## **General Description**



### **DC FILTERING**

The series uses a dry-wound (non-oil-filled) segmented metallized polypropylene, which features the controlled self-healing process, specially treated to have a very high dielectric strength in operating conditions up to 115°C.

For more information on how segmented metallized films and controlled self-healing works see a complete presentation.

### APPLICATIONS IN ELECTRIC VEHICLES

The FHC series capacitors are specifically designed to prevent ripple currents from reaching back to the power source, and to smooth out DC bus voltage variations. Capacitors are also used to protect semiconductors - originally thyristors, but now IGBTs.

### **STANDARDS**

IEC 61071-1, IEC 61071-2: Power electronic capacitors AECQ 200: with specific deviation for power capacitors

The FHC1 & FHC2 range capacitor have been specially design to be use in conjunction with Hybrid & Electric vehicles IGBT modules.

### LIFETIME EXPECTANCY

One unique feature of the segmented metallized technology is how the capacitor acts at the end of its lifetime. Unlike electrolytic capacitors, which are a short circuit failure mode, film capacitors only experience a parametric loss of capacitance with no catastrophic failure mode. The capacitor gradually loses capacitance over its lifetime and eventually becomes an open circuit.

Lifetime, therefore, as it is defined here, is a function of several elements:

- Decrease in capacitance limit 2-5% or to meet customer needs
- Average applied voltage (expressed as a ratio vs nominal rated voltage)
- Average hot spot temperature

By changing any of these parameters we can change the defined "lifetime" of the capacitor. The capacitor will continue to function even beyond the pre-established limit for capacitance decrease.

### **CONSTRUCTION**

The internal construction of the FHC Series is based on several elementary wound bobbins soldered by reinforced solder point on specific bus bar offering, the benefits of which include: flexibility in internal design, current capability and repartition, reduction of thermal expansion constraints, high winding productivity, modularity in three dimensions.

### PACKAGING

FHC Series capacitors are enclosed in an unpainted, rectangular, resin filled plastic case. Aluminium cases are available upon request.



## FHC1 & FHC2

## **HOW TO ORDER**

FHC Series FHC: HEV/EV DC-Link

Т **Case Size** 1 = 170mmx50mm single terminal 2= 237mm x 72mm three terminal

1



6

Voltage 6 = PP (polypropylene) I = 410/450 Vdc J = 700 VdcC = 900 Vdc



Capacitance

EIA Code



-- = front facing mounting brackets JH = side facing mounting brackets

### **CHARACTERISTICS**

- Voltage: 410VDC to 900Vdc (standard) 300VDC to 1400Vdc (custom)
- Capacitance Value: 300µF 900µF (standard) 100µF - 1.5mF (custom)
- Working Temperature: -40°C to 105°C hot spot temperature; up to 115°C hot spot for low duration

### **ELECTRICAL CHARACTERISTICS**

| Capacitance tolerance                              | 10%                                                                         |
|----------------------------------------------------|-----------------------------------------------------------------------------|
| •                                                  |                                                                             |
| Tan $\delta_0$                                     | 2 x 10 <sup>-4</sup>                                                        |
| Test voltage between terminals (10s)               | 1.5 x Un @ 25°C                                                             |
| Test voltage between terminals and case (60s 50Hz) | 3 kVrms @ 25°C                                                              |
| Hot spot max ***                                   | 105°C / 115°C low duration                                                  |
| Temp Min                                           | -40°C                                                                       |
| Temp Max                                           | +105°C                                                                      |
| Storage                                            | +105°C / -40°C                                                              |
| Lifetime: $DC/C = -5\%$                            | Up to 15 000h ***                                                           |
| Thermal calculation**** (Q in VAR, Rs in Ohms,     |                                                                             |
| Rth in °C/W,T° ambient without cooling plate )     | T° Hot-spot = T°ambiant + ( $2^{10-4}$ . Q + Rs . I <sup>2</sup> rms) . Rth |
| Case                                               | PA66 fiber reinforced 30%                                                   |
| Resin                                              | Epoxy resin                                                                 |
| Terminals                                          | Flat copper tinned                                                          |
| RoHS compliance                                    | Yes                                                                         |
| FIT                                                | < 100FIT @ 40°C                                                             |
|                                                    |                                                                             |

(\*\*\*) Max hot spot 105°C according to cooling efficiency

(\*\*\*\*) Other conditions on request





## FHC1 & FHC2

xx = "- -"

xx = "JH"





### **RATINGS AND PART NUMBER**

| Part Number   | Capacitance<br>(µF) | Un<br>(Vdc) | lmax<br>(A) (*) | L parasitic<br>inductance<br>nH (**) | Rs<br>(mΩ) | Rth<br>hot spot/bottom<br>(°C/W) | <b>Tan</b> δ<br>100Hz | Dimension<br>LxWxH (mm) | Lifetime<br>Expectancy<br>Curve |
|---------------|---------------------|-------------|-----------------|--------------------------------------|------------|----------------------------------|-----------------------|-------------------------|---------------------------------|
| FHC16I0307Kxx | 300                 | 450         | 120             | 18                                   | 0.69       | 4.4                              | 5 x 10-4              | 140 x 72 x 50           | А                               |
| FHC16I0517Kxx | 510                 | 410         | 150             | 18                                   | 0.51       | 3.7                              | 5 x 10 <sup>-4</sup>  | 140 x 72 x 50           | В                               |
| FHC16J0267Kxx | 260                 | 700         | 80              | 18                                   | 1.57       | 4                                | 5 x 10-4              | 140 x 72 x 50           | С                               |
| FHC16C0147Kxx | 140                 | 900         | 70              | 18                                   | 2.09       | 4                                | 5 x 10-4              | 140 x 72 x 50           | D                               |

xx = "- -"

xx = "JH"



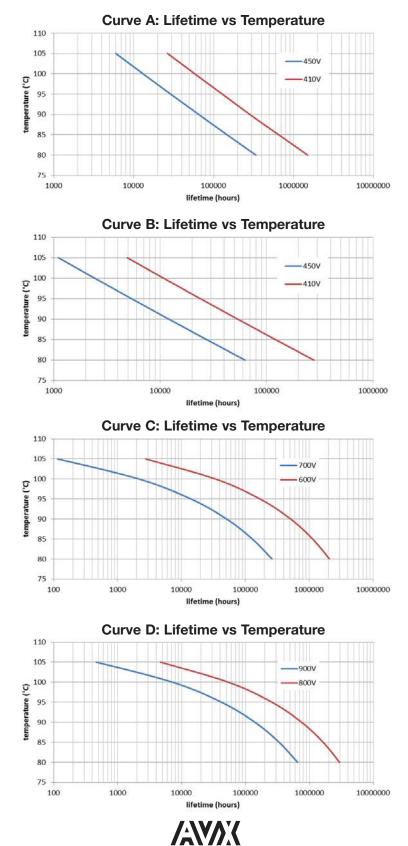


### **RATINGS AND PART NUMBER**

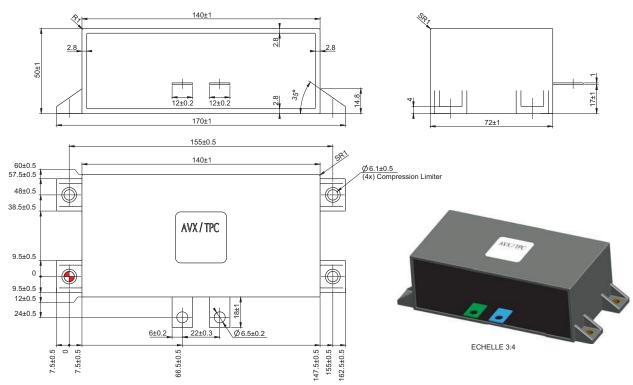
| Part Number   | Capacitance<br>(µF) | Un<br>(Vdc) | lmax<br>(A) (*) | L parasitic<br>inductance<br>nH (**) | Rs<br>(mΩ) | Rth<br>hot spot/bottom<br>(°C/W) | <b>Tan</b> δ<br>100Hz | Dimension<br>LxWxH (mm) | Lifetime<br>Expectancy<br>Curve |
|---------------|---------------------|-------------|-----------------|--------------------------------------|------------|----------------------------------|-----------------------|-------------------------|---------------------------------|
| FHC26I0507Kxx | 500                 | 450         | 170             | 15                                   | 0.45       | 2.6                              | 5 x 10-4              | 237 x 72 x 50           | A                               |
| FHC26I0707Kxx | 700                 | 450         | 190             | 15                                   | 0.38       | 2.4                              | 5 x 10-4              | 237 x 72 x 50           | A                               |
| FHC26I0907Kxx | 900                 | 410         | 190             | 15                                   | 0.33       | 2.1                              | 5 x 10-4              | 237 x 72 x 50           | В                               |
| FHC26J0507Kxx | 500                 | 700         | 160             | 15                                   | 0.87       | 2.1                              | 5 x 10-4              | 237 x 72 x 50           | С                               |
| FHC26C0267Kxx | 260                 | 900         | 140             | 18                                   | 1.17       | 2.1                              | 5 x 10-4              | 237 x 72 x 50           | D                               |

(\*) Imax Max hot spot 105°C

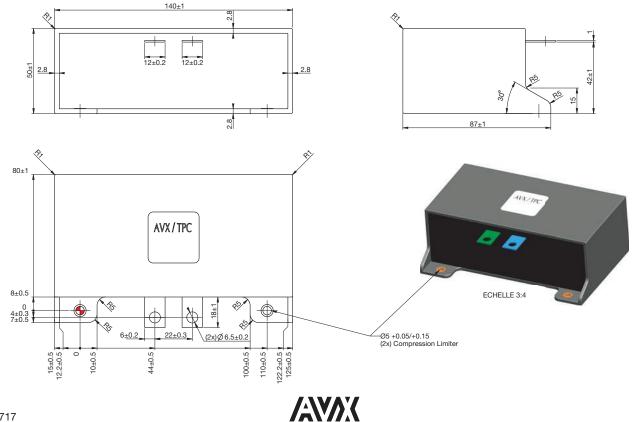
(\*\*) Measurement at 1MHz


Nb: Upon request FHC are available equiped with thermocouple for thermal measurement

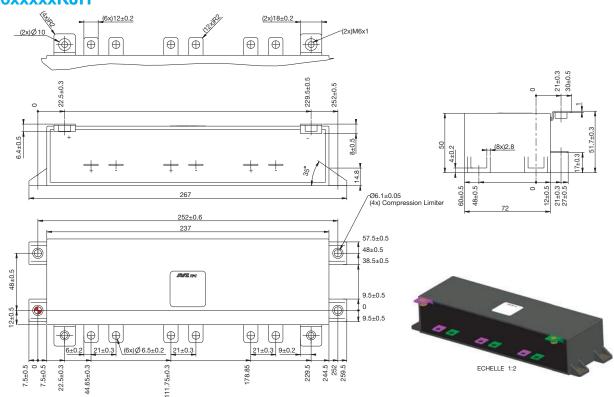
Other value or bus bar design please contact your local AVX rep

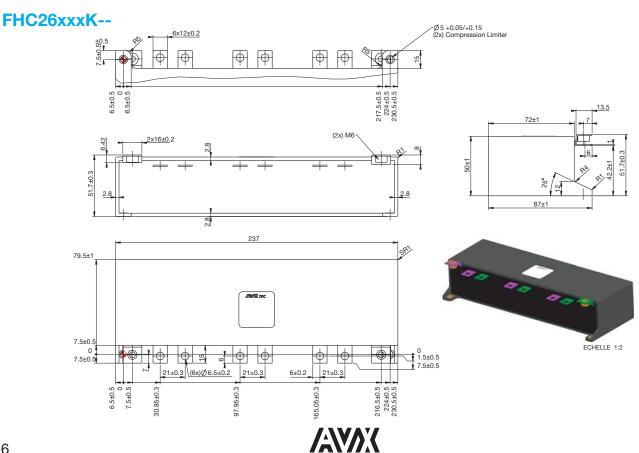



FHC1 & FHC2


## LIFETIME EXPECTANCY CURVES




## FHC16xxxxKJH




### FHC16xxxxK--



## FHC1 & FHC2





## **Custom Design Sheet**

#### Company /Name / Email

| Date                |  |
|---------------------|--|
| EAU                 |  |
| Expecte ASP         |  |
| Timing for Design   |  |
| Customer            |  |
| Proposed Catalog PN |  |

| Applications                       | DC Fi | Itering |  |
|------------------------------------|-------|---------|--|
| Capacitance (µF)                   |       |         |  |
| Tolerance (%)                      |       |         |  |
| Operating Voltage                  | Vpeak |         |  |
| Ripple Voltage (peak to peak)*     |       | V       |  |
| Working Frequency (Hz)             |       |         |  |
| Operating Current*                 |       | Arms    |  |
| Maximum Current/Duration           | Arms  | S       |  |
|                                    | Arms  | S       |  |
| Maximum Inductance (nH)            |       |         |  |
| Test Voltage between Terminals (V) |       |         |  |
| Test Voltage between Shorted       |       |         |  |
| Terminals and Case (V)             |       |         |  |
| Maximum Surge Voltage (MSV)        |       |         |  |
| MSV Duration / Frequency           | S     | /year   |  |

\*Due to the particularities of varying waveforms in such application, more information on the exact nature of waveform is generally required for a full analysis.

| Thermal Characteristics  |  |              |               |                |                     |  |  |
|--------------------------|--|--------------|---------------|----------------|---------------------|--|--|
| Storage Temperature (°C) |  | Ambient (°C) | Operating Ter | mperature (°C) | Cooling Method      |  |  |
| min.                     |  |              | min.          |                | Natural Convection  |  |  |
| average                  |  |              | average       |                | Forced Air (m/s)    |  |  |
| max.                     |  |              | max.          |                | Water cooling plate |  |  |
|                          |  |              |               |                |                     |  |  |

\*Providing Mission Profile for U, I and O°C is a must