

Important notice

Dear Customer,

On 7 February 2017 the former NXP Standard Product business became a new company with the tradename **Nexperia**. Nexperia is an industry leading supplier of Discrete, Logic and PowerMOS semiconductors with its focus on the automotive, industrial, computing, consumer and wearable application markets

In data sheets and application notes which still contain NXP or Philips Semiconductors references, use the references to Nexperia, as shown below.

Instead of http://www.nxp.com, http://www.nxp.com, http://www.nexperia.com, http://www.nexperia.com)

Instead of sales.addresses@www.nxp.com or sales.addresses@www.semiconductors.philips.com, use salesaddresses@nexperia.com (email)

Replace the copyright notice at the bottom of each page or elsewhere in the document, depending on the version, as shown below:

- © NXP N.V. (year). All rights reserved or © Koninklijke Philips Electronics N.V. (year). All rights reserved

Should be replaced with:

- © Nexperia B.V. (year). All rights reserved.

If you have any questions related to the data sheet, please contact our nearest sales office via e-mail or telephone (details via **salesaddresses@nexperia.com**). Thank you for your cooperation and understanding,

Kind regards,

Team Nexperia

INTEGRATED CIRCUITS

DATA SHEET

74F640

Octal bus transceiver, inverting (3-State)

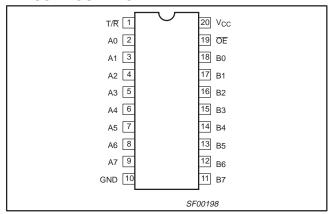
Product specification

1989 Nov 27

IC15 Data Handbook

Octal bus transceiver, inverting (3-State)

74F640


FEATURES

- High-impedance NPN base inputs for reduced loading (70μA in High and Low states)
- Ideal for applications which require high-output drive and minimal bus loading
- Inverting version of 74F245
- Octal bidirectional bus interface
- 3-State outputs sink 64mA and source 15mA

DESCRIPTION

The 74F640 is an octal transceiver featuring inverting 3-State bus compatible outputs in both transmit and receive directions. The B port outputs are capable of sinking 64mA and sourcing 15mA, providing very good capacitive drive characteristics. The device features an Output Enable ($\overline{\text{OE}}$) input for easy cascading and Transmit/Receiver ($\overline{\text{T/R}}$) input for direction control. The 3-State outputs, B0–B7, have been designed to prevent output bus loading if the power is removed from the device.

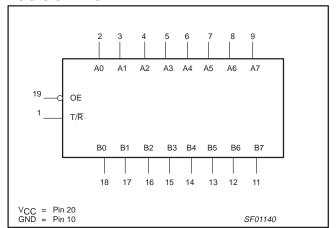
PIN CONFIGURATION

TYPE	TYPICAL PROPAGATION DELAY	TYPICAL SUPPLY CURRENT (TOTAL)
74F640	3.5ns	78mA

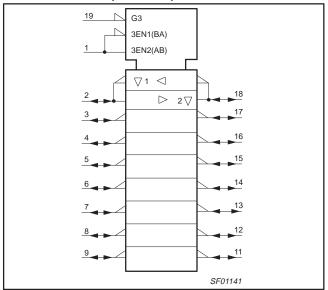
ORDERING INFORMATION

DESCRIPTION	COMMERCIAL RANGE V_{CC} = 5V $\pm 10\%$, T_{amb} = 0°C to +70°C	PKG DWG #
20-pin plastic DIP	N74F640N	SOT146-1
20-pin plastic SOL	N74F640D	SOT163-1

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE


PINS	DESCRIPTION	74F(U.L.) HIGH/LOW	LOAD VALUE HIGH/LOW
A0 - A7, B0 - B7	Data inputs	3.5/0.115	70μΑ/70μΑ
ŌĒ	Output Enable input (active Low)	2.0/0.067	40μΑ/40μΑ
T/R	Transmit/Receive input	2.0/0.067	40μΑ/40μΑ
A0 - A7	A port outputs	150/40	3.0mA/24mA
B0 - B7	B port outputs	750/106.7	15mA/64mA

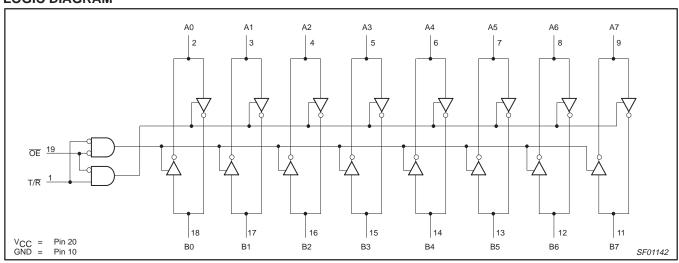
NOTE: One (1.0) FAST unit load is defined as: $20\mu A$ in the High state and 0.6mA in the Low state.


Octal bus transceiver, inverting (3-State)

74F640

LOGIC SYMBOL

LOGIC SYMBOL (IEEE/IEC)


FUNCTION TABLE

INP	UTS	OUTPUTS				
ŌĒ	T/R	0017013				
L	L	Bus B data to Bus A				
L	Н	Bus A data to Bus B				
Н	X	Z				

High voltage level Low voltage level Н

X = Don't care Z = High impedance "off" state

LOGIC DIAGRAM

1989 Nov 27

Octal bus transceiver, inverting (3-State)

74F640

ABSOLUTE MAXIMUM RATINGS

(Operation beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted these limits are over the operating free-air temperature range.)

SYMBOL	PARAMETER		RATING	UNIT	
V _{CC}	Supply voltage		-0.5 to +7.0	V	
V _{IN}	Input voltage		-0.5 to +7.0	V	
I _{IN}	Input current		-30 to +5 m/		
V _{OUT}	Voltage applied to output in High output state		–0.5 to +V _{CC}	V	
	Command applied to sustaint in Language and added	A0-A7	48	mA	
Гоит	Current applied to output in Low output state	B0-B7	128	mA	
T _{amb}	Operating free-air temperature range	0 to +70	°C		
T _{stg}	Storage temperature range		-65 to +150	°C	

RECOMMENDED OPERATING CONDITIONS

CVMDOL	DADAA	ACTED		LIAUT		
SYMBOL	PARAM	METER	MIN	NOM	MAX	UNIT
V _{CC}	Supply voltage		4.5	5.0	5.5	V
V _{IH}	High-level input voltage		2.0			V
V _{IL}	Low-level input voltage			0.8	V	
I _{IK}	Input clamp current				-18	mA
	Himb layed autout aymout	A0–A7			-3	mA
IOH	High-level output current			-15	mA	
	Laurelaurelauren da aumanat	A0–A7			24	mA
IOL	Low-level output current			64	mA	
T _{amb}	Operating free-air temperature range	0		70	°C	

1989 Nov 27

Octal bus transceiver, inverting (3-State)

74F640

DC ELECTRICAL CHARACTERISTICS

(Over recommended operating free-air temperature range unless otherwise noted.)

				LIMITS					
SYMBOL	PARAMETER	TES1	MIN	TYP NO TAG	MAX	UNIT			
		A0-A7		1 2m A	±10%V _{CC}	2.4			V
V	Lligh lovel output voltage	B0-B7	$V_{CC} = MIN,$ $V_{IL} = MAX,$	$I_{OH} = -3mA$	±5%V _{CC}	2.7	3.3		V
V _{OH}	High-level output voltage	B0-B7	$V_{IH} = MIN$	I _{OH} = -15mA	±10%V _{CC}	2.0			V
		BU-B7		IOH = -15IIIA	±5%V _{CC}	2.0			V
		A0-A7		±10%			0.35	0.50	V
V _{OL}	Low-level output voltage	AU-A7	$V_{CC} = MIN,$ $V_{IL} = MAX,$	I _{OL} = 24mA	±5%V _{CC}		0.35	0.50	V
	Low-level output voltage	DO D7	$V_{IH} = MIN,$	I _{OL} = MAX	±10%V _{CC}			0.55	V
		B0-B7		IOL = IVIAX	±5%V _{CC}		0.42	0.55	V
V _{IK}	Input clamp voltage		$V_{CC} = MIN, I_I = I_{IK}$				-0.73	-1.2	V
I.	Input current at maximum OE,		$V_{CC} = 0.0V, V_I = 7.0V$					100	μΑ
H	input voltage	A0–A7, B0–B7	V _{CC} = 5.5V, V _I = 5.5V					1.0	mA
I _{IH}	High-level input current	OE, T/R	V _{CC} = MAX, V	' _I = 2.7V				40	μΑ
I _{IL}	Low-level input current	only	V _{CC} = MAX, V	′ _I = 0.5V				-40	μΑ
I _{OZH} +I _{IH}	Off-state output current, High level of voltage applied	•	V _{CC} = MAX, V	′ _I = 2.7V				70	μА
I _{OZL} +I _{IL}	Off-state output current, Low level of voltage applied		V _{CC} = MAX, V	' _I = 0.5V				-70	μΑ
	Short-circuit output cur-	A0–A7			-60		-150	mA	
I _{OS}	rent ^{NO TAG}	B0-B7	$V_{CC} = MAX$		-100		-225	μΑ	
		Іссн	$T/\overline{R} = An = 4.5V,$ $\overline{OE} = GND$			66	85	mA	
I _{CC}	Supply current (total)	I _{CCL}	$V_{CC} = MAX$	$X = \overline{I/R} = Bn = \overline{OE} = GND$			91	120	mA
		I _{CCZ}		T/R = Bn = GND OE = 4.5V		78	102	mA	

NOTES:

1989 Nov 27 5

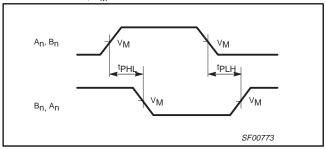
^{1.} For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable type.

All typical values are at V_{CC} = 5V, T_{amb} = 25°C.
 Not more than one output should be shorted at a time. For testing I_{OS}, the use of high-speed test apparatus and/or sample-and-hold techniques are preferable in order to minimize internal heating and more accurately reflect operational values. Otherwise, prolonged shorting of a High output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, I_{OS} tests should be performed last.

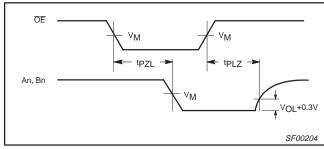
Octal bus transceiver, inverting (3-State)

74F640

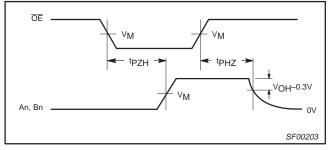
AC ELECTRICAL CHARACTERISTICS


					UNIT			
SYMBOL	PARAMETER	TEST CONDITION	$V_{CC} = +5V$ $T_{amb} = +25^{\circ}C$ $C_{L} = 50pF, R_{L} = 500\Omega$			V _{CC} = +5 T _{amb} = 0°C C _L = 50pF,		
			MIN	TYP	MAX	MIN	MAX	
t _{PLH} t _{PHL}	Propagation delay An to Bn, Bn to An	Waveform NO TAG	2.0 1.0	4.5 2.5	7.0 5.0	2.0 1.0	8.0 5.5	ns
t _{PZH} t _{PZL}	Output Enable time to High or Low level	Waveform 3 Waveform 2	5.5 5.5	6.5 7.0	10.5 10.5	5.0 5.0	12.0 11.0	ns
t _{PHZ}	Output Disable time from High or Low level	Waveform 3 Waveform 2	2.0 2.0	3.5 4.5	6.5 7.0	1.5 2.0	8.0 7.5	ns

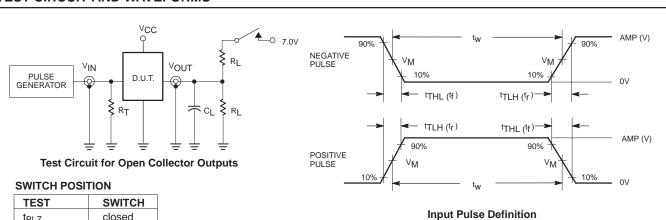
Octal bus transceiver, inverting (3-State)


74F640

AC WAVEFORMS


For all waveforms, $V_M = 1.5V$.

Waveform 1. Propagation Delay for Inverting Outputs



Waveform 2. 3-State Output Enable Time to Low Level and Output Disable Time from Low Level

Waveform 3. 3-State Output Enable Time to High Level and Output Disable Time from High Level

TEST CIRCUIT AND WAVEFORMS

TEST	SWITCH
t _{PLZ}	closed
t _{PZL}	closed
All other	open

DEFINITIONS:

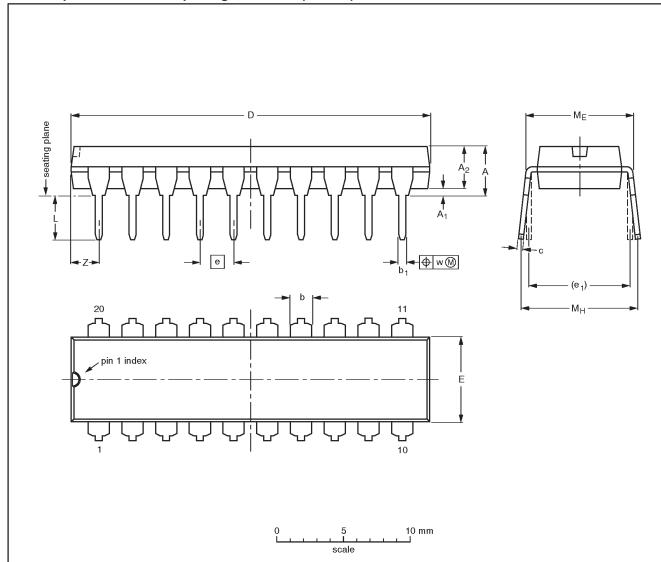
R_L = Load resistor;

see AC electrical characteristics for value.

 $C_L = Load$ capacitance includes jig and probe capacitance; see AC electrical characteristics for value.

R_T = Termination resistance should be equal to Z_{OUT} of pulse generators.

family	INP	INPUT PULSE REQUIREMENTS								
family	amplitude	V _M rep. rate		t _w	t _{TLH}	t _{THL}				
74F 3.0V 1.5\		1.5V	1MHz	500ns	2.5ns	2.5ns				


SF00128

Octal bus transceiver, inverting (3-State)

74F640

DIP20: plastic dual in-line package; 20 leads (300 mil)

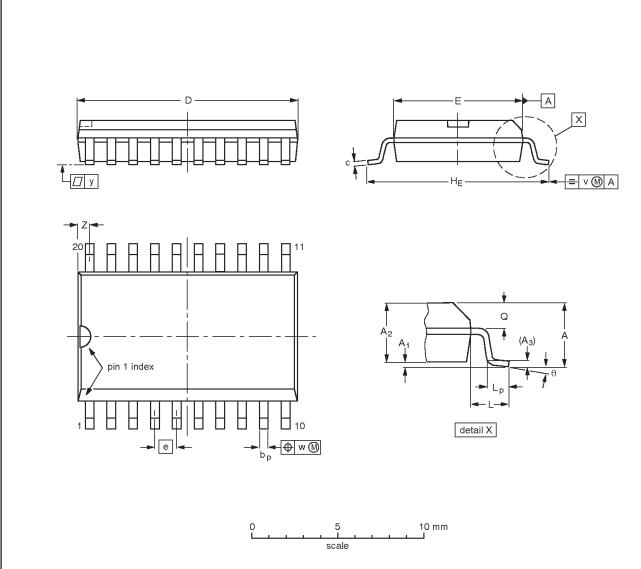
SOT146-1

DIMENSIONS (inch dimensions are derived from the original mm dimensions)

UNIT	A max.	A ₁ min.	A ₂ max.	b	b ₁	С	D ⁽¹⁾	E ⁽¹⁾	е	e ₁	L	ME	Мн	w	Z ⁽¹⁾ max.
mm	4.2	0.51	3.2	1.73 1.30	0.53 0.38	0.36 0.23	26.92 26.54	6.40 6.22	2.54	7.62	3.60 3.05	8.25 7.80	10.0 8.3	0.254	2.0
inches	0.17	0.020	0.13	0.068 0.051	0.021 0.015	0.014 0.009	1.060 1.045	0.25 0.24	0.10	0.30	0.14 0.12	0.32 0.31	0.39 0.33	0.01	0.078

Note

1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.


OUTLINE REFERENCES VERSION 150 1505	EUROPEAN	ISSUE DATE				
VERSION	IEC	JEDEC	EIAJ	PROJECTION	ISSUE DATE	
SOT146-1			SC603		92-11-17 95-05-24	

Octal bus transceiver, inverting (3-State)

74F640

SO20: plastic small outline package; 20 leads; body width 7.5 mm

SOT163-1

DIMENSIONS (inch dimensions are derived from the original mm dimensions)

UNIT	A max.	A ₁	A ₂	А3	bр	С	D ⁽¹⁾	E ⁽¹⁾	е	HE	L	Lp	Q	v	w	у	z ⁽¹⁾	θ
mm	2.65	0.30 0.10	2.45 2.25	0.25	0.49 0.36	0.32 0.23	13.0 12.6	7.6 7.4	1.27	10.65 10.00	1.4	1.1 0.4	1.1 1.0	0.25	0.25	0.1	0.9 0.4	8°
inches	0.10	0.012 0.004	0.096 0.089	0.01	0.019 0.014	0.013 0.009	0.51 0.49	0.30 0.29	0.050	0.419 0.394	0.055	0.043 0.016		0.01	0.01	0.004	0.035 0.016	0°

Note

1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.

OUTLINE		REFER	ENCES	EUROPEAN	ISSUE DATE
VERSION	IEC	JEDEC	EIAJ	PROJECTION	ISSUE DATE
SOT163-1	075E04	MS-013AC			-95-01-24 97-05-22

Octal bus transceiver, inverting (3-State)

74F640

NOTES

Octal bus transceiver, inverting (3-State)

74F640

Data sheet status

Data sheet status	Product status	Definition [1]
Objective specification	Development	This data sheet contains the design target or goal specifications for product development. Specification may change in any manner without notice.
Preliminary specification	Qualification	This data sheet contains preliminary data, and supplementary data will be published at a later date. Philips Semiconductors reserves the right to make chages at any time without notice in order to improve design and supply the best possible product.
Product specification	Production	This data sheet contains final specifications. Philips Semiconductors reserves the right to make changes at any time without notice in order to improve design and supply the best possible product.

^[1] Please consult the most recently issued datasheet before initiating or completing a design.

Definitions

Short-form specification — The data in a short-form specification is extracted from a full data sheet with the same type number and title. For detailed information see the relevant data sheet or data handbook.

Limiting values definition — Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information — Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Disclaimers

Life support — These products are not designed for use in life support appliances, devices or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips Semiconductors customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application.

Right to make changes — Philips Semiconductors reserves the right to make changes, without notice, in the products, including circuits, standard cells, and/or software, described or contained herein in order to improve design and/or performance. Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified.

Philips Semiconductors 811 East Arques Avenue P.O. Box 3409 Sunnyvale, California 94088–3409 Telephone 800-234-7381 © Copyright Philips Electronics North America Corporation 1998 All rights reserved. Printed in U.S.A.

print code Date of release: 10-98

Document order number: 9397-750-05148

Let's make things better.

Philips Semiconductors

