB Load Pull Gain Contours (dB)

NOTE: (P) = Maximum Output Power

(E) = Maximum Drain Efficiency

Gain
Drain Efficiency
Linearity
Output Power

2400–2500 MHz REFERENCE CIRCUIT — $2'' \times 3''$ (5.1 cm \times 7.6 cm)

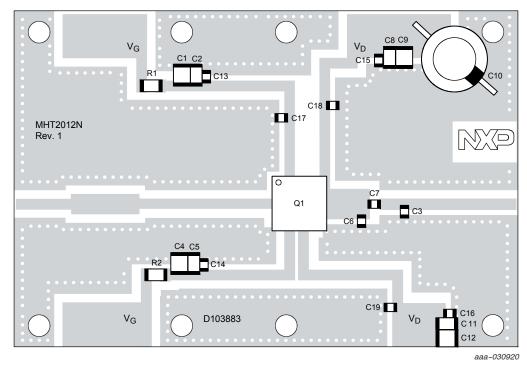


Figure 7. MHT2012N Reference Circuit Component Layout — 2400–2500 MHz

Table 11. MHT2012N Reference Circuit Component Designations and Values — 2400–2500 MHz

Part	Description	Part Number	Manufacturer
C1, C4, C9, C12	10 μF Chip Capacitor	GRM32ER61H106KA12L	Murata
C2, C5, C8, C11	0.1 μF Chip Capacitor	GRM32NR72A104KA01B	Murata
C3	0.5 pF Chip Capacitor	ATC600F0R5BT250XT	ATC
C6	1.6 pF Chip Capacitor	ATC600F1R6BT250XT	ATC
C7	4.7 pF Chip Capacitor	ATC600F4R7BT250XT	ATC
C10	220 μF, 50 V Electrolytic Capacitor	227CKS050M	Illinois Capacitor
C13, C14, C15, C16, C17, C18, C19	5.6 pF Chip Capacitor	ATC600F5R6BT250XT	ATC
Q1	RF Power LDMOS Transistor	MHT2012N	NXP
R1, R2	4.7 kΩ, 1/4 W Chip Resistor	CRCW12064K70FKEA	Vishay
PCB	Rogers RT6035HTC, 0.030", $\varepsilon_r = 3.5$	D103883	MTL

TYPICAL CHARACTERISTICS — 2400-2500 MHz REFERENCE CIRCUIT

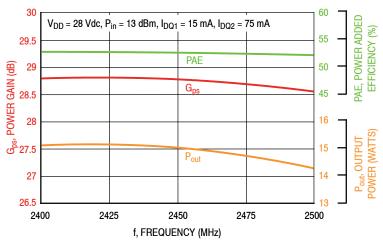


Figure 8. Power Gain, Power Added Efficiency and CW Output Power versus Frequency at a Constant Input Power

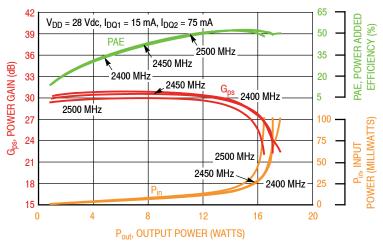


Figure 9. Power Gain, Power Added Efficiency and Input Power versus CW Output Power and Frequency

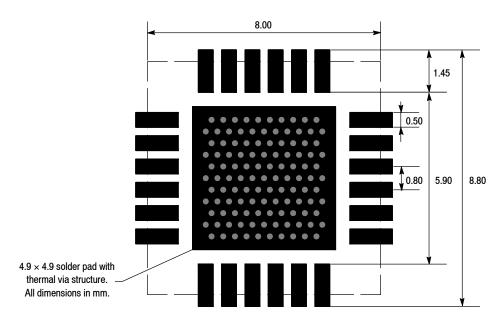
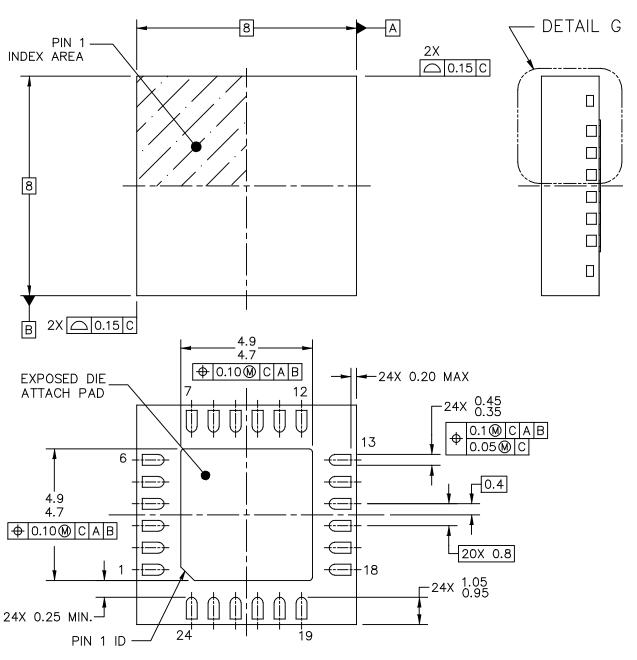



Figure 10. PCB Pad Layout for 24-Lead PQFN 8 x 8

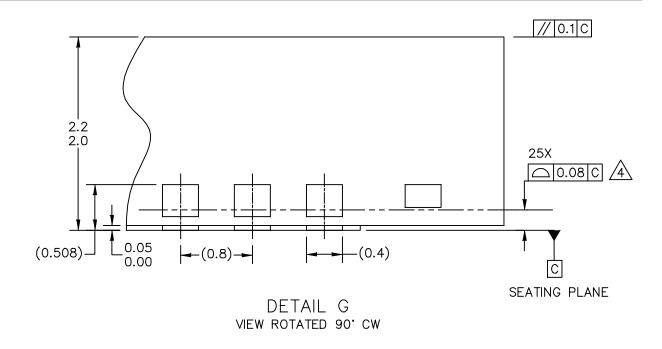


Figure 11. Product Marking

PACKAGE DIMENSIONS

	MECHANICAL OUTLINE		PRINT VERSION NO	IT TO SCALE
TITLE		D□CUMENT N□: 98ASA10760D REV: B		
PQFN (SAW), THERMALLY 8 X 8 X 2.1, 0.8 PITCH,	STANDARD: NON-JEDEC			
0 X 0 X 2.1, 0.0 111011,	S0T1664	-1	11 MAR 2016	

© NXP SEMICONDUCTORS N.V. ALL RIGHTS RESERVED MECHANICAL OU		TLINE	PRINT VERSION	NOT TO SCALE
PQFN (SAW), THERMALLY ENHANCED 8 X 8 X 2.1, 0.8 PITCH, 24 TERMINAL		DOCUMEN	NT ND: 98ASA1076	OD REV: B
		STANDAR	RD: NON-JEDEC	
		SDT1664	-1	11 MAR 2016

NOTES:

- 1. ALL DIMENSIONS ARE IN MILLIMETERS.
- 2. DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994.
- 3. THE COMPLETE JEDEC DESIGNATOR FOR THIS PACKAGE IS: HF-PQFN.

4 COPLANARITY APPLIES TO LEADS AND DIE ATTACH PAD.

© NXP SEMICONDUCTORS N.V. ALL RIGHTS RESERVED MECHANICAL OU		TLINE	PRINT VERSIO	N NOT TO SCALE
TITLE: PQFN (SAW), THERMALLY ENHANCED 8 X 8 X 2.1, 0.8 PITCH, 24 TERMINAL		DOCUMENT NO 98ASA10760D REVI B		
		STANDARD: NON-JEDEC		
,	S0T1664	·-1	11 MAR 2016	

PRODUCT DOCUMENTATION, SOFTWARE AND TOOLS

Refer to the resources to aid your design process.

Application Notes

- · AN1907: Solder Reflow Attach Method for High Power RF Devices in Over-Molded Plastic Packages
- AN1955: Thermal Measurement Methodology of RF Power Amplifiers

Engineering Bulletins

• EB212: Using Data Sheet Impedances for RF LDMOS Devices

Software

- Electromigration MTTF Calculator
- RF High Power Model

Development Tools

· Printed Circuit Boards

To Download Resources Specific to a Given Part Number:

- 1. Go to http://www.nxp.com/RF
- 2. Search by part number
- 3. Click part number link
- 4. Choose the desired resource from the drop down menu

REVISION HISTORY

The following table summarizes revisions to this document.

Revision	Date	Description	
0	July 2018	Initial release of data sheet	

How to Reach Us:

Home Page: nxp.com

Web Support: nxp.com/support Information in this document is provided solely to enable system and software implementers to use NXP products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the information in this document. NXP reserves the right to make changes without further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does NXP assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in NXP data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including "typicals," must be validated for each customer application by customer's technical experts. NXP does not convey any license under its patent rights nor the rights of others. NXP sells products pursuant to standard terms and conditions of sale, which can be found at the following address: nxp.com/SalesTermsandConditions.

NXP and the NXP logo are trademarks of NXP B.V. All other product or service names are the property of their respective owners.

© 2018 NXP B.V.

Document Number: MHT2012N

Rev. 0, 07/2018