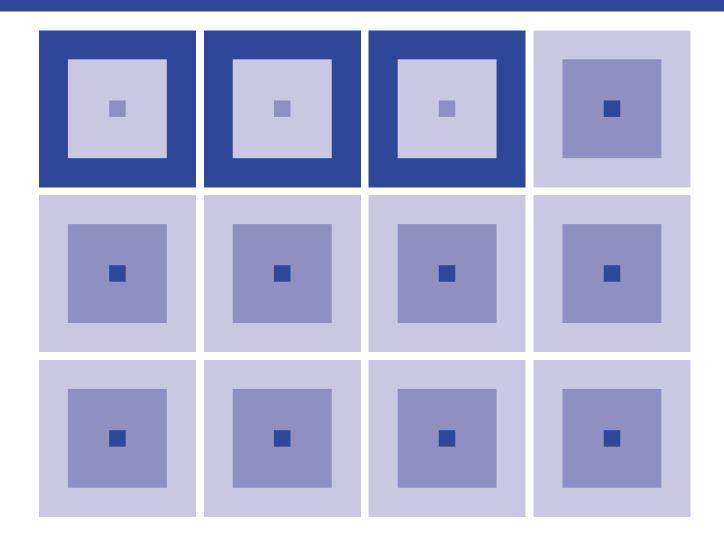


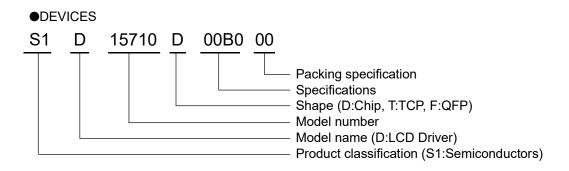
S1D15710 Series Technical Manual


NOTICE

No part of this material may be reproduced or duplicated in any form or by any means without the written permission of Seiko Epson. Seiko Epson reserves the right to make changes to this material without notice. Seiko Epson does not assume any liability of any kind arising out of any inaccuracies contained in this material or due to its application or use in any product or circuit and, further, there is no representation that this material is applicable to products requiring high level reliability, such as, medical products. Moreover, no license to any intellectual property rights is granted by implication or otherwise, and there is no representation or warranty that anything made in accordance with this material will be free from any patent or copyright infringement of a third party. This material or portions thereof may contain technology or the subject relating to strategic products under the control of the Foreign Exchange and Foreign Trade Law of Japan and may require an export license from the Ministry of International Trade and Industry or other approval from another government agency.

All other product names mentioned herein are trademarks and/or registered trademarks of their respective companies.

S1D15710 Series Technical Manual


SEIKO EPSON CORPORATION

NOTICE

No part of this material may be reproduced or duplicated in any form or by any means without the written permission of Seiko Epson. Seiko Epson reserves the right to make changes to this material without notice. Seiko Epson does not assume any liability of any kind aristing out of any inaccuracies contained in this material or due to its application or use in any product or circuit and, further, there is no representation that this material is applicable to products requiring high level reliability, such as, medical products. Moreover, no license to any intellectual property rights is granted by implication or otherwise, and there is no representation or warranty that anything made in accordance with this material will be free from any patent or copyright infringement of a third party. This material or portions thereof may contain technology or the subject relating to strategic products under the control of the Foreign Exchange and Foreign Trade Law of Japan and may require an export licence from teh Ministry of International Trade and Industry or other approval from another government agency.

All other product names mentioned herein are trademark and/or registered trademarks of their respective companies.

Configuration of product number

Contents

1.	DESCRIPTION	1
2.	FEATURES	1
3.	BLOCK DIAGRAM	2
4.	PIN LAYOUT	3
5.	PIN DESCRIPTION	7
6.	FUNCTION DESCRIPTION	. 11
7.	COMMAND DESCRIPTION	. 29
8.	COMMAND SETTING	. 40
	ABSOLUTE MAXIMUM RATINGS	
10.	DC CHARACTERISTICS	. 45
11.	MICROPROCESSOR (MPU) INTERFACE: REFERENCE	. 57
12.	CONNECTION BETWEEN LCD DRIVERS: REFERENCE	. 58
	LCD PANEL WIRING: REFERENCE	
	TCP PIN LAYOUT	
15.	TCP DIMENSIONS	. 61
16.	TEMPERATURE SENSOR CIRCUIT	. 62
17.	NOTES	. 65

1. DESCRIPTION

The S1D15710 Series is a single-chip dot matrix liquid crystal display driver that can be connected directly to a microprocessor bus. Eight-bit parallel or serial display data transmitted from the microprocessor is stored in the internal display data RAM, and the chip generates liquid crystal drive signals, independently of the microprocessor.

It has a on-chip 65×256 -bit display data RAM, and there is a one-to-one correspondence between the dot pixel on the liquid crystal panel pixels and internal RAM bit. This feature ensures implementation of highly free display.

The S1D15710 Series incorporate 65 common output circuits and 224 segment output circuits. A single chip can drive a 65×224 dot display (capable of displaying 14 columns \times 4 rows with 16×16 -dot kanji font). Further, display capacity can be extended by designing two chips in a master/display configuration.

Since both the S1D15710*10** and S1D15710*11** have built-in analog temperature sensor circuits, systems can be build that can maintain appropriate liquid crystal contrast over a wide temperature range with microcomputer control without requiring such parts as thermostats.

The S1D15710 Series can read and write RAM data with the minimum current consumption because it does not require any external operation clock. Also it incorporates a LCD power supply featuring a very low current consumption, a LCD drive power voltage regulator resistor and a display clock CR oscillator circuit. This allows the display system of a highperformance for handy equipment to be realized at the minimum power consumption and minimum component configuration.

2. FEATURES

• Direct display of RAM data using the display data RAM

RAM bit data "1" goes on.

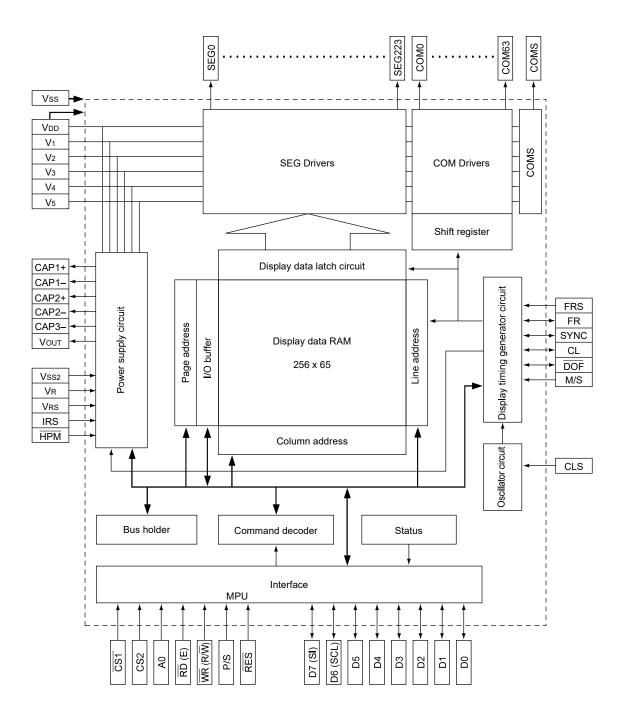
"0" goes off (at display normal rotation).

• RAM capacity

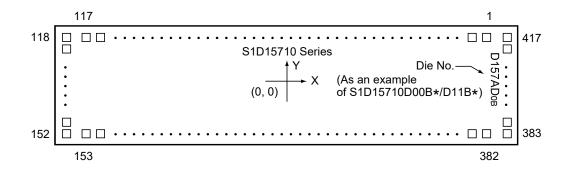
- $65 \times 256 = 16,640$ bits
- Liquid crystal drive circuit 65 circuits for the common output and 224 circuits for the segment output
- High-speed 8-bit MPU interface (Both the 80 and 68 series MUPs can directly be connected.)/serial interface enabled
- Abundant command functions
- Display Data Read/Write, Display ON/OFF, Display Normal Rotation/Reversal, Page Address Set, Display Start Line Set, column address set, Status Read, Power Supply Save Display All Lighting ON/OFF, LCD Bias Set, Read Modify Write, Segment Driver Direction Select, Electronic Control, V5 Voltage Adjusting Built-in Resistance Ratio Set, Static Indicator, n Line Alternating Current Reversal Drive, Common Output State Selection, and Built-in Oscillator Circuit ON
- Built-in static drive circuit for indicators (One set, blinking speed variable)
- Built-in power supply circuit for low power supply liquid crystal drive
 Booster circuit (Boosting magnification - double, triple, quadruple, boosting reference power supply external input enabled)
- 3% high accuracy alternating current voltage adjusting circuit (Temperature gradient: -0.05%/°C) Built-in V5 voltage adjusting resistor, built-in V1 to V4 voltage generation split resistors, built-in electronic control function, and voltage follower
- Built-in CR oscillator circuit (external clock input enabled)
- Low power consumption
- Built-in temperature sensor circuit (S1D15710D10B* and S1D15710D11B*)
- Power supplies
- Logic power supply: VDD VSS = 1.8 to 5.5 V Boosting reference power supply: VDD - VSS = 1.8 to 6.0 V

Liquid crystal drive power supply: V5 - VDD = -4.5 to -18.0 V

- Wide operating temperature range -40 to $+85^{\circ}C$
- CMOS process
- Shipping form Bare chip, TCP
- No light-resistant and radiation-resistant design are provided.


Product name	Duty	Bias	SEG Dr	COM Dr	VREG temperature gradient	Shipping form
S1D15710D00B*	1/65	1/9, 1/7	224	65	–0.05%/°C	Bare chip
S1D15710D10B*(*1)	1/65	1/9, 1/7	224	65	–0.05%/°C	Bare chip
S1D15710D11B*(*2)	1/65	1/9, 1/7	224	65	–0.05%/°C	Bare chip
S1D15710T00**	1/65	1/9, 1/7	224	65	–0.05%/°C	ТСР

Series specification


1: The built-in power circuit has been upgraded so that liquid crystal displays having big load capacities can be driven. Check the display and select if the display quality is inadequate even in high power mode of S1D15710D00B. There are no methods for supplying liquid crystal drive power externally without using the built-in power circuit. In that case, select either the S1D15710D00B* or the S1D15710D11B*.

2: All specificationa are same as those of the S1D15710D00B except for the temperature sensor circuit.

3. BLOCK DIAGRAM

4. PIN LAYOUT Chip Specification

	ltem		Size		Unit
		X		Y	
Chip size		16.65	×	2.90	mm
Chip thickne	ess		0.625		mm
Bump pitch			69 (Min.)		μm
Bump size	PAD No.1 to 117	85	×	85	μm
-	PAD No.118	85	×	73	μm
	PAD No.119 to 151	85	×	47	μm
	PAD No.152	85	×	73	μm
	PAD No.153	73	×	85	μm
	PAD No.154 to 381	47	×	85	μm
	PAD No.382	73	×	85	μm
	PAD No.383	85	×	73	μm
	PAD No.384 to 416	85	×	47	μm
	PAD No.417	85	×	73	μm
Bump heigh	t		17 (Typ.)		μm

PAD Central Coordinates

PAD No.	PIN Name	x	Y	PAD No.	PIN Name	x	Y	PAD No.	PIN Name	x	Y
1	(NC)	7814	1293	51	Vdd	972	1293	101	Vdd	-5723	1293
2	SYNC	7677		52	Vdd	838		102	M/S	-5859	
3	FRS	7541		53	Vdd	704		103	CLS	-5996	
4	TEST1	7404		54	Vdd	571		104	Vss	-6132	
5	VDD	7268		55	Vdd	437		105	C86	-6269	
6	TEST2	7131		56	Vss	303		106	P/S	-6405	
7	Vss	6995		57	Vss	169		107	Vdd	-6542	
8	TEST3	6855		58	Vss	35		108	HPM	-6678	
9	VDD	6718		59	Vss2	-99		109	Vss	-6815	
10	TEST4	6582		60	Vss2	-233		110	IRS	-6951	
11	Vss	6445		61	Vss2	-367		111	Vdd	-7088	
12	Vss	6309		62	Vss2	-501		112	TEST12	-7224	
13	Vss	6169		63	Vss2	-635		113	TEST13	-7361	
14	VDD	6033		64	(NC)	-768		114	TEST14	-7510	
15	VDD	5896		65	Vout	-902		115	TEST15	-7630	
16	VDD	5760		66	Vout	-1036		116	TEST16	-7750	
17	VDD	5623		67	CAP3–	-1170		117	(NC)	-7869	♥
18	TEST5	5483		68	CAP3–	-1304		118	(NC)	-8148	1295
19	TEST5	5347		69	(NC)	-1438		119	COM31		1209
20	TEST6	5210		70	CAP1+	-1572		120	COM30		1137
21	TEST6	5074		71	CAP1+	-1706		121	COM29		1064
22	TEST7	4937		72	CAP1–	-1840		122	COM28		991
23	TEST7	4798		73	CAP1–	-1974		123	COM27		919
24	TEST8	4661		74	CAP2–	-2107		124	COM26		846
25	TEST8	4525		75	CAP2–	-2241		125	COM25		773
26	TEST9	4388		76	CAP2+	-2375		126	COM24		701
27	TEST9	4252		77	CAP2+	-2509		127	COM23		628
28	SYNC	4112		78	Vss	-2643		128	COM22		555
29	FRS	3975		79	Vss	-2777		129	COM21		483
30	FR	3839		80	Vrs	-2911		130	COM20		410
31		3702		81	Vrs	-3045		131	COM19		337
32	DOF	3566		82	Vdd	-3179		132	COM18		265
33	Vss	3429		83	Vdd	-3313		133	COM17		192
34	CS1	3293		84	V1	-3446		134	COM16		119
35	CS2	3156		85	V1	-3580		135	COM15		47
36	VDD	3020		86	V2	-3714		136	COM14		-26
37	RES	2883		87	V2	-3848		137	COM13		-99
38	A0	2747		88	(NC)	-3982		138	COM12		-171
39	Vss	2610		89	V3	-4116		139	COM11		-244
40	W <u>R,</u> R/W	2474		90	V3	-4250		140	COM10		-317
41	RD,E	2337		91	V4	-4384		141	COM9		-389
42	Vdd	2201		92	V4	-4518		142	COM8		-462
43	D0	2064		93	V5	-4652		143	COM7		-535
44	D1	1928		94	V5	-4785		144	COM6		-607
45	D2	1791		95	(NC)	-4919		145	COM5		-680
46	D3	1655		96	VR	-5053		146	COM4		-753
47	D4	1518		97	Vdd	-5187		147	COM3		-825
48	D5	1382		98	TEST10	-5321		148	COM2		-898
49	D6 (SCL)			99	Vss	-5455		149	COM1		-971
50	D7 (SI)	1109	♥	100	TEST11	-5589	★	150	COM0	*	-1043

Unit: µm

4. PIN LAYOUT

TT '/	
Unit:	μm

PAD	PIN	x	Υ	PAD	PIN	x	Y	PAD	PIN	x	Y
No.	Name			No.	Name			No.	Name		
151	COMS	-8148	-1116	201	SEG45	-4579	-1293	251	SEG95	-1127	-1293
152	(NC)	•	-1201	202	SEG46	-4510		252	SEG96	-1058	
153	(NC)	-7906	-1293	203	SEG47	-4441		253	SEG97	-989	
154	(NC)	-7823		204	SEG48	-4372		254	SEG98	-920	
155	(NC)	-7754		205	SEG49	-4303		255	SEG99	-851	
156	SEG0	-7685		206	SEG50	-4234		256	SEG100	-782	
157	SEG1	-7616		207	SEG51	-4164		257	SEG101	-713	
158	SEG2	-7547		208	SEG52	-4095		258	SEG102	-644	
159	SEG3	-7478		209	SEG53	-4026		259	SEG103	-575	
160	SEG4	-7409		210	SEG54	-3957		260	SEG104	-506	
161	SEG5	-7340		211	SEG55	-3888		261	SEG105	-437	
162	SEG6	-7271		212	SEG56	-3819		262	SEG106	-368	
163	SEG7	-7202		213	SEG57	-3750		263	SEG107	-299	
164	SEG8	-7133		214	SEG58	-3681		264	SEG108	-230	
165	SEG9	-7064		215	SEG59	-3612		265	SEG109	-161	
166	SEG10	-6995		216	SEG60	-3543		266	SEG110	-92	
167	SEG11	-6926		217	SEG61	-3474		267	SEG111	-23	
168	SEG12	-6857		218	SEG62	-3405		268	SEG112	46	
169	SEG13	-6788		219	SEG63	-3336		269	SEG113	115	
170	SEG14	-6719		220	SEG64	-3267		270	SEG114	184	
171	SEG15	-6650		221	SEG65	-3198		271	SEG115	253	
172	SEG16	-6581		222	SEG66	-3129		272	SEG116	322	
173	SEG17	-6512		223	SEG67	-3060		273	SEG117	391	
174	SEG18	-6442		224	SEG68	-2991		274	SEG118	461	
175	SEG19	-6373		225	SEG69	-2922		275	SEG119	530	
176	SEG20	-6304		226	SEG70	-2853		276	SEG120	599	
177	SEG21	-6235		227	SEG71	-2784		277	SEG121	668	
178	SEG22	-6166		228	SEG72	-2715		278	SEG122	737	
179	SEG23	-6097		229	SEG73	-2646		279	SEG123	806	
180	SEG24	-6028		230	SEG74	-2577		280	SEG124	875	
181	SEG25	-5959		231	SEG75	-2508		281	SEG125	944	
182	SEG26	-5890		232	SEG76	-2439		282	SEG126	1013	
183	SEG27	-5821		233	SEG77	-2370		283	SEG127	1082	
184	SEG28	-5752		234	SEG78	-2301		284	SEG128	1151	
185	SEG29	-5683		235	SEG79	-2232		285	SEG129	1220	
186	SEG30	-5614		236	SEG80	-2163		286	SEG130	1289	
187	SEG31	-5545		237	SEG81	-2094		287	SEG131	1358	
188	SEG32	-5476		238	SEG82	-2025		288	SEG132	1427	
189	SEG33	-5407		239	SEG83	-1956		289	SEG133	1496	
190	SEG34	-5338		240	SEG84	-1886		290	SEG134	1565	
191	SEG35	-5269		241	SEG85	-1817		291	SEG135	1634	
192	SEG36	-5200		242	SEG86	-1748		292	SEG136	1703	
193	SEG37	-5131		243	SEG87	-1679		293	SEG137	1772	
194	SEG38	-5062		244	SEG88	-1610		294	SEG138	1841	
195	SEG39	-4993		245	SEG89	-1541		295	SEG139	1910	
196	SEG40	-4924		246	SEG90	-1472		296	SEG140	1979	
197	SEG41	-4855		247	SEG91	-1403		297	SEG141	2048	
198	SEG42	-4786		248	SEG92	-1334		298	SEG142	2117	
199	SEG43	-4717		249	SEG93	-1265		299	SEG143	2186	
200	SEG44	-4648	•	250	SEG94	-1196	*	300	SEG144	2255	▼

Unit: µm

PAD	PIN	v	V	PAD	PIN	v		PAD	PIN	v	V
No.	Name	X	Y	No.	Name	X	Y	No.	Name	X	Y
301	SEG145	2324	-1293	351	SEG195	5776	-1293	401	COM49	8148	119
302	SEG146	2393		352	SEG196	5845		402	COM50		192
303	SEG147	2462		353	SEG197	5914		403	COM51		265
304	SEG148	2531		354	SEG198	5983		404	COM52		337
305	SEG149	2600		355	SEG199	6052		405	COM53		410
306	SEG150	2669		356	SEG200	6121		406	COM54		483
307	SEG151	2739		357	SEG201	6190		407	COM55		555
308	SEG152	2808		358	SEG202	6259		408	COM56		628
309	SEG153	2877		359	SEG203	6328		409	COM57		701
310	SEG154	2946		360	SEG204	6397		410	COM58		773
311	SEG155	3015		361	SEG205	6466		411	COM59		846
312	SEG156	3084		362	SEG206	6535		412	COM60		919
313	SEG157	3153		363	SEG207	6604		413	COM61		991
314	SEG158	3222		364	SEG208	6673		414	COM62		1064
315	SEG159	3291		365	SEG209	6742		415	COM63		1137
316	SEG160	3360		366	SEG210	6811		416	COMS		1209
317	SEG161	3429		367	SEG211	6880		417	(NC)	•	1295
318	SEG162	3498		368	SEG212	6949					
319	SEG163	3567		369	SEG213	7018					
320	SEG164	3636		370	SEG214	7087					
321	SEG165	3705		371	SEG215	7156					
322	SEG166	3774		372	SEG216	7225					
323	SEG167 SEG168	3843		373	SEG217	7294					
324 325	SEG168 SEG169	3912 3981		374 375	SEG218 SEG219	7364 7433					
325	SEG109 SEG170	4050		375	SEG219 SEG220	7502					
320	SEG170	4030		370	SEG220 SEG221	7571					
328	SEG171	4188		378	SEG222	7640					
329	SEG172	4257		379	SEG223	7709					
330	SEG173	4326		380	(NC)	7778					
331	SEG175	4395		381	(NC)	7847					
332	SEG176	4464		382	(NC)	7930					
333	SEG177	4533		383	(NC)	8148	-1201				
334	SEG178	4602		384	COM32		-1116				
335	SEG179	4671		385	COM33		-1043				
336	SEG180	4740		386	COM34		-971				
337	SEG181	4809		387	COM35		-898				
338	SEG182	4878		388	COM36		-825				
339	SEG183	4947		389	COM37		-753				
340	SEG184	5017		390	COM38		-680				
341	SEG185	5086		391	COM39		-607				
342	SEG186	5155		392	COM40		-535				
343	SEG187	5224		393	COM41		-462				
344	SEG188	5293		394	COM42		-389				
345	SEG189	5362		395	COM43		-317				
346	SEG190	5431		396	COM44		-244				
347	SEG191	5500		397	COM45		_171				
348	SEG192	5569		398	COM46		-99				
349	SEG193	5638		399	COM47		-26				
350	SEG194	5707	•	400	COM48	•	47				

5. PIN DESCRIPTION

Power Supply Pin

Pin name	I/O	Description	Number of pins			
Vdd	Power supply	Commonly used with the MPU power supply pin Vcc.	12			
Vss	Power supply	0 V pin connected to the system ground (GND)	9			
Vss2	Power supply	Boosting circuit reference power supply for liquid crystal drive	5			
Vrs	Power supply	External input pin for liquid crystal power supply voltage adjusting circuit They are set to OPEN	2			
V1, V2 V3, V4 V5	Power supply	Multi-level power supply for liquid crystal drive. The voltage specified according to liquid crystal cells is impedance-converted by a split resistor or operation amplifier (OP amp) and applied. The potential needs to be specified based on VDD to establish the relationship of dimensions shown below:	10			
	$V_{DD} (=V_0) \ge V_1 \ge V_2 \ge V_3 \ge V_4 \ge V_5$ Master operation When the power supply is ON, the following voltages are applied to V_1 ~ V4 from the built-in power supply					
		circuit. The selection of the voltages is determined using the LCD bias set command. $\begin{array}{c c} V_1 & 1/9 \cdot V_5 & 1/7 \cdot V_5 \\ V_2 & 2/9 \cdot V_5 & 2/7 \cdot V_5 \\ V_3 & 7/9 \cdot V_5 & 5/7 \cdot V_5 \\ V_4 & 8/9 \cdot V_5 & 6/7 \cdot V_5 \end{array}$				

LCD Power Supply Circuit Pin

Pin name	I/O	Description	Number of pins
CAP1+	0	Boosting capacitor positive side connecting pin. Connects a capacitor between the pin and CAP1– pin.	2
CAP1–	0	Boosting capacitor negative side connecting pin. Connects a capacitor between the pin and CAP1+ pin.	2
CAP2+	0	Boosting capacitor positive side connecting pin. Connects a capacitor between the pin and CAP2– pin.	2
CAP2–	0	Boosting capacitor negative side connecting pin. Connects a capacitor between the pin and CAP2+ pin.	2
CAP3-	0	Boosting capacitor negative side connecting pin. Connects a capacitor between the pin and CAP1+ pin.	2
νουτ	I/O	Boosting output pin. Connects a capacitor between the pin and Vss2.	2
Vr	I	Voltage adjusting pin. Applies voltage between VDD and V5 using a split resistor.	1
		Valid only when the V5 voltage adjusting built-in resistor is not used (IRS=LOW) Do not use VR when the V5 voltage adjusting built-in resistor is used (IRS=HIGH)	

System Bus Connecting Pins

Pin name	I/O			Descriptio	on		Number of pins		
D7 to D0 (SI) (SCL)	I/O	An 8-bit b standard When the D7: Ser D6: Ser In this cas When Ch high impe	8						
A0	I	to discrim A0=HIO	inate data / d GH: Indicates	commands. that D0 to D7	MPU address k ' are display da are control dat		1		
RES	I		by setting R eration is per		RES signal lev	el.	1		
CS1 CS2	I				V and CS2=HIC t of data/comm	GH, this signal ands is enabled.	2		
RD (E)	I	Pin that signal is • When th	 When the 80 series MPU is connected, active LOW is set. Pin that connects the RD signal of the 80 series MPU. When this signal is LOW, the S1D15710 series data bus is set in the output state. When the 68 series MPU is connected, active HIGH is set. 68 series MPU enable clock input pin 						
WR (R/W)	I	Pin that bus sign • When th Read/wr	 When the 80 series MPU is connected, active LOW is set. Pin that connects the WR signal of the 80 series MPU. The data bus signal is latched on the leading edge of the WR signal. When the 68 series MPU is connected, Read/write control signal input pin R/W=HIGH: Read operation 						
FRS	0		n for static dr				1		
C86	I	MPU inte C86=HI	rface switchi GH: 68 serie	-			1		
P/S	I	P/S=HIGI P/S=LOW	H: Parallel da /: Serial data	ata entry entry	/serial data entr wing table is giv	-	1		
		P/S	Data/ command	Data	Read/write	Serial clock			
		HIGH A0 D0 to D7 RD, WR							
		LOW							
	LOWA0SI (D7)Write-onlySCL (D6)When P/S=LOW, D0 to D5 are set to high impedance. D0 to D5 car be HIGH, LOW, or "OPEN". RD(E) and WR (R/W) are fixed to HIGH or LOW. For the serial data entry, RAM display data cannot be read.								

Pin name	I/O	Description	Number of pins
CLS	I	Pin that selects the validity/invalidity of the built-in oscillator circuit for display clocks. CLS=HIGH: Built-in oscillator circuit valid CLS=LOW: Built-in oscillator circuit invalid (external input) When CLS=LOW, display clocks are input from the CL pin. When the S1D15710 series is used for the master/slave configuration, each of the CLS pins is set to the same level together. Display clock Master Built-in oscillator circuit used HIGH External input LOW	1
M/S	Ι	Pin that selects the master/slave operation for the S1D15710 series.The liquid crystal display system is synchronized by outputting thetiming signal required for the liquid crystal display for the masteroperation and inputting the timing signal required for the liquidcrystal display for the slave operation.M/S=HIGH: Master operationM/S=LOW: Slave operationAccording to the M/S and CLS states, the following table is given.M/SCLSOscillator Power supplyCLFRSYNCFRSDOFHIGHHIGHValidValidOutputOutputOutputOutputOutputLOWInvalidValidInputInputInputInputInputLOWHIGHInvalidInvalidInputInputInputInput	1
CL	I/O	LOW Invalid Invalid Input Input Input Output Input Display clock I/O pin According to the M/S and CLS states, the following table is given. M/S CLS CL HIGH HIGH Output LOW Input LOW Input When the S1D15710 series is used for the master/slave	1
FR	I/O	configuration, each CL pin is connected. Liquid crystal alternating current signal I/O pin M/S=HIGH: Output M/S=LOW: Input When the S1D15710 series is used for the master/slave configuration, each FR pin is connected.	1
SYNC	I/O	Liquid crystal synchronizing current signal I/O pin M/S=HIGH: Output M/S=LOW: Input When the S1D15710 series is used for the master/slave configuration, each SYNC pin is connected.	2
DOF	I/O	Liquid crystal display blanking control pin M/S=HIGH: Output M/S=LOW: Input When the S1D15710 series is used for the master/slave configuration, each DOF pin is connected.	1
IRS	I	V5 voltage adjusting resistor selection pin IRS=HIGH: Built-in resistor used IRS=LOW: Built-in resistor not used. The V5 voltage is adjusted by the VR pin and stand-alone split resistor. Valid only at master operation. The pin is fixed to HIGH or LOW at slave operation.	1
HPM	I	Power supply control pin of the power supply circuit for liquid crystal drive HPM=HIGH: Normal mode HPM=LOW: High power supply mode Valid only at master operation. The pin is fixed to HIGH or LOW at slave operation.	1

5. PIN DESCRIPTION

Liquid Crystal Drive Pin

Pin name	I/O		Description						
SEG0 to SEG223	0	Output pins for t RAM and FR sig VDD, V2, V3 and	224						
				Output	voltage				
		RAM data	FR	Display normal operation	Display reversal				
		HIGH	HIGH	Vdd	V2				
		HIGH	LOW	V5	V3				
		LOW	HIGH	V2	Vdd				
		LOW	LOW	V3	V5				
		Power save	—	V	DD				
COM0 to COM63		Output pins for t are combined to	he LCD co select a c	ommon drive. Scan d desired level among \	data and FR signal VDD, V1, V4 and V5.	64			
		Scanning	data	FR	Output voltage				
		HIGH		HIGH	V5				
		HIGH		LOW	Vdd				
		LOW		HIGH	V1				
		LOW		LOW	V4				
				Power sa	ave	—	Vdd		
COMS	0	Indicator dedica Set to OPEN wh When COMS is signal is output	2						

Test Pin

Pin name	I/O	Description	Number of pins
TEST1 to 4	I/O	Fix the pin to HIGH. To use a built-in temperature sensor circuit in the S1D15710*00**/ S1D15710*11**, see 16, Temperature Sensor Circuit.	4
TEST10	Ι	Fix it to HIGH for the S1D15710*00**/S1D15710*11**; fix it to LOW for S1D15710*10**.	1
TEST11to13	I/O	IC chip test pin. Fix the pin to HIGH.	3
TEST5 to 9, 14 to 16	I/O	IC chip test pin. Take into consideration so that the capacity of lines cannot be exhausted by setting the pin to OPEN.	13

6. FUNCTION DESCRIPTION

MPU Interface

Selection of interface type

The S1D15710 series transfers data through 8-bit bidirectional data buses (D7 to D0) or serial data input (SI). By setting the polarity of the P/S pin to either HIGH or LOW, the 8-bit parallel data entry or serial data entry can be selected as listed in Table 1.

Table 1									
P/S	CS1	CS2	A0	RD	WR	C86	D7	D6	D5 to D0
HIGH: Parallel data entry	CS1	CS2	A0	RD	WR	C86	D7	D6	D5 to D0
LOW: Serial data entry	CS1	CS2	A0	_	_	_	SI	SCL	(HZ)

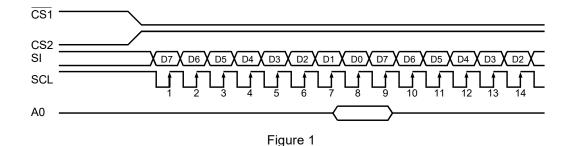
Parallel interface

 $\ensuremath{\mathsf{Fix}}\xspace$ — to HIGH or LOW . HZ indicates the high impedance state.

When the parallel interface is selected (P/S=HIGH), the S1D15705 series can directly be connected to the MPU bus of either the 80 or 68 series MPU by setting the C86 pin to HIGH or LOW as listed in Table 2.

Table 2									
C86	CS1	CS2	A0	RD	WR	D7 to D0			
HIGH: 68 series MPU bus	CS1	CS2	A0	Е	R/W	D7 to D0			
LOW: 80 series MPU bus	CS1	CS2	A0	RD	WR	D7 to D0			

In addition, the data bus signal can be identified according to the combinations of the A0, $\overline{\text{RD}}$ (E), $\overline{\text{WR}}$ (R/ $\overline{\text{W}}$) signals as listed in Table 3.


Table 3							
Common	68 series	80 series					
A0	R/W	RD	WR	Function			
1	1	0	1	Display data read			
1	0	1	0	Display data write			
0	1	0	1	Status read			
0	0	1	0	Control data write (command)			

Serial interface

When the serial interface is selected (P/S=LOW), the serial data entry (SI) and serial clock input(SCL) can be accepted with the chip in the non-active state (CS1=LOW or CS2=HIGH. The serial interface consists of an 8-bit shift register and a 3-bit counter. Serial data is fetched from the serial data entry pin in the order of D7, D6,, and D0 on the leading edge of the serial clock and

converted into 8-bit parallel data on the leading edge of the 8th serial clock, then processed.

Whether to identify that the serial data entry is display data or command is judged by the A0 input, and A0=HIGH indicates display data and A0=LOW indicates the command. After the chip is set to the non-active state, the A0 input is read and identified at the timing on the $8 \times$ n-th leading edge of the serial clock. Figure 1 shows the signal chart of the serial interface.

- When the chip is in the non-active state, both the shift register and counter are reset to the initial state.
- Cannot be read for the serial interface.
- For the SCL signal, pay careful attention to the terminating reflection of lines and external noise. The operation confirmation using actual equipment is recommended.

Chip select

The S1D15710 series has two chip select pins $\overline{CS1}$ and CS2 and enables the MPU interface or serial interface only when $\overline{CS1}$ =LOW and CS2=HIGH.

When Chip Select is in the non-active state, <u>D0</u> to D7 are in the high impedance state and the A0, RD, and \overline{WR} inputs become invalid. When the serial interface is selected, the shift register and counter are reset.

Display data RAM and internal register access

Since the S1D15710 series access viewed from the MUP side satisfies the cycle time and does not require the wait time, high-speed data transfer is enabled.

The S1D15710 series performs a kind of inter-LSI pipeline processing through the bus holder attached to the internal data bus when it performs the data transfer with the MPU.

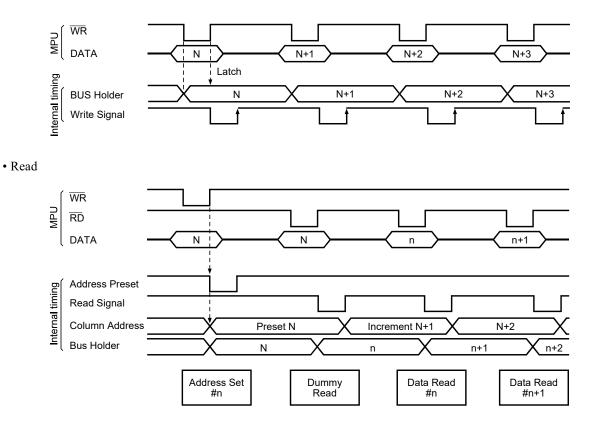
For example, when data is written on the display data RAM, the data is first held in the bus holder and written

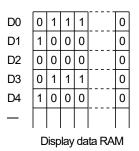
on the display data RAM up to the next data write cycle. Further, when the MPU reads the contents of display data RAM, the read data at the first data read cycle (dummy) is held in the bus holder and read on the system bus from the bus holder up to the next data read cycle. The read sequence of the display data RAM is restricted. When the address is set, note that the specified address data is not output to the subsequent read instruction and output at the second data read. Therefore single dummy read is required after the address set and write cycle. Figure 2 shows this relationship.

Busy flag

When the busy flag is "1", it indicates that the S1D15710 series is performing an internal operation, and only the status read instruction can be accepted. The busy flag is output to the D7 pin using the status read command. If the cycle time (tCYC) is ensured, the MPU throughput can be improved greatly since this flag needs not be checked before each command.

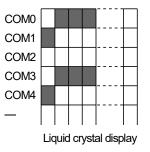
• Write




Figure 2

Display Data RAM

Display data RAM


This display data RAM stores display dot data and consists of 65 (8 pages \times one 8 bit + 1) \times 256 bits. Desired bits can be accessed by specifying page and column addresses.

Since the MPU display data D7 to D0 correspond to the common direction of the liquid crystal display, the restrictions at display data transfer is reduced and the

display configuration with the high degree of freedom can easily be obtained when the S1D15710 series is used for the multiple chip configuration.

Besides, the read/write operation to the display data RAM is performed through the I/O buffer from the MPU side independently of the liquid crystal drive signal read. Therefore even when the display data RAM is asynchronously accessed during liquid crystal display, the access will not have any adverse effect on the display such as flickering.

Page address circuit

As shown in Figure 4, the page address of the display data RAM is specified using the page address set command. To access the data using a new page, the page address is respecified.

The page address 8 (D3,D2,D1,D0=1,0,0,0) is an indicator dedicated RAM area and only the display data D0 is valid.

Column address circuit

As shown in Figure 4, the display data RAM column address is specified by the Column Address Set command. The specified column address is incremented by +1 at every input of display data read/write command. This allows the MPU to access the display data continuously.

Incrementation of the column address is stopped by FFH. When display data is accessed continuously, the column address continues to specify the FFH after access of the FFH. It should be noted that the column address FFH display data is accessed repeatedly. The column address and page address are independent of each other. Therefore, when shifting from the column of page 0 to the column of page 1, for example, it is necessary to specify each of the page address and column address again. Furthermore, as shown in Table 4, the AD command (segment driver direction select command) can used to reverse the correspondence between the display data RAM column address and segment output. This allows constraints on IC layout to be minimized at the time of LCD module assembling.

Table 4	Т	a	b	le	4	
---------	---	---	---	----	---	--

SEG output		SEG0	SEG223
ADC	"0"	0 (H) \rightarrow Col	umn Address \rightarrow DF (H)
(D0)	"1"	FF (H)←Col	umn Address← 20 (H)

Line address circuit

When displaying contents of the display data RAM, the line address circuit is used for specifying the corresponding addresses. See Figure 4. Using the display start line address set command, the top line is normally selected (when the common output state is normal, COM0 is output. And, when reversed outputs COM63). For the display area of 65 lines is secured starting from the specified display start line address in the address incrementing direction.

Dynamically changing the line address using the display start line address set command enables screen scrolling and page change.

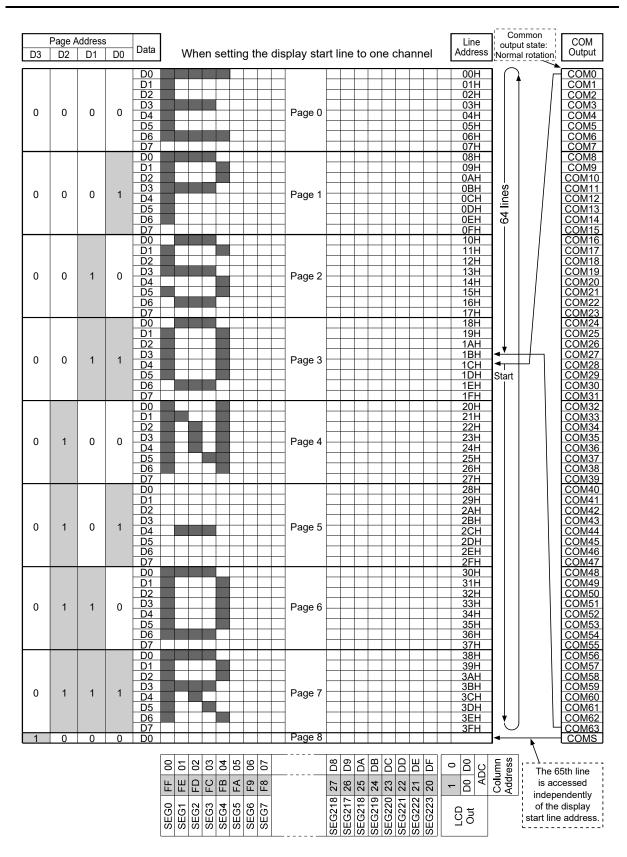


Figure 4

Display data latch circuit

The display data latch circuit is a latch that temporarily stores the display data output from the display data RAM to the liquid crystal drive circuit.

Since the Display Normal Rotation/Reversal, Display ON/OFF, and Display All Lighting ON/OFF commands control the data in this latch, the data within the display data RAM is not changed.

Oscillator Circuit

This oscillator circuit is a CR type oscillator and generates display clocks. The oscillator circuit is valid only when M/S=HIGH and CLS=HIGH and starts oscillation after the Built-in Oscillator Circuit ON command is entered. When CLS=LOW, the oscillation is stopped and the display clocks are entered from the CL pin.

Display Timing Generator Circuit

This display timing generator circuit generates timing signals from the display clocks to the line address circuit and the display latch circuit. It latches the display data to the display data latch circuit and outputs it to the segment drive output pin by synchronizing to the display clocks. The read operation of display data to the liquid crystal drive circuit is completely independent of the access to the display data RAM from the MPU. Therefore even when the display data RAM is asynchronously accessed during liquid crystal display, the access will not have any adverse effect on the display such as flickering.

The circuit also generates the internal common timing, liquid crystal alternating current signal (FR), and synchronous signal (SYNC) from the display clocks. As shown in Figure 5, the FR normally generates the drive waveforms in the 2-frame alternating current drive system to the liquid crystal drive circuit. It can generate n-line reversal alternating current drive waveforms by setting data (n-1) to the n-line reversal drive register. If a display quality problem such as crosstalk occurs, it can be improved by using the n-line reversal alternating current is applied by actually displaying the liquid crystal.

SNYC is a signal that synchronizes the line counter and common timing generator circuit to the SYNC signal output side IC. Therefore the SYNC signal becomes a waveform at a duty ratio of 50% that synchronizes to the frame synchronization.

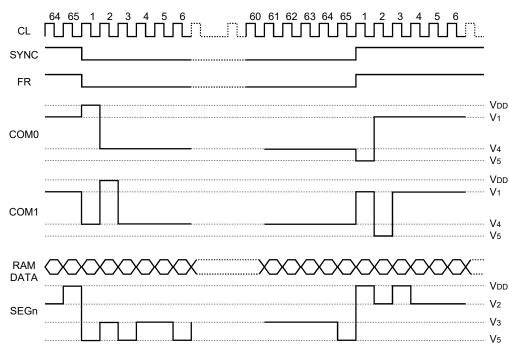
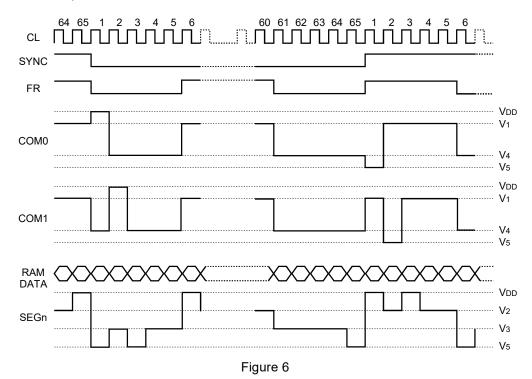

When the S1D15710 series is used for the multiple chip configuration, the slave side needs to supply the display timing signals (FR, SYNC, CL, and DOF) from the master side.

Table 5 shows the state of FR, SYNC, CL, or DOF.

Table 5	
---------	--


	Operation mode	FR	SYNC	CL	DOF
Master	Built-in oscillator circuit valid (CLS=HIGH)	Output	Output	Output	Output
(M/S=HIGH)	Built-in oscillator circuit invalid (CLS=LOW)	Output	Output	Input	Output
Slave	Built-in oscillator circuit valid (CLS=HIGH)	Input	Input	Input	Input
(M/S=LOW)	Built-in oscillator circuit invalid (CLS=LOW)	Input	Input	Input	Input

2-frame alternating current drive waveforms

n-line reversal alternating current drive waveforms (Example of n=5: when the line reversal register is set to 4)

Common Output State Selection Circuit

The S1D15710 series can set the scanning direction of the COM output using the common output state selection command (see Figure 6). Therefore the IC assignment restrictions at LCD module assembly are reduced.

Table 6								
State COM scanning direction								
Normal rotation	COM 0	\rightarrow	COM 63					
Reversal	COM 63	\rightarrow	COM 0					

Liquid Crystal Drive Circuit

This liquid crystal drive circuit is 289 sets of mutiplexers that generate quadruple levels for liquid crystal drive. It outputs the liquid crystal drive voltage that corresponds to the combinations of the display data, COM scanning signal, and FR signal.

Figure 6 shows examples of the SEG and COM output waveforms.

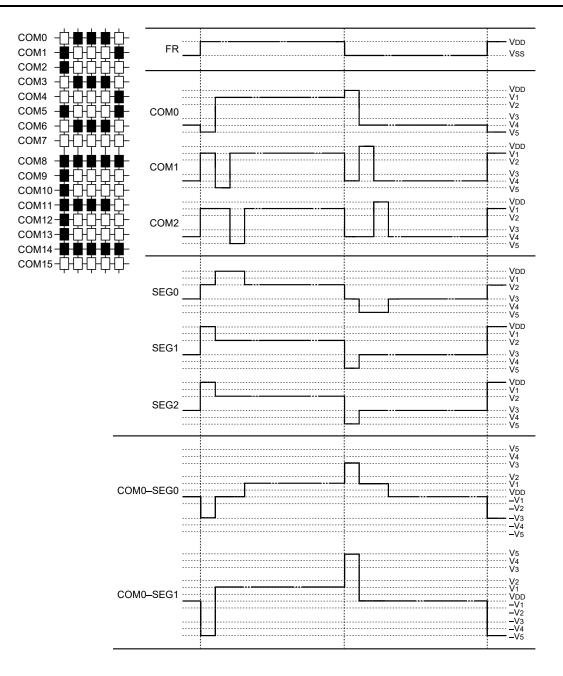


Figure 7

Power Supply Circuit

This power supply circuit is a low power supply consumption one that generates the voltage required for the liquid crystal drive and consists of a boosting circuit, voltage adjusting circuit, and voltage follower circuit. It is valid only at master operation.

The power supply circuit ON/OFF controls the boosting

circuit, voltage adjusting circuit, and voltage follower circuit using the power supply control set command, respectively.

Therefore, it can also use the partial functions of the external power supply and built-in power supply together. Table 7 lists the functions that control 3-bit data using the power control set command and Table 8 lists the reference combinations.

Table 7	Description of	Foontrolling hite	uning the new	ver control set command
rable /	Describiton of	i contronina diis	using the boy	

	14 a var	St	ate
	Item	"1"	"0"
D2	Boosting circuit control bit	ON	OFF
D1	Voltage adjusting circuit (V adjusting circuit) control bit	ON	OFF
D0	Voltage follower circuit (V/F circuit) control bit	ON	OFF

Status of use	D2	D1	D0	Boosting circuit	V adjusting circuit	V/F circuit	External voltage input	Boosting system pin
 Built-in power supply used 	1	1	1	0	0	0	Vss2	Used
② V adjusting circuit and V/F circuit only	0	1	1	X	0	0	Vout, Vss2	OPEN
3 V/F circuit only	0	0	1	x	Х	0	V5, VSS2	OPEN
④ External power supply only	0	0	0	X	Х	Х	V1 to V5	OPEN

• The boosting system pin indicates the CAP1+, CAP1-, CAP2+, CAP2-, or CAP3- pin.

• Although the combinations other than those listed in the above table are also possible, they cannot be recommended because they are not actual use methods.

Boosting circuit

The boosting circuit incorporated in the S1D15710 series enables the quadruple boosting, triple boosting, and double boosting of the VDD – VSS2 potential.

For the quadruple boosting, the VDD \leftrightarrow VSS2 potential is quadruple-boosted to the negative side and output to the VOUT pin by connecting the capacitor C1 between CAP1+ \leftrightarrow and CAP1-, between CAP2+ \leftrightarrow and CAP2-, between CAP1+ \leftrightarrow and CAP3-, and between VSS2 \leftrightarrow and VOUT.

For the triple boosting, the VDD \leftrightarrow VSS2 potential is

triple-boosted to the negative side and output to the Vout pin by connecting the capacitor C1 between CAP1+ \leftrightarrow and CAP1-, between CAP2+ \leftrightarrow and CAP2-, and between Vss2 \leftrightarrow and Vout and strapping both CAP3- and Vout pins.

For the double boosting, the VDD \leftrightarrow VSS2 potential is doubly boosted to the negative side and output to the VOUT pin by connecting the capacitor C1 between CAP1+ \leftrightarrow and CAP1-, and between VSS2 \leftrightarrow , setting CAP2+ to OPEN, and VOUT and strapping CAP2-, CAP3-, and VOUT pins.

Figure 8 shows the relationships of boosting potential.

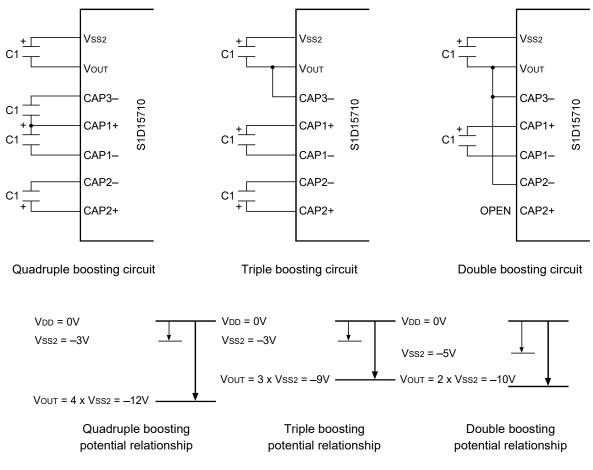


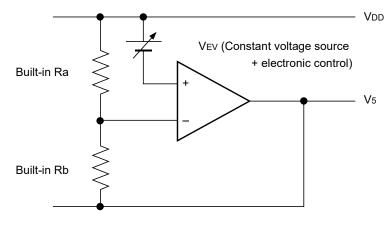
Figure 8

• Set the VSS2" voltage range so that the voltage of the VOUT pin cannot exceed the absolute maximum ratings.

Voltage adjusting circuit

The boosting voltage generated in VOUT outputs the liquid crystal drive voltage V5 through the voltage adjusting circuit.

Since the S1D15710 series incorporates a high-accuracy constant power supply, 64-step electronic control function, and V5 voltage adjusting resistor, a high-accuracy voltage adjusting circuit can eliminate and save parts.


(A) When using the V5 voltage adjusting built-in resistor The liquid crystal power supply voltage V5 can be controlled only using the command without an external resistor and the light and shade of liquid crystal display be adjusted by using the V5 voltage adjusting built-in resistor and the electronic control function.

The V5 voltage can be obtained according to Expression A-1 within the range of |V5| < |VOUT|.

$$V_{5} = \left(1 + \frac{Rb}{Ra}\right) \cdot V_{EV}$$

$$= \left(1 + \frac{Rb}{Ra}\right) \cdot \left(1 - \frac{\alpha}{162}\right) \cdot V_{REG}$$

$$\left[\Theta V_{EV} = \left(1 - \frac{\alpha}{162}\right) \cdot V_{REG}\right]$$
(Expression A-1)

VREG is a constant voltage source within an IC, and the value at Ta=25°C is constant as listed in Table 9.

	Table 9			
Device	Temperature gradient	Unit	Vreg	Unit
Internal power supply		[%/°C]	-2.1	[V]

 α indicates an electronic control command value. Setting data in a 6-bit electronic control register enters one state among 64 states. Table 10 lists the values of α based on the setup of the electronic control register.

	Table 10											
D5	D4	D3	D2	D1	D0	α						
0	0	0	0	0	0	63						
0	0	0	0	0	1	62						
0	0	0	0	1	0	61						
						÷						
1	1	1	1	0	1	2						
1	1	1	1	1	0	1						
1	1	1	1	1	1	0						

Rb/Ra indicates the V5 voltage adjusting built-in resistance ratio and can be adjusted into eight steps using the V5 voltage adjusting built-in resistance ratio set command. The reference values of the (1+Rb/Ra) ratio are obtained as listed in Table 11 by setting 3-bit data in the V5 voltage adjusting built-in resistance ratio register.

Table 11 (Reference values)

F	Registe	er	Device per temperature gradient [Unit: %/°C]
D2	D1	D0	-0.05
0	0	0	4.5
0	0	1	5.0
0	1	0	5.5
0	1	1	6.0
1	0	0	6.5
1	0	1	7.0
1	1	0	7.6
1	1	1	8.1

For the internal resistance ratio, a manufacturing dispersion of up to $\pm 7\%$ should be taken into account. When not within the tolerance, adjust the V5 voltage by externally mounting Ra and Rb.

Figure 10 show the V5 voltage reference values per temperature gradient device based on the values of the V5 voltage adjusting built-in resistance ratio register and electronic control register at $Ta=25^{\circ}C$.

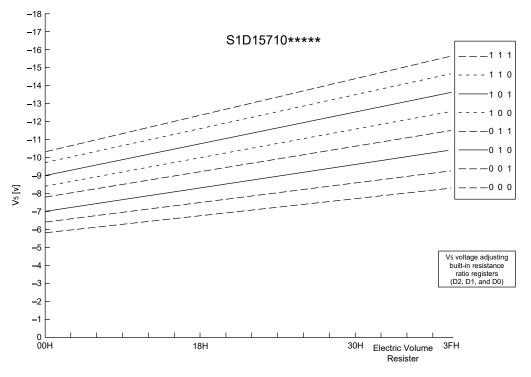


Figure 10 S1D15710***** Temperature gradient = -0.05%/°C

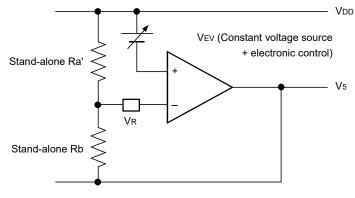
V5 voltage based on the values of V5 voltage adjusting built-in resistance ratio register and electronic control register

<Setting example: When setting $V_5 = -9$ V at Ta=25°C> From Figure 8 and Expression A-1.

Table 12											
	Register										
Description	D5	D4	D3	D2	D1	D0					
V5 voltage adjusting	-	—	_	0	1	0					
electronic control	1	0	0	1	0	1					

In this case, Table 13 lists the V5 voltage variable range and pitch width using the electronic control function.

			Table 13			
V 5	Min.		Тур.		Max.	Unit
Variable range	-11.6	to	-9.3	to	-7.1	[V]
Pitch width			67			[mV]


(B) When using the external resistor (not using the V5 voltage adjusting built-in resistor) ① The liquid crystal power supply voltage V5 can also be set by adding the resistors (Ra' and Rb') between VDD and VR and between VR and V5 without the V5 voltage adjusting built-in resistor (IRS pin=LOW). Also in this case, the liquid crystal

power supply voltage V5 can be controlled using the command and the light and shade of liquid crystal display can be adjusted by using the electronic control function. The V5 voltage can be obtained from Expression B-1 by setting the external resistors Ra' and Rb' within the range of $|V5| \le |VOUT|$.

$$V_{5} = \left(1 + \frac{Rb'}{Rd'}\right) \cdot V_{EV}$$

$$= \left(1 + \frac{Rb'}{Rd'}\right) \cdot \left(1 - \frac{\alpha}{162}\right) \cdot V_{REG}$$

$$\left[\Theta V_{EV} = \left(1 - \frac{\alpha}{162}\right) \cdot V_{REG}\right]$$
(Expression B-1)

<Setting example: When setting V5=-9 V at Ta=25°C>

Set the value of the electronic control register as the intermediate value (D5, D4, D3, D2, D1, D0) = (1,0,0,0,0,0). From the foregoing we can establish the expression:

$$\alpha = 31$$
$$V_{REG} = -2.1V$$

From Expression B-1, it follows that

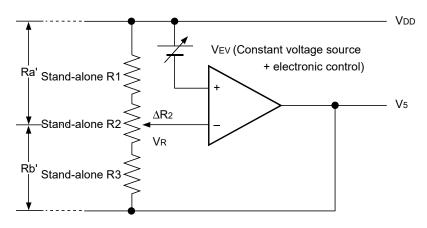
$$V_5 = \left(1 + \frac{Rb'}{Rd}\right) \cdot \left(1 - \frac{\alpha}{162}\right) \cdot V_{REG} \text{ (Expression B-2)}$$
$$-9V = \left(1 + \frac{Rb'}{Rd'}\right) \cdot \left(1 - \frac{31}{162}\right) \cdot (-2.1)$$

Also, suppose the current applied to Ra' and Rb' is 5μ A. $Rd'+Rb'=1.8M\Omega$ (Expression B-2) It follows that Therefore from Expressions R 2 and R 3, we have

Therefore from Expressions B-2 and B-3, we have

$$\frac{Rb}{Rd'} = 4.3$$
$$Rd' = 340k\Omega$$
$$Rb' = 1460k\Omega$$

In this case, Table 14 lists the V5 voltage variable range and pitch width using the electronic control function.


			Table 14			
V 5	Min.		Тур.		Max.	Unit
Variable range	-11.1	to	-9.0	to	-6.8	[V]
Pitch width			67			[mV]

_ . .

(C) When using the external resistor (not using the V5 voltage adjusting built-in resistor) ⁽²⁾

In the use of the above-mentioned external resistor, the liquid crystal power supply voltage V5 can also be set by adding the resistors to finely adjust Ra' and Rb'. Also in this case, the liquid crystal power supply voltage V5 can be controlled using the command and the light and shade of liquid crystal display can be adjusted by using the electronic control function. The V5 voltage can be obtained from the following expression C-1 by setting the external resistors R1, R2 (variable resistors), and R3 within the range of $|V5| \le |VOUT|$ and finely adjusting R2 (Δ R2).

$$V_{5} = \left(1 + \frac{R_{3} + R_{2} - \Delta R_{2}}{R_{1} + \Delta R_{2}}\right) \cdot V_{EV}$$
$$= \left(1 + \frac{R_{3} + R_{2} - \Delta R_{2}}{R_{1} + \Delta R_{2}}\right) \cdot \left(1 - \frac{\alpha}{162}\right) \cdot V_{REG}$$
$$\left[\Theta V_{EV} = \left(1 - \frac{\alpha}{162}\right) \cdot V_{REG}\right] \quad \text{(Expression C-1)}$$

<Setting example: When setting V5=-7 to -11 V at Ta=25°C>

Set the value of the electronic control register as the intermediate value (D5, D4, D3, D2, D1, D0) = (1,0,0,0,0,0). From the foregoing we can establish the expression:

$$\alpha = 31$$
$$V_{REG} = -2.1V$$

When $\Delta R_2=0\Omega$, to obtain V5=-9 V from Expression C-1, it follows that

$$-11V = \left(1 + \frac{R_3 + R_2}{R_1}\right) \cdot \left(1 - \frac{31}{162}\right) \cdot (-2.1)$$
(Expression C-2)

When $\Delta R_2 = R_2$, to obtain V5=-7V, it follows that

$$-7V = \left(1 + \frac{R_3}{R_1 + R_2}\right) \cdot \left(1 - \frac{31}{162}\right) \cdot (-2.1)$$
(Expression C-3)

Also, suppose the current applied between VDD and V5 is 5μ A.

$$R_1 + R_2 + R_3 = 1.8M\Omega$$

(Expression C-4)

It follows that Therefore from Expressions C-2, C-3, and C-4, we have

$$R_1 = 162k\Omega$$
$$R_2 = 278k\Omega$$
$$R_3 = 1363k\Omega$$

At this time, the V5 voltage variable range and notch width based on electronic volume function are given in the following Table when V5=-9 V by R2 is assumed:

			Table 15			
V5	Min.		Тур.		Max.	Unit
Variable range	-11.1	to	-9.0	to	-6.8	[V]
Pitch width			67			[mV]

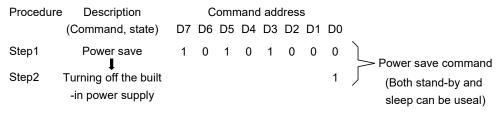
- When using the V5 voltage adjusting built-in resistor or electronic control function, the state where at least the V5 voltage adjusting circuit and voltage follower circuit are operated together needs to be set using the power control set command. Also when the boosting circuit is OFF, the voltage needs to be applied from VOUT.
- The VR pin is valid only when the V5 voltage adjusting built-in resistor (IRS pin=LOW). Set the VR pin to OPEN when using the V5 voltage adjusting built-in resistor (IRS pin=HIGH).
- Since the VR pin has high input impedance, noise must be taken into consideration such as for short and shielded lines.

Liquid crystal voltage generator circuit

The V5 voltage is resistor-split within an IC and generates the V1, V2, V3, and V4 potentials required for the liquid crystal drive.

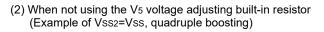
Further, the V1, V2, V3, and V4 potentials are impedanceconverted by the voltage follower and supplied to the liquid crystal drive circuit. Using the bias set command allows you to select a desired bias ratio from 1/9 or 1/7.

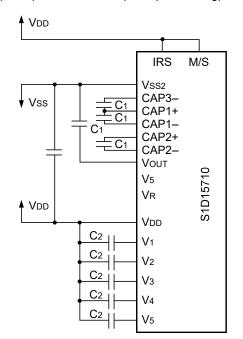
High power mode

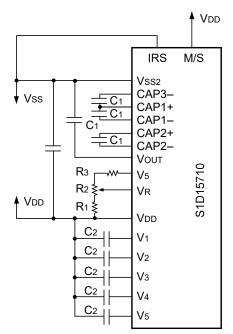

The power supply circuit incorporated in the S1D15710 series <u>has the ultra-low power consumption (normal</u> mode: \overline{HPM} =HIGH). Therefore the display quality

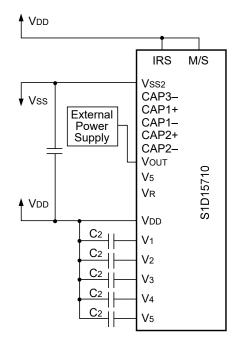
may be deteriorated in large load liquid crystal or panels. In this case, the display quality can be improved by setting HPM pin=LOW (high power mode). Whether to use the power supply circuit in this mode should need the display confirmation by actual equipment.

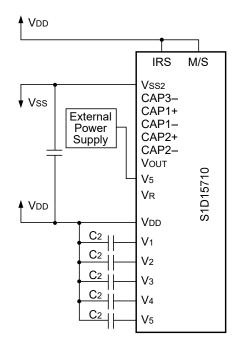
Also, if improvement is insufficient even for the high power mode setting, use either the S1D15710D10B* or supply liquid crystal drive power externally. In either case, be sure to check the display thoroughly.

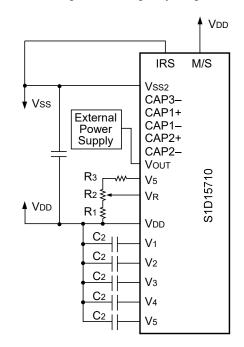

Command sequence when the built-in power supply is turned off

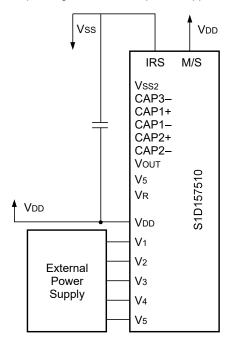

To turn off the built-in power supply, set it in the power save state and then turn off the power supply according to the command sequence shown in Figure 13 (procedure).




- (1) All the built-in power supply used
- (1) When using the V5 voltage adjusting built-in resistor (Example of Vss2=Vss, quadruple boosting)




- 2 Only the voltage adjusting circuit and V/F circuit used
- (1) When using the V_5 voltage adjusting built-in resistor



(2) When not using the V5 voltage adjusting built-in resistor

④ Only the external power supply used Depending on all external power supplies

Common reference setting example At V5=-8 to -12 V variable

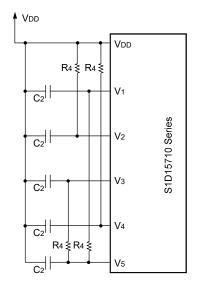

Item	Setting value	Unit
C1	1.0 to 4.7	μF
C2	0.01 to 1.0	μF

Figure 14

- *1 Since the VR terminal input impedance is high, use short leads and shielded lines. When the VR terminal is not used, means should be taken to prevent capacitance of the line or others from being applied.
- *2 C1 and C2 are determined according to the size of the LCD panel. Set a value so that the liquid crystal drive voltage can be stable.

[Setting example] • Turn on the V5 adjusting circuit and the V/F circuit and apply external voltage.

- Display LCD heavy load patterns like lateral stripes and determine C2 so that the liquid crystal drive voltages (V1 to V5) can be stable.
- Then turn on all built-in power supplies and determine C1.
- *3 Capacity is connected in order to stabilize voltage between VDD and Vss power supplies.
- *4 When the built-in V/F circuit is used to drive an LCD panel with heavy alternating or direct current load, we recommend that external resistance be connected in order to stabilize V/F outputs, or electric potentials, V1, V2, V3 and V4.

Adjust resistance value R4 to the optimal level by checking driving waveform displayed on the LCD.

Reference setting: $R_4 = 0.1$ to $1.0 [M\Omega]$

Figure 15

*5 Precautions when installing the COG

When installing the COG, it is necessary to duly consider the fact that there exists a resistance of the ITO wiring occurring between the driver chip and the externally connected parts (such as capacitors and resistors). By the influence of this resistance, non-conformity may occur with the indications on the liquid crystal display.

Therefore, when installing the COG design the module paying sufficient considerations to the following three points.

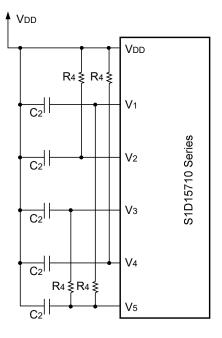
- 1. Suppress the resistance occurring between the driver chip pin to the externally connected parts as much as possible.
- 2. Suppress the resistance connecting to the power supply pin of the driver chip.
- 3. Make various COG module samples with different ITO sheet resistance to select the module with the sheet resistance with sufficient operation margin.

Also, as for this driver IC, pay sufficient attention to the following points when connecting to external parts for the characteristics of the circuit.

1. Connection to the boosting capacitors The boosting capacitors (the capacitors connecting to respective CAP pins and capacitor being inserted between VOUT and VSS2) of this IC are being switched over

by use of the transistor with very low ON-resistance of about 10Ω . However, when installing the COG, the resistance of ITO wiring is being inserted in series with the switching transistor, thus dominating the boosting ability.

Consequently, the boosting ability will be hindered as a result and pay sufficient attention to the wiring to respective boosting capacitors.

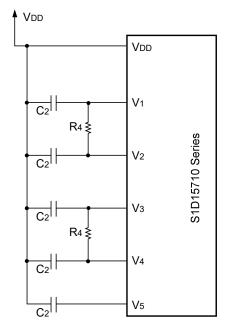

2. Connection of the smoothing capacitors for the liquid crystal drive

The smoothing capacitors for the liquid crystal driving potentials (V1. V2, V3 and V4) are indispensable for liquid crystal drives not only for the purpose of mere stabilization of the voltage levels. If the ITO wiring resistance which occurs pursuant to installation of the COG is supplemented to these smoothing capacitors, the liquid crystal driving potentials become unstable to cause nonconformity with the indications of the liquid crystal display. Therefore, when using the COG module, we definitely recommend to connect reinforcing resistors externally.

Reference value of the resistance is $100k\Omega$ to $1M\Omega$. Meanwhile, because of the existence of these reinforcing resistors, current consumption will increase. Indicated below is an exemplary connection diagram of external resistors. Please make sufficient evaluation work for the display statuses with any connection tests.

Exemplary connection diagram 1.

Exemplary connection diagram 2.



Reference circuit examples

Reset Circuit

When the $\overline{\text{RES}}$ input is set to the LOW level, this LSI enters each of the initial setting states

- 1. Display OFF
- 2. Display Normal Rotation
- 3. ADC Select: Normal rotation (ADC command D0=0)
- 4. Power Control Register: (D2,D1,D0)=(0,0,0)
- 5. Register Data Clear within Serial Interface
- 6. LCD Power Supply Bias Ratio: 1/9 bias
- 7. n-Line Alternating Current Reversal Drive Reset
- 8. Power saving clear
- 9. Display All Lighting OFF: (Display All Lighting ON/OFF command D0=LOW)
- 10. Built-in Oscillator Circuit stopped
- 11. Static Indicator OFF Static Indicator Register: (D1,D2)=(0,0)
- 12. Read Modify Write OFF
- 13. Display start line set to the first line
- 14. Column address set to address 0
- 15. Page address set to page 0
- 16. Common Output State Normal rotation
- 17. V5 Voltage Adjusting Built-in Resistance Ratio Register: (D2,D1,D0)=(0,0,0)
- Electronic Control Register Set Mode Reset Electronic Control Register* (D5, D4, D3, D2, D1, D0) = (1,0,0,0,0,0)
- 19. n-Line Alternating Current Reversal Register: (D3, D2, D1, D0) = (0, 0, 0, 0)

20. Test Mode Reset

On the other hand, when using the reset command, only the items 11 to 20 of the above-mentioned initial setting are executed.

When the power is turned on, the initialization using the $\overline{\text{RES}}$ pin is required. After the initialization using the $\overline{\text{RES}}$ pin, each input pin needs to be controlled normally. Besides, when the MPU control signal has high impedance, overcurrent may be applied to an IC. After turning on the power, take action so that the input pin cannot have high impedance.

The S1D15710 Series discharge electric charges of V5 and VOUT at $\overline{\text{RES}}$ pin is set to the LOW level. If external power supplies for driving LCD are used, do not input external power while the $\overline{\text{RES}}$ pin is set to the LOW level to prevent short-circuiting between the external power supplies and VDD.

7. COMMAND DESCRIPTION

The S1D15710 series identifies data bus signals according to the combinations of A0, $\overline{RD}(E)$, and $\overline{WR}(R/\overline{W})$. Since the interpretation and execution of commands are performed only by the internal timing independently of external clocks, the S1D15710 performs high-speed processing that does not require busy check normally.

The 80 series MPU interface starts commands by inputting low pulses to the $\overline{\text{RD}}$ pin at read and to the $\overline{\text{WR}}$ pin at write operation. The 68 series MPU interface enters the read state when HIGH is input to the R/W pin. It enters the write state when LOW is input to the same pin. It starts commands by inputting high pulses to the E pin (for the timing, see the Timing Characteristics of Chapter 10). Therefore the 68 series MPU interface differs from the 80 series MPU interface in that $\overline{\text{RD}}(E)$ is set to "1 (H)" at status read and display data read in the Command Description and Command Table. The command description is given below by taking the 80 series MPU interface as an example. When selecting the serial interface, enter sequential data from D7.

Command description

(1) Display ON/OFF

This command specifies display ON/OFF.

A0		R/W WR	D7	D6	D5	D4	D3	D2	D1	D0	Setting
0	1	0	1	0	1	0	1	1	1	1	Display ON
										0	Display OFF

For display OFF, the segment and common drivers output the VDD level.

(2) Display Start Line Set

This command specifies the display start line address of the display data RAM shown in Figure 4. The display area is displayed for 65 lines from the specified line address to the line address increment direction. When this command is used to dynamically change the line address, the vertical smooth scroll and page change are enabled. For details, see the Line address circuit of "Function Description".

A0		R/W WR	D7	D6	D5	D4	D3	D2	D1	D0	Line address
0	1	0	0	1	0	0	0	0	0	0	0
					0	0	0	0	0	1	1
					0	0	0	0	1	0	2
							\downarrow				\downarrow
					1	1	1	1	1	0	62
					1	1	1	1	1	1	63

(3) Page Address Set

This command specifies the page address that corresponds to the low address when accessing the display data RAM shown in Figure 4 from the MPU side. The display data RAM can access desired bits when the page address and column address are specified. Even when the page address is changed, the display state will not be changed. For details, see the Page address circuit of "Function Description".

A0		R/W WR	D7	D6	D5	D4	D3	D2	D1	D0	Page address
0	1	0	1	0	1	1	0	0	0	0	0
							0	0	0	1	1
							0	0	1	0	2
								\downarrow			\downarrow
							0	1	1	1	7
							1	0	0	0	8

(4) Column Address Set

This command specifies the column address of the display data RAM shown in Figure 4. The column address is split into two sections (higher 4-bits and lower 4-bits) when it is set (set continuously in principle). Each time the display data RAM is accessed, the column address automatically increments (+), making it possible for the MPU to continuously read and write the display data. The column address increment is stopped at FFH, and the FFH is specified continuously. This must be noted when you want to access continuously. In this case, the page address is not changed continuously. For details, see "Column Address Circuit" in Function Description.

	A0	E RD	R/W WR	D7	D6	D5	D4	D3	D2	D1	D0
High-order bit \rightarrow	0	1	0	0	0	0	1	A7	A6	A5	A4
Low-order bit $ ightarrow$							0	A3	A2	A1	A0

A7	A6	A5	A4	A3	A2	A1	A 0	Column address
0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	1	1
0	0	0	0	0	0	1	0	2
			\downarrow					
1	1	1	1	1	1	1	0	254
1	1	1	1	1	1	1	1	255

(5) Status Read

A0		R/W WR	D7	D6	D5	D4	D3	D2	D1	D0
0	0	1	BUSY	ADC	ON/OFF	RESET	0	0	0	0

BUSY	When BUSY=1, indicates an internal operation being done or reset. The command cannot be accepted until BUSY=0 is reached. However, if the cycle time is satisfied, the command needs not be checked.
ADC	 Indicates the correspondence relationship between the column address and segment driver. 0: Reversal (column address 199–n ↔ SEG n) 1: Normal rotation (column address n ↔ SEG n) (Reverses the polarity of ADC command.)
ON/OFF	ON/OFF: Specifies display ON/OFF 0: Display ON 1: Display OFF (Reverses the polarity of display ON/OFF command.)
RESET	Indicates the RES signal or that initial setting is being done using the reset command. 0: Operating state 1: Resetting

(6) Display Data Write

This command writes 8-bit data to the specified address of the display data RAM. Since the column address is automatically incremented by 1 after the data is written, the MPU can successively write the display data.

A0		R/W WR	D7	D6	D5	D4	D3	D2	D1	D0
1	1	0			W	rite d	ata			

(7) Display Data Read

This command reads the 8-bit data in the specified address of the display data RAM. Since the column address is automatically incremented by 1 after the data is written, the MPU can successively read the data consisting of multiple words.

Besides, immediately after the column address is set, dummy read is required one time. For details, see the description of the Display data RAM and internal register access of "Function Description". When using the serial interface, the display cannot be read.

A0		R/W WR	D6	D5	D4	D3	D2	D1	D0
1	0	1		Re	ead d	ata			

(8) ADC Select (Segment Driver Direction Select)

This command can reverse the correspondence relationship between the column address of the display RAM data shown in Figure 4 and the segment driver output. Therefore the order of the segment driver output pin can be reversed using the command. After the display data is written and read, the column address is incremented by 1 according to the column address of Figure 4. For details, see the Column address circuit of "Function Description".

A0		R/W WR		D6	D5	D4	D3	D2	D1	D0	Setting
0	1	0	1	0	1	0	0	0	0	0	Clockwise (normal rotation)
										1	Counterclockwise (reversal)

(9) Display Normal Rotation/Reversal

This command can reversal display lighting and non-lighting without overwriting the contents of display data RAM. In this case, the contents of display data RAM are held.

A0		<u>R/W</u> WR	D7	D6	D5	D4	D3	D2	D1	D0	Setting
0	1	0	1	0	1	0	0	1	1	0	LCD on potential (normal rotation) RAM data HIGH
										1	LCD on potential (reversal) RAM data LOW

(10) Display All Lighting ON/OFF

This command can forcedly make all display set in the lighting state irrespective of the contents of display data RAM. In this case, the contents of display data RAM are held.

This command has priority over the display normal rotation/reversal command.

A0		R/W WR		D6	D5	D4	D3	D2	D1	D0	Setting
0	1	0	1	0	1	0	0	1	0	0	Normal display state
										1	Display all lighting

(11) LCD Bias Set

This command selects the bias ratio of the voltage required for liquid crystal drive. The command is valid when the V/ F circuit of the power supply circuit is operated.

A0	E RD	R/W WR	D7	D6	D5	D4	D3	D2	D1	D0	Selected state
0	1	0	1	0	1	0	0	0	1	0	1/9 bias
										1	1/7 bias

(12) Read Modify Write

This command is used together with the end command. Once this command is entered, the column address can be incremented by 1 only using the display data write command instead of being changed using the display read command. This state is held until the end command is entered. When the end command is entered, the column address returns to the address when the read modify write command is entered. This function can reduce the load of the MPU when repeatedly changing data for a specific display area such as a blinking cursor.

A0	E RD	R/W WR	D7	D6	D5	D4	D3	D2	D1	D0
0	1	0	1	1	1	0	0	0	0	0

* The commands other than Display Data Read/Write can be used even in Read Modify Write mode. However, the column address set command cannot be used.

• Sequence for cursor display

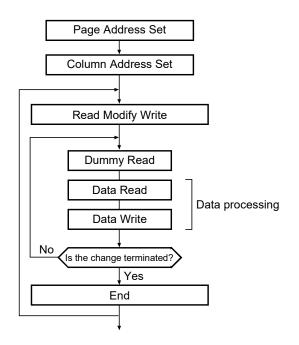


Figure 16

(13) End

This command resets the Read Modify Write mode and returns the column address to the mode initial address.

A0	E RD	R/W WR	D7	D6	D5	D4	D3	D2	D1	D0
0	1	0	1	1	1	0	1	1	1	0

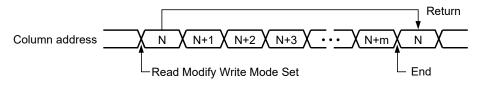


Figure 17

(14) Reset

This command initializes Display Start Line, Column Address, Page Address, Common Output State, V5 Voltage Adjusting Built-in Resistance Ratio, Electronic Control, and Static Indicator and resets the Read Modify Write mode and Test mode. This will not have any effect on the display data RAM. For details, see the Reset of "Function Description".

Reset operation is performed after the reset command is entered.

A0	E RD	R/W WR	D7	D6	D5	D4	D3	D2	D1	D0
0	1	0	1	1	1	0	0	0	1	0

The initialization when the power is applied is performed using the reset signal to the $\overline{\text{RES}}$ pin. The reset command cannot be substituted for the signal.

(15) Common Output State Selection

This command can select the scanning direction of the COM output pin. For details, see the Common Output State Selection Circuit of "Function Description".

A0		R/W WR	D7	D6	D5	D4	D3	D2	D1	D0	Select	ted state
0	1	0	1	1	0	0	0	*	*	*	Normal rotation	$\text{COM0} \rightarrow \text{COM63}$
							1				Reversal	$COM63 \rightarrow COM0$
											•	*: Invalid bit

(16) Power Control Set

This command sets the function of the power supply circuit. For details, see the Power Supply Circuit of "Function Description".

A0	E RD	R/W WR	D7	D6	D5	D4	D3	D2	D1	D0	Selected state
0	1	0	0	0	1	0	1	0 1			Boosting circuit: OFF Boosting circuit: ON
									0 1		V adjusting circuit: OFF V adjusting circuit: ON
										0 1	V/F circuit: OFF V/F circuit: ON

(V/F circuit: Voltage follower circuit, V adjusting circuit: voltage adjusting circuit)

(17) V5 Voltage Adjusting Built-in Resistance Ratio Set

This command sets the V5 voltage adjusting built-in resistance ratio. For details, see the Power Supply Circuit of "Function Description".

A0	E RD	R/W WR	D7	D6	D5	D4	D3	D2	D1	D0	Rb to Ra ratio
0	1	0	0	0	1	0	0	0	0	0	Small
								0	0	1	
								0	1	0	
									\downarrow		\downarrow
								1	1	0	
								1	1	1	Large

(18) Electronic Control (2-Byte Command)

This command controls the liquid crystal drive voltage V5 output from the voltage adjusting circuit of the built-in liquid crystal power supply and can adjust the light and shade of liquid crystal display.

Since this command is a 2-byte command that is used together with the electronic control mode set command and electronic control register set command, always use both the commands consecutively.

• Electronic Control Mode Set

Entering this command validates the electronic control register set command. Once the electronic control mode is set, the commands other than the electronic control register set command cannot be used. This state is reset after data is set in the register using the electronic control register set command.

A0	E RD	R/W WR	D7	D6	D5	D4	D3	D2	D1	D0
0	1	0	1	0	0	0	0	0	0	1

• Electronic Control Register Set

This command is used to set 6-bit data in the electronic volume register to allow the liquid crystal drive voltage V5 to enter one-state voltage value among 64-state voltage values.

After this command is entered and the electronic control register is set, the electronic control mode is reset.

A0	E RD	R/W WR	D7	D6	D5	D4	D3	D2	D1	D0	V 5	
0	1	0	*	*	0	0	0	0	0	0	Small	
0	1	0	*	*	0	0	0	0	0	1		
0	1	0	*	*	0	0	0	0	1	0		
							\downarrow				\downarrow	
0	1	0	*	*	1	1	1	1	1	0		
0	1	0	*	*	1	1	1	1	1	1	Large	*

When not using the electronic control function, set (1,0,0,0,0,0).

• Sequence of the electronic control register set

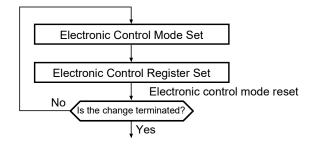


Figure 18

(19) Static Indicator (2-Byte Command)

This command controls the indicator display of the static drive system. The static indicator display is controlled only using this command, and this command is independent of other display control commands.

The static indicator is used to connect the SYNC pin to one of its liquid crystal drive electrodes and the FRS pin to the other. For the electrodes used for the static indicator, the pattern separated from the electrodes for dynamic drive are recommended. When this pattern is too adjacent, the deterioration of liquid crystal and electrodes may be caused. Since the static indicator ON command is a 2-byte command that is used together with the static indicator register set command, always use both the commands consecutively. (The static indicator OFF command is a 1-byte command.)

• Static Indicator ON/OFF

Entering the static indicator ON command validates the static indicator register set command. Once the static indicator ON command is entered, the commands other than the static indicator register set command cannot be used. This state is reset after the data is set in the register using the static indicator register set command.

A0		R/₩ WR		D6	D5	D4	D3	D2	D1	D0	Static indicator
0	1	0	1	0	1	0	1	1	0	0	OFF
										1	ON

7. COMMAND DESCRIPTION

• Static Indicator Register Set

This command sets data in the 2-bit static indicator register and sets the blinking state of the static indicator.

A0	E RD	R/W WR	D7	D6	D5	D4	D3	D2	D1	D0	Indicator display state
0	1	0	*	*	*	*	*	*	0	0	OFF
									0	1	ON (blinks at an interval of approximately 0.5 second.)
									1	0	ON (blinks at an interval of approximately one second.)
									1	1	ON (goes on at all times.)

*: Invalid bit

• Sequence of Static Indicator Register Set

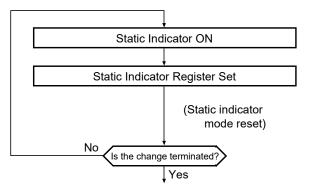


Figure 19

(20) Power Save

This command makes the static indicator enter the power save state and can greatly reduce the power consumption. The power save state consists of the sleep state and stand-by state.

A0	E RD	R/W WR	D7	D6	D5	D4	D3	D2	D1	D0	Power save state
0	1	0	1	0	1	0	1	0	0	0 1	Stand-by state Sleep state

The operating state before the display data and power save activation is held in the sleep and stand-by states, and the display data RAM can also be accessed from the MPU.

• Sleep State

This command stops all the operations of LCD display systems, and can reduce the power consumption approximate to the static current when they are not accessed from the MPU. The internal state in the sleep state is as follows:

- (1) The oscillator circuit and the LCD power supply circuit are stopped.
- (2) All liquid crystal drive circuit is stopped and the segment and common drivers output the VDD level.

• Stand-by State

This command stops the operation of the duty LCD display system and operates only the static drive system for indicators. Consequently the minimum current consumption required for the static drive is obtained. The internal state in the stand-by state is as follows:

- (1) The LCD power supply circuit is stopped. The oscillator circuit is operated.
- (2) The duty drive system liquid crystal drive circuit is stopped and the segment and common drivers output the VDD level. The static drive system is operated.
 - * When using external power supplies, it is recommended that the function of the external power supply circuit should be stopped at power save activation. For example, when providing each level of the liquid crystal drive voltage using a stand-alone split resistor circuit, it is recommended that the circuit which cuts off the current applied to the split resistor circuit should be added at power save activation. The S1D15710 series has the liquid crystal display blanking control pin DOF and is set to LOW at power save activation. The function of the external power supply circuit can be stopped using the DOF output.

(21) Power Save Reset

This command resets the power save state and returns the state before power save activation.

A0	E RD	R/W WR	D7	D6	D5	D4	D3	D2	D1	D0
0	1	0	1	1	1	0	0	0	0	1

(22) n-Line Reversal Drive Register Set

This command sets the number of reversal lines of the liquid crystal drive in the register. 2 to 16 lines can be set. For details, see the Display Timing Generator Circuit of "Function Description".

A0		R/W WR	D7	D6	D5	D4	D3	D2	D1	D0	Line of reversal lines
0	1	0	0	0	1	1	0	0	0	0	—
							0	0	0	1	2
							0	0	1	0	3
									\downarrow		\downarrow
							1	1	1	0	15
							1	1	1	1	16

(23) n-Line Reversal Drive Reset

This command resets the n-line reversal alternating current drive and returns to the normal 2-frame reversal alternating current drive system. The value of the n-line reversal alternating current drive register is not changed.

A0	E RD	R/W WR	D7	D6	D5	D4	D3	D2	D1	D0
0	1	0	1	1	1	0	0	1	0	0

(24) Built-in Oscillator Circuit ON

This command starts the operation of the built-in CR oscillator circuit. This command is valid only for the master operation (M/S=HIGH) and built-in oscillator circuit valid (CLS=HIGH).

A0	E RD	R/W WR	D7	D6	D5	D4	D3	D2	D1	D0
0	1	0	1	0	1	0	1	0	1	1

(25) NOP

Non-OPeration

A0	E RD	R/W WR	D7	D6	D5	D4	D3	D2	D1	D0
0	1	0	1	1	1	0	0	0	1	1

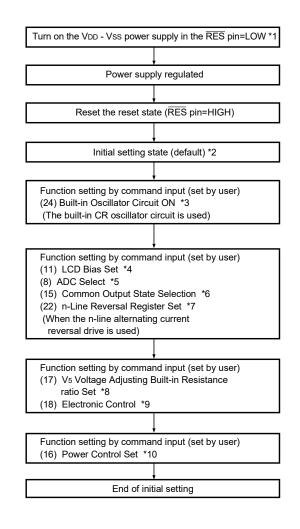
(26) Test

 $\frac{\text{IC}}{\text{RES}}$ input to LOW or by using the reset command or NOP.

A0	E RD	R/W WR	D7	D6	D5	D4	D3	D2	D1	D0	
0	1	0	1	1	1	1	*	*	*	*	*: Invalid bit

⁽Note) Although the S1D15710 series holds the command operating state, it may change the internal state if excessive foreign noise is entered. Such action that suppresses the generation of noise and prevents the effect of noise needs to be taken on installation and systems. Besides, to prevent sudden noise, it is recommended that the operating state should periodically be refreshed.

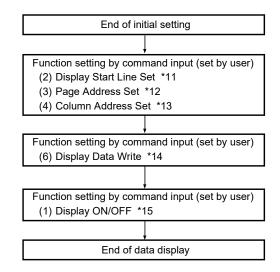
		Ta	able	16 S	51D	157	10	Ser	ies	Сс	mn	nand	S
					С	omi	man	ld c	ode	•			
	Command	A0	RD	WR	D7	D6	D5	D4	D3	3 D2	2 D	1 D0	Function
(1)	Display ON/OFF	0	1	0	1	0	1	0	1	1	1	0 1	LCD display ON/OFF 0: OFF, 1: ON
(2)	Display Start Line Set	0	1	0	0	1	D	ispla	ay s	start	ado	dress	Sets the display start line address of the display RAM.
(3)	Page Address Set	0	1	0	1	0	1	1			age dres	s	Sets the page address of the display RAM.
(4)	Column Address Set High-Order Bit Column Address Set Low-Order Bit	0	1	0	0	0	0	1 0	L	Col add .ow Col	ord umi ress ord umi	า s er า	Sets the high-order four bits of the column address of the display RAM. Sets the low-order four bits of the column address of the display RAM.
(5)	Status Read	0	0	1		Sta	tus		0	0	0	0	Reads the status information.
(6)	Display Data Read	1	1	0		0.0		/rite	-	-		<u> </u>	Writes data on the display RAM.
(7)	Display Data Write	1	0	1				ead					Reads data from the display RAM.
(8)	ADC Select	0	1	0	1	0	1	0	0		0	0	Supports the SEG output of the display RAM address. 0: normal rotation, 1: Reversal
(9)	Display Normal Rotation/Reversal	0	1	0	1	0	1	0	0	1	1	0 1	LCD display normal rotation/ reversal 0: normal rotation, 1: Reversal
(10)	Display All Lighting ON/OFF	0	1	0	1	0	1	0	0	1	0	0	Display all lighting 0: normal display, 1: All ON
(11)	LCD Bias Set	0	1	0	1	0	1	0	0	0	1	0 1	Sets the LCD drive voltage bias ratio. 0: 1/9, 1: 1/7
(12)	Read Modify Write	0	1	0	1	1	1	0	0	0	0	0	Increments the column address. At write operation: By 1, at read: 0
(13)	End	0	1	0	1	1	1	0	1	1	1	0	Resets Read Modify Write.
(14)	Reset	0	1	0	1	1	1	0	0	0	1	0	Internal resetting
(15)	Common Output State Selection	0	1	0	1	1	0	0	0 1	*	*	*	Selects the scanning direction of the COM output. 0: Normal rotation, 1: Reversal
(16)	Power Control Set	0	1	0	0	0	1	0	1	С	per) sta	ating ate	Selects the state of the built-in power supply
(17)	V5 Voltage Adjusting Internal Resistance Ratio Set	0	1	0	0	0	1	0	0			tance etting	
(18)	Electronic Control Mode Set Electronic Control Register Set	0 0	1 1	0 0	1	0 *	0			0 ron rol v			Sets the V5 output voltage in the electronic register.
(19)	Static Indicator ON/OFF	0	1	0	1	0	1	0	1	1	0		0: OFF, 1: ON
	Static Indicator Register Set	0	1	0	*	*	*	*	*	*	S	1 State	Sets the blinking state.
(20)	Power Save	0	1	0	1	0	1	0	1	0	0	0	Moves to the power save state. 0: Stand-by, 1: Sleep
(21)	Power Save Reset	0	1	0	1	1	1	0	0	0	0	1	Resets power save.
(22)	n-Line Reversal Drive Register Set	0	1	0	0	0	1	1	-		nber rsal	[·] of Line	Sets the number of line reversal drive lines.
(23)	n-Line Reversal Drive Reset	0	1	0	1	1	1	0	0	1	0	0	Resets the line reversal drive.
	Built-in Oscillator Circuit ON	0	1	0	1	0	1	0	1	0	1	1	Starts the operation of the built-in CR oscillator circuit.
(25)	NOP	0	1	0	1	1	1	0	0	0	1	1	Non-Operation command
(26)	Test	0	1	0	1	1	1	1	*	*	*	*	Do not use the IC chip test command.


Table 16 S1D15710 Series Commands

*: Invalid bit

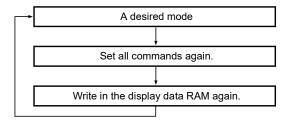
8. COMMAND SETTING

Instruction Setup: Reference


(1) Initial Setting

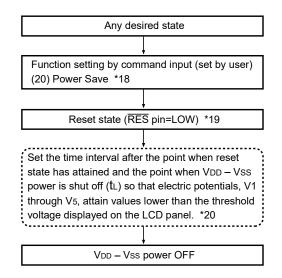
Notes: Reference items

- *1: If external power supplies for driving LCD are used, do not supply voltage on VOUT or V5 pin during the period when RES = LOW. Instead, input voltage after releasing the reset state.
 6. Function Description "Reset Circuit"
- *2: The contents of DDRAM are not defined even in the initial setting state after resetting. 6. Function Description Section "Reset Circuit"
- *3: 7. Command Description Item (24) "Built-in oscillator circuit ON"
- *4: 7. Command Description Item (11) "LCD bias set"
- *5: 7. Command description Item (8) "ADC select"
- *6: 7. Command Description Item (15) "Common output state selection"
- *7: 6. Function Description Section "Display Timing Generator Circuit", 7. Command Description Item (22) "n-Line Reversal Register Set"
- *8: 6. Function Description Section "Power Supply Circuit" and 7. Command Description Item (17) "V5 Voltage Adjusting Built-in Resistance ratio Set"
- *9: 6. Function Description Section "Power Supply Circuit" and 7. Command Description Item (18) "Electronic Control"
- *10: 6. Function Description Section "Power Supply Circuit" and 7. Command Description Item (16) "Power Control Set"


(2) Data Display

Notes: Reference items

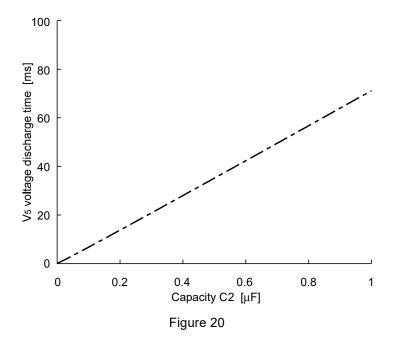
- *11: 7. Command Description Item (2) "Display Start Line Set"
- *12: 7. Command Description Item (3) "Page Address Set"
- *13: 7. Command Description Item (4) "Column Address Set"
- *14: The contents of DDRAM is not defined after completing initial setting. Enter data in each DDRAM to be used for display.
 - 7. Command Description Item (6) "Display Data Write"
- *15: Avoid activating the display function with entering space characters as the data if possible.
 - 7. Command Description Item (1) "Display ON/OFF"


(3) Refresh *16

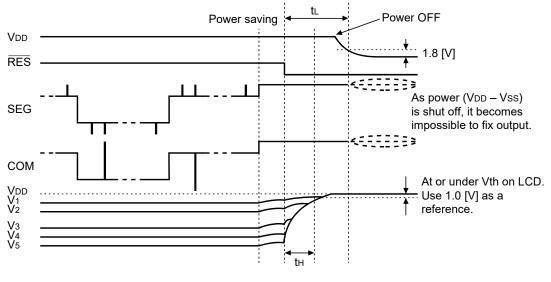
Notes: Reference items

*16: It is recommended that the operating modes and display contents be refreshed periodically to prevent the effect of unexpected noise.

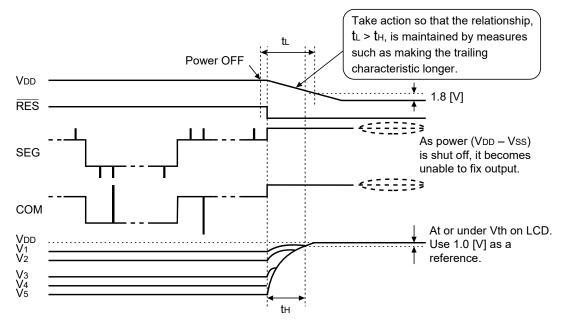
(4) Power *17



Notes: Reference items

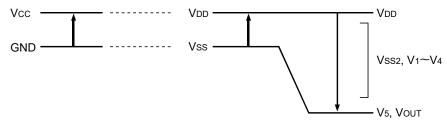

- *17: This IC is a VDD VSS power system circuit controlling the LCD driving circuit for the VDD V5 power system. Shutting of power with voltage remaining in the VDD V5 power system may cause uncontrolling voltage to be output from the SEG and COM pins. Follow the Power OFF sequence.
- *18: 7. Command Description Item (20) "Power Saving"
- *19: When external power supplies for driving LCD are used, turn all external power supplies off before entering reset state.

6. Function Description Item "Reset Circuit"


*20: The threshold voltage of the LCD panel is about 1 [V]. When the internal power supply circuit is used, discharge time tH from the start of resetting to the voltage between VDD and V5 being reduced to 1 volt depends on capacitor C2 to be connected between V1 – V5 and VDD. Figure 5 shows the reference values.

Set up tL so that the relationship, tL > tH, is maintained. A state of tL < tH may cause faulty display.

If command control is disabled when power is OFF, take action so that the relationship, $t_L > t_H$, is maintained by measures such as making the trailing characteristic of power (VDD – VSS) longer.


Figure 22

9. ABSOLUTE MAXIMUM RATINGS

lte	m	Symbol	Specifi	catio	on value	Unit
Power supply voltage	_	Vdd	-0.3	to	+7.0	V
Power supply voltage (2)			-7.0	to	+0.3	
(Based on VDD)	At triple boosting	Vss2	-6.0	to	+0.3	
	At quadruple boosting		-4.5	to	+0.3	
Power supply voltage (3)	(Based on VDD)	V5, Vout	-22.0	to	+0.3	
Power supply voltage (4)	(Based on VDD)	V1, V2, V3, V4	V5	to	+0.3	
Input voltage		Vin	-0.3	to	VDD+0.3	
Output voltage		Vo	-0.3	to	VDD+0.3	
Operating temperature		Topr	-40	to	+85	°C
Storage temperature	ТСР	Tstr	-55	to	+100	
	Bare chip		-55	to	+125	

Vss=0 V unless specified otherwise

System (MPU) side

S1D15710 side

Figure 23

- (Notes) 1. The values of the VSS2, V1 to V5, and VOUT voltages are based on VDD=0 V.
 - 2. The V1, V2, V3, and V4 voltages must always satisfy the condition of $VDD \ge V1 \ge V2 \ge V3 \ge V4 \ge V5$.
 - 3. Insure that voltage levels VSS2 and VOUT are always such that the relationship of VDD≥VSS≥VSS2≥ VOUT is maintained.
 - 4. When LSI is used exceeding the absolute maximum ratings, the LSI may be damaged permanently. Besides, it is desirable that the LSI should be used in the electrical characteristics condition for normal operation. If this condition is exceeded, the LSI may malfunction and have an adverse effect on the reliability of the LSI.

10. DC CHARACTERISTICS

					Speci	fication	value		Applicable
	ltem	Symbol	Conditio	on	Min.	Тур.	Max.	Unit	pin
Operating	Recommended	Vdd			2.7	—	3.3	V	Vdd *1
voltage	operation								
(1)	Operable	Vdd			1.8		5.5		VDD *1
Operating	Recommended	Vss2	(Based on VDD)		-3.3	—	-2.7		Vss2
voltage	operation								
(2)	Operable	Vss2	(Based on VDD)	(Based on VDD)		—	-1.8		Vss2
Operating	Operable	V5	(Based on VDD)	, ,		_	-4.5		V5 *2
voltage	Operable	V1, V2	(Based on VDD)		0.4×V5	_	Vdd		V1, V2
(3)	Operable	V3, V4	(Based on VDD)		V5	—	0.6×V5		V3, V4
High level i	nput voltage	Vінс			0.8×Vdd	—	Vdd		*3
Low level in	nput voltage	VILC			Vss	—	0.2×Vdd		*3
High level	output voltage	Vонс	Іон=–0.5mA		0.8×Vdd		Vdd		*4
Low level of	output voltage	Volc	lo∟=0.5mA		Vss	—	0.2×Vdd		*4
Input leak of	current	Iц	VIN=VDD or Vss		-1.0	_	1.0	μA	*5
Output leal	< current	Ilo			-3.0	—	3.0		*6
Liquid crys	tal driver	Ron	Ta=25°C	V5=-14.0V		2.0	3.5	kΩ	SEGn
On resis	stance		(Based on VDD)	V5=-8.0V	—	3.2	5.4		COMn *7
Static curre	ent consumption	lssq			_	0.01	5	μA	Vss, Vss2
Output leal	ut leak current I5Q V5=–18.0V (Based on VDD)		ed on VDD)	_	0.01	15		V5	
Input pin ca	apacity	Cin	Ta=25°C, f=1MHz		_	5.0	8.0	pF	
Oscillating	Built-in	fosc	Ta=25°C		18	22	26	kHz	*8
frequency	oscillation								
External input fcL			4.5	5.5	6.5		CL *8		

Table 18

Vss=0 V, Vdd=3.0 V \pm 10%, and Ta=-40 to +85°C

Table 19

	ltem	Symbol	Conditi	ondition Spec			value	Unit	Applicable
	item	Symbol	Condition	511	Min.	Тур.	Max.	Unit	pin
circuit	Input voltage	Vss2	At triple boosting (Based on VDD)		-6.0		-1.8	V	Vss2
supply ci		Vss2	At quadruple boo (Based on VDD)	osting	-5.0	_	-1.8		Vss2
Ins	Boosting output voltage	Vout	(Based on VDD)		-20.0	—	_		νουτ
power	Voltage adjusting circuit operating voltage	Vout	(Based on VDD)		-20.0	_	-6.0		Vout
	V/F circuit operating voltage	V5	(Based on VDD)		-18.0	_	-4.5		V5 *9
	Reference voltage	VREG0	Ta=25°C,	–0.05%/°C	-2.04	-2.10	-2.16		*10

[*: see Page 49.]

Dynamic current consumption value (1) During display operation and built-in power supply OFF Current values dissipated by the whole IC when the external power supply is used

Table 20 Display All WhiteTa=25°C								
lt e m	Symphol	Specifica		Specificatio		Unit	Domorko	
ltem	Symbol	Condition	Min.	Тур.	Max.	Unit	Remarks	
S1D15710D00B*	ldd	VDD=5.0V, V5–VDD=–11.0V	_	25	42	μA	*11	
/D11B*	(1)	VDD=3.0V, V5-VDD=-11.0V	_	25	42			

Table 21 Display Checker Pattern

Ta=25°C

ltam	Symbol	Condition	Spe	cificatio	Unit	Domorko		
ltem	Symbol	Condition	Min.	Тур.	Max.	Unit	Remarks	
S1D15710D00B*	IDD	Vdd=5.0V, V5–Vdd=–11.0V	_	38	64	μA	*11	
/D11B*	(1)	Vdd=3.0V, V5–Vdd=–11.0V		38	64			

Dynamic current consumption value (2) During display operation and built-in power supply ON Current values dissipated by the whole IC containing the built-in power supply circuit

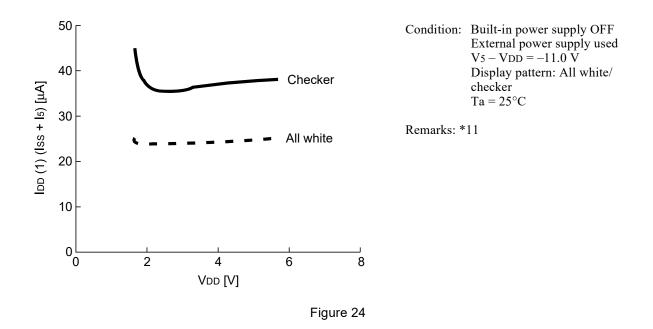
lt a va	Cumple al	Canditian		Spe	cificatio	on value	11	Domoriko
ltem	Symbol	Condition		Min.	Тур.	Max.	Unit	Remarks
S1D15710	Idd	VDD=5.0V, Triple boosting	Normal mode	_	92	154	μA	*12
D00B*/D11B*	(2)	V5-VDD=-11.0V	High power mode		242	405		
		VDD=3.0V, Quadruple boosting	Normal mode		129	216		
		V5-VDD=-11.0V	High power mode		310	518		
S1D15710D10B*		VDD=5.0V, Triple boosting	Normal mode		135	225		
		V5-VDD=-11.0V	High power mode	_	288	480		
		VDD=3.0V, Quadruple boosting	Normal mode		176	294		
		V5-VDD=-11.0V	High power mode		363	605		

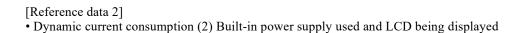
Table 23 Display Checker Pattern

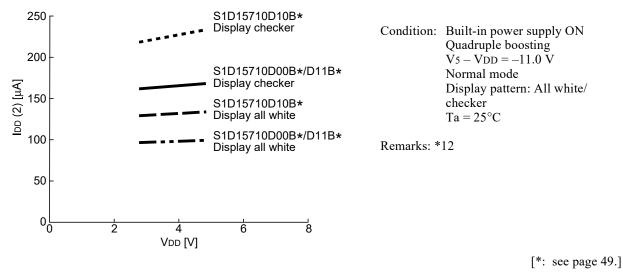
ltom	Cumb al	Condition		Spe	cificatio	on value	11	Domorko	
ltem	Symbol	Condition		Min.	Тур.	Max.	Unit	Remarks	
S1D15710	Idd	VDD=5.0V, Triple boosting	Normal mode		132	221	μA	*12	
D00B*/D11B*	(2)	V5-VDD=-11.0V	High power mode	_	280	468			
		VDD=3.0V, Quadruple boosting	Normal mode	_	167	279			
		V5-VDD=-11.0V	High power mode		350	585			
S1D15710D10B*		VDD=5.0V, Triple boosting	Normal mode	_	178	297			
		V5-VDD=-11.0V	High power mode	_	330	550			
		VDD=3.0V, Quadruple boosting	Normal mode	_	220	367			
		V5-VDD=-11.0V	High power mode	_	406	677			

Current consumption at power save Vss=0 V and VDD=3.0 V $\pm 10\%$

Table 24

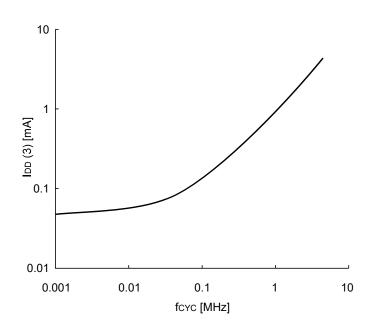

Ta=25°C


Ta=25°C


lt e ve	Cumb al	Condition	Spe	cificatio	Unit	Demerke	
ltem	Symbol	Condition	Min.	Тур.	Max.	Unit	Remarks
Sleep state	IDDS1		—	0.01	5	μA	
Stand-by state	IDDS2		—	4	8		

[*: see Page 49.]

[Reference data 1]Dynamic current consumption (1) External power supply used and LCD being displayed



[Reference data 3]

• Dynamic current consumption (3) During access



Indicates the current consumption when the checker pattern is always written at fCYC. Only IDD (1) when not accessed Condition: Built-in power supply OFF and external power supply

> used VDD - VSS = 3.0 V, V5 - VDD = -11.0 V $Ta = 25 ^{\circ}C$

[Reference data 4]

Vss and V5 system operating voltage ranges

Remarks: *2

Figure 27

[*: see page 49.]

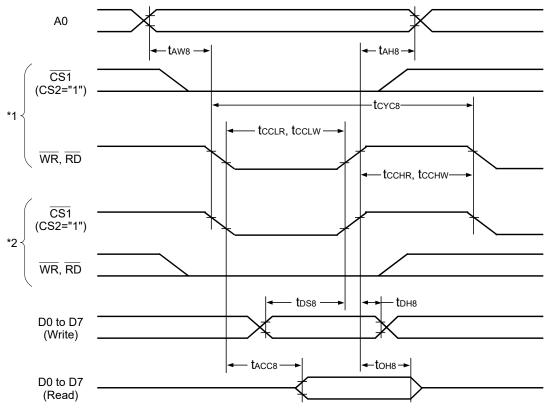
Relationships between the oscillating frequency fosc, display clock frequency fcL, and liquid crystal frame frequency fFR

Table 25

Item	fc∟	fFR
When built-in oscillator circuit used	fosc 4	f <u>osc</u> 4*65
When built-in oscillator circuit not used	External input (fcL)	<u>_fc∟</u> 65

(fFR indicates the alternating current cycle of the liquid crystal and does not indicate that of the FR signal.)

[Reference items marked by *]


- *1 The wide operating voltage range is not warranted. However, when there is a sudden voltage change during MPU access, it cannot be warranted.
- *2 For the VDD and V5 operating voltage ranges, see Figure 27. These ranges are applied when using the external power supply.
- *3 A0, D0 to D5, D6 (SCL), D7 (SI), $\overline{\text{RD}}$ (E), $\overline{\text{WR}}$ (R/ $\overline{\text{W}}$), $\overline{\text{CS1}}$, CS2, CLS, CL, FR, M/S, C86, P/S, $\overline{\text{DOF}}$, RES, IRS and HPM pins
- *4 D0 to D7, FR, FRS, DOF and CL pins
- *5 A0, RD (E), WR (R/W), CS1, CS2, CLS, M/S, C86, P/S, RES, IRS and HPM pins
- *6 Applied when D0 to D5, D6 (SCL), D7 (SI), CL, FR, and DOF pins are in the high impedance state
- *7 Resistance value when the 0.1 V voltage is applied between the output pin SEGn or COMn and power supply pins (V1, V2, V3, and V4). Specified within the range of operating voltage (3)
 RON = 0.1 V/ΔI (ΔI indicates the current applied when 0.1 V is applied between the power ON.)
- *8 For the relationship between the oscillating frequency and frame frequency. The specification value of the external input item is a recommended value.
- *9 The V5 voltage adjusting circuit is adjusted within the voltage follower operating voltage range.
- *10 This is the internal voltage reference supply for the V5 voltage regulator circuit. The thermal slope VREG of the S1D15710 Series is about -0.05%/°C.
- *11 and *12 Indicate the current dissipated by a single IC at built-in oscillator circuit used, 1/9 bias, and display ON.

Does not include the current due to the LCD panel capacity and wireing capacity. Applicable only when there is no access from the MPU.

*12 When the V5 voltage adjusting built-in resistor is used

Timing Characteristics

System bus read/write characteristics 1 (80 series MPU)

Fio	lure	28
' '9	jui U	20

*1 is set when \overline{CS} is LOW and access is made with \overline{WR} and \overline{RD} . *2 is used when \overline{WR} and \overline{RD} are LOW and accessed with \overline{CS} .

Table 26

[VDD=4.5V to 5.5V, Ta=-40 to +85°C]

				Specificati	on value	11
ltem	Signal	Symbol	Condition	Min.	Max.	Unit
Address hold time	A0	tah8		0		ns
Address setup time		taw8		0		
System cycle time	A0	tCYC8		333		
Control LOW pulse width (Write)	WR	tccLw		30	_	
Control LOW pulse width (Read)	RD	t CCLR		70		
Control HIGH pulse width (Write)	WR	tcchw		30		
Control HIGH pulse width (Read)	RD	t CCHR		30	_	
Data setup time	D0 to D7	tDS8		30	_	
Data hold time		tdh8		10		
RD access time		tACC8	C∟=100pF		70	
Output disable time		tон8		5	50	

Table 27

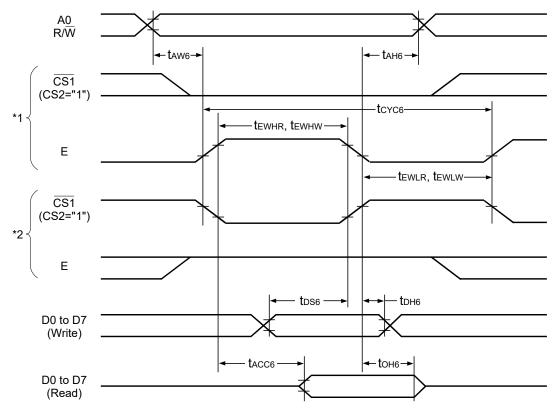
[VDD=2.7V to 4.5V, Ta=-40 to +85°C]

				Specificati	on value	
ltem	Signal	Symbol	Condition	Min.	Max.	Unit
Address hold time	A0	tah8		0		ns
Address setup time		taw8		0	_	
System cycle time	A0	tCYC8		500		
Control LOW pulse width (Write)	WR	tccLw		60		
Control LOW pulse width (Read)	RD	t CCLR		120		
Control HIGH pulse width (Write)	WR	tcchw		60		
Control HIGH pulse width (Read)	RD	t CCHR		60	_	
Data setup time	D0 to D7	tDS8		40		
Data hold time		tdh8		15		
RD access time		tACC8	CL=100pF	_	140	
Output disable time		toh8		10	100	

Table 28

[VDD=1.8V to 2.7V, Ta=-40 to +85°C]

	<u>.</u>		0	Specificati	on value	
Item	Signal	Symbol	Condition	Min.	Max.	Unit
Address hold time	A0	tah8		0	_	ns
Address setup time		taw8		0		
System cycle time	A0	tCYC8		1000		
Control LOW pulse width (Write)	WR	tccLw		120		
Control LOW pulse width (Read)	RD	t CCLR		240		
Control HIGH pulse width (Write)	WR	tccнw		120		
Control HIGH pulse width (Read)	RD	t CCHR		120	_	
Data setup time	D0 to D7	tDS8		80		
Data hold time		tdh8		30		
RD access time		tACC8	CL=100pF		280	
Output disable time		tон8		10	200	


*1. This is the case of accessing by \overline{WR} and \overline{RD} when $\overline{CS1} = LOW$.

*2. This is the case of accessing by $\overline{\text{CS1}}$ when $\overline{\text{WR}}$ and $\overline{\text{RD}}$ = LOW.

*3 The rise and fall times (tr and tf) of the input signal are specified for less than 15 ns. When using the system cycle time at high speed, they are specified for $(t_r+t_f) \leq (t_c v_c s - t_c c_L w)$ or $(t_r+t_f) \leq (t_c v_c s - t_c c_L w)$. *4 All timings are specified based on the 20 and 80% of VDD.

*5

tccLW and tccLR are specified for the overlap period when $\overline{CS1}$ is at LOW (CS2= HIGH) level and \overline{WR} , \overline{RD} are at the LOW level.

System bus read/write characteristics 2 (68 series MPU)

Figure 29

*1 is set when \overline{CS} is LOW and access is made with E. *2 is used when E is HIGH and access is made with \overline{CS} .

Table 29

[VDD=4.5V to 5.5V, Ta=-40 to +85°C]

				A 1141	Specificat	Specification value		
Item		Signal	Symbol	Condition	Min.	Max.	Unit	
Address hold time		A0	tah6		0	_	ns	
Address setup time			taw6		0			
System cycle time			tCYC6		333	_		
Data setup time		D0 to D7	tDS6		30	_		
Data hold time			tdh6		10			
Access time			tACC6	C∟=100pF	_	70		
Output disable time			tон6		10	50		
Enable HIGH pulse	Read	E	tewhr		70	_		
width	Write		t EWHW		30			
Enable LOW pulse	Read	E	tewlr		30	_		
width	Write		tewlw		30	_		

Table 30

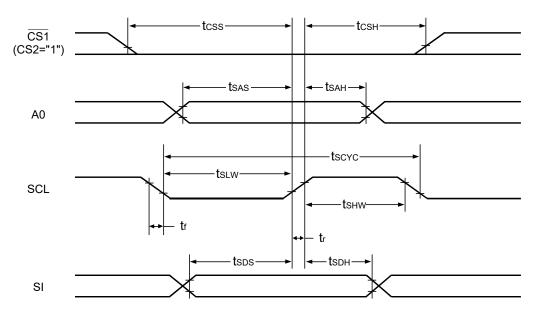
[VDD=2.7V to 4.5V, Ta=-40 to +85°C]

					Specification value		_
ltem		Signal	Symbol	Condition	Min.	Max.	Unit
Address hold time		A0	tah6		0		ns
Address setup time			taw6		0		
System cycle time			tCYC6		500		
Data setup time		D0 to D7	tDS6		40		
Data hold time			tdh6		15		
Access time			tACC6	CL=100pF	—	140	
Output disable time			toh6		10	100	
Enable HIGH pulse	Read	E	tewhr		120		
width	Write		tewhw		60		
Enable LOW pulse	Read	E	tewlr		60		
width	Write		tewlw		60		

Table 31

[VDD=1.8V to 2.7V, Ta=-40 to +85°C]

láo m	ltem		Symphol	Condition	Specification value		Unit	
item		Signal	Symbol	Condition	Min.	Max.	Unit	
Address hold time		A0	tah6		0		ns	
Address setup time			tAW6		0			
System cycle time			tCYC6		1000			
Data setup time		D0 to D7	tDS6		80			
Data hold time			tdh6		30			
Access time			tACC6	C∟=100pF	—	280		
Output disable time			toh6		10	200		
Enable HIGH pulse	Read	E	tewhr		240			
width	Write		tewhw		120			
Enable LOW pulse	Read	E	tewlr		120]	
width	Write		t EWLW		120			


*1 This is the case of accessing by \underline{E} when $\overline{CS1} = LOW$.

*2 This is the case of accessing by $\overline{\text{CS1}}$ when E = HIGH.

*3 The rise and fall times (tr and tr) of the input signal are specified for less than 15 ns. When using the system cycle time at high speed, they are specified for (tr+tr) ≤ (tcYc6-teWLW-teWHW) or (tr+tr) ≤ (tcYc6-teWLR-teWHR).
*4 All timings are specified based on the 20 and 80% of VDD.

*5 tewLW and tewLR are specified for the overlap period when $\overline{\text{CS1}}$ is at LOW (CS2 = HIGH) level and E is at the HIGH level.

Serial interface

Table 32

[VDD=4.5V to 5.5V, Ta=-40 to +85°C]

ltem	Signal	Sympol	Condition	Specification value		Unit
l	Signal	Symbol	Condition	Min.	Max.	Unit
Serial clock cycle	SCL	tscyc		200		ns
SCL HIGH pulse width		tsнw		75		
SCL LOW pulse width		ts∟w		75		
Address setup time	A0	tsas		50		
Address hold time		t SAH		100		
Data setup time	SI	tsds		50		
Data hold time		tsdh		50		
CS-SCL time	CS	tcss		100		
		tcsн		100		

Table 33

[VDD=2.7V to 4.5V, Ta=-40 to +85°C]

ltow	Cimrol	Sumbal	Condition	Specification value		Unit
ltem	Signal	Symbol		Min.	Max.	Unit
Serial clock cycle	SCL	tscyc		250		ns
SCL HIGH pulse width		tsнw		100		
SCL LOW pulse width		tsLw		100		
Address setup time	A0	tsas		150		
Address hold time		tsah 🛛		150		
Data setup time	SI	tsds		100		
Data hold time		tsdh		100		
CS-SCL time	CS	tcss		150		
		tcsн		150		

Table 34

[VDD=1.8V to 2.7V, Ta=-40 to +85°C]

ltom	Signal	Symphol	Condition	Specificat	ion value	Unit
ltem	Signal	Symbol	Condition	Min.	Max.	Unit
Serial clock cycle	SCL	tscyc		400		ns
SCL HIGH pulse width		tsнw		150	_	
SCL LOW pulse width		tsLw		150		
Address setup time	A0	tsas		250		
Address hold time		t SAH		250		
Data setup time	SI	tsds		150		
Data hold time		tsdн		150		
CS-SCL time	CS	tcss		250		
		tcsн		250		

*1 The rise and fall times (tr and tf) of the input signal are specified for less than 15 ns.

*2 All timings are specified based on the 20 and 80% of VDD.

Display control output timing

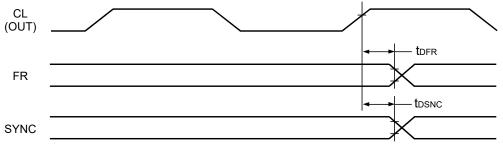


Table 35

ltem	Signal	Symbol	Condition	Spee	cification v	value	Unit
item	i Signai Symbol Condition	Min.	Тур.	Max.	Unit		
FR delay time	FR	tDFR	C∟=50pF		10	40	ns
SYNC delay time	SYNC	t DSNC	C∟=50pF	—	10	40	ns

Table 36

[VDD=2.7V to 4.5V, Ta=-40 to +85°C]

ltem	Signal	Symbol	Condition	Spec	Unit		
			Condition	Min.	Тур.	Max.	Unit
FR delay time	FR	tDFR	C∟=50pF		20	80	ns
SYNC delay time	SYNC	t DSNC	C∟=50pF	_	20	80	ns

Table 37

[VDD=1.8V to 2.7V, Ta=-40 to +85°C]

ltem	Signal Symbol		Condition	Spee	Unit		
nem	Signal	Symbol	Condition	Min.	Тур.	Max.	
FR delay time	FR	tDFR	C∟=50pF		50	200	ns
SYNC delay time	SYNC	t DSNC	C∟=50pF		50	200	ns

*1 Valid only when the master mode is selected.

*2 All timings are specified based on the 20 and 80% of VDD.

*3 Pay attention not to cause delays of the timing signals CL, FR and SYNC to the salve side by wiring resistance, etc., while master/slave operations are in progress. If these delays occur, indication failures such as flickering may occur.

Reset input timing

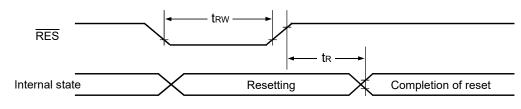


Table 38

[VDD=4.5V to 5.5V, Ta=-40 to +85°C]

				Spee			
Item	Signal	Symbol	Condition	Min.	Тур.	Max.	Unit
Reset time		tR		—	_	0.5	μs
Reset LOW pulse width	RES	trw		0.5			

Table 39

[VDD=2.7V to 4.5V, Ta=-40 to +85°C]

				Specification value			
Item	Signal	Symbol	Condition	Min.	Тур.	Max.	Unit
Reset time		tR		_	_	1	μs
Reset LOW pulse width	RES	trw		1	—	—	

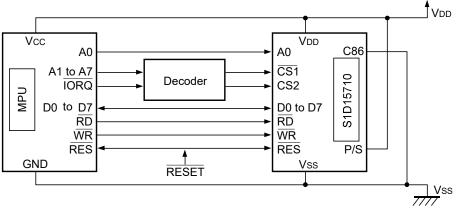
Table 40

[VDD=1.8V to 2.7V, Ta=-40 to +85°C]

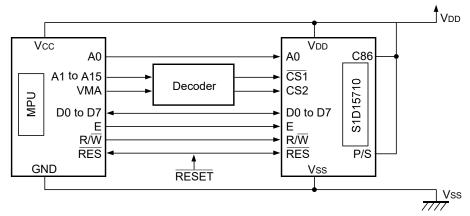
				Specification value			
Item	Signal	Symbol	Condition	Min.	Тур.	Max.	Unit
Reset time		tR		_	_	1.5	μs
Reset LOW pulse width	RES	trw		1.5	—	—	

*1 All timings are specified based on the 20 and 80% of VDD.

11. MICROPROCESSOR (MPU) INTERFACE: REFERENCE

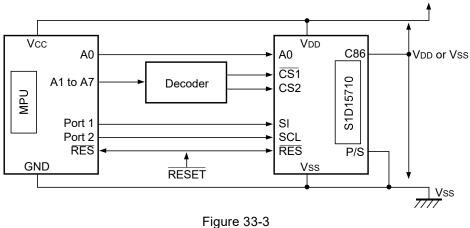

The S1D15710 series can directly be connected to the 80 system MPU and 68 series MUP. It can also be operated with a fewer signal lines by using the serial interface.

The S1D15710 series is used for the multiple chip configuration to expand the display area. In this case, it can select the ICs that are accessed individually using the Chip Select signal.


After the initialization using the $\overline{\text{RES}}$ pin, the respective input pins of the S1D15710 series need to be controlled normally.

80 series MPU

68 series MPU



Serial interface

S1D15710 Series (Rev. 1.1c)

12. CONNECTION BETWEEN LCD DRIVERS: REFERENCE

The S1D15710 series is used for the multiple chip configuration to easily expand the liquid crystal display area. Use the same device (S1D15710*****/S1D15710*****) for the master/slave.

S1D15710 (master) \leftrightarrow S1D15710 (slave)

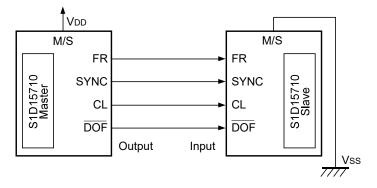


Figure 34

13. LCD PANEL WIRING: REFERENCE

The S1D15710 series is used for the multiple chip configuration to easily expand the liquid crystal display area. Use the same device (S1D15710*****/S1D15710*****) for the multiple chip configuration.

1-chip configuration

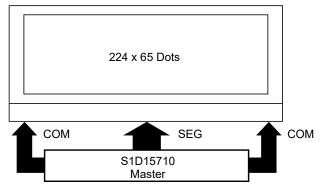
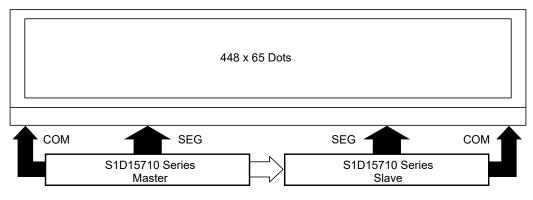
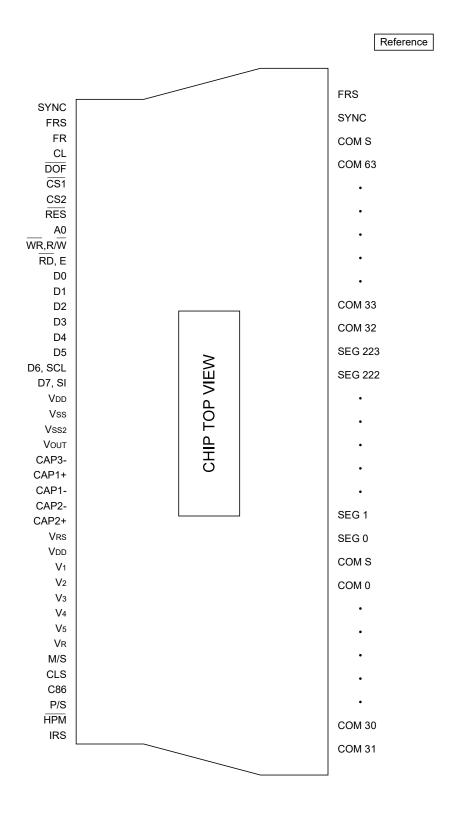
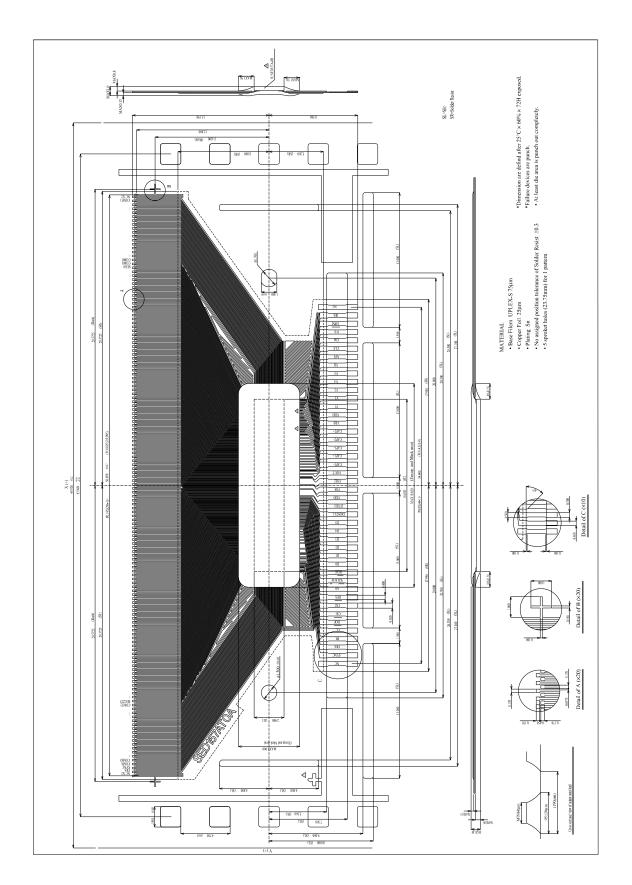


Figure 35-1

2-chip configuration


Figure 35-2

14. TCP PIN LAYOUT

Note) This TCP pin layout does not specify the TCP dimensions.

15. TCP DIMENSIONS

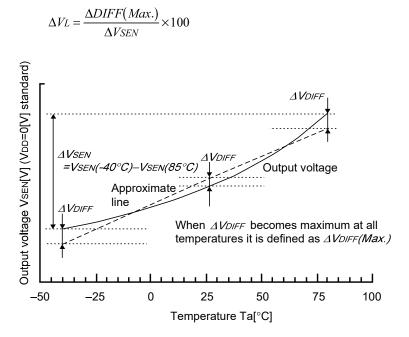
16. TEMPERATURE SENSOR CIRCUIT

Both the S1D15710*10** and S1D15710*11** have built-in temperature sensor circuits with analog voltage output terminals having a temperature gradient of 11.4mV/°C (Typ.). By controlling the liquid crystal drive voltage at V5 by inputting an electric volume register value corresponding to the temperature sensor output value from the MPU enables liquid crystal to display appropriate light and shade over a wide range of temperatures.

Build a system to compensate for variations in the output voltage by feeding back the output voltage value sampled at a constant temperature to the MPU and store it as the standard voltage in order to achieve higher control of the liquid crystal drive voltage.

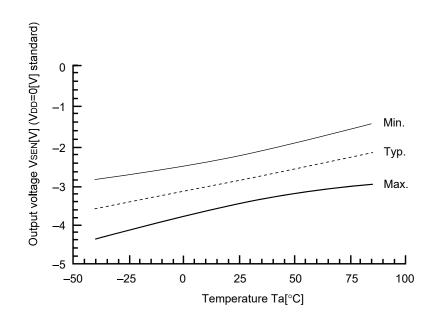
1. Terminal description

*Terminals related to the temperature sensor circuit are allocated to TEST 1 and 2, and are named VSEN1 for TEST1 and SVS1 for TEST2. Use the temperature sensor as indicated in the table below. When not in use, fix each terminal at HIGH.

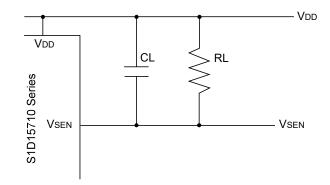

Pin name	I/O	Description	Number of pins
SVS1	Power	Power terminal of the temperature sensor. Apply compulsory operation voltage to VDD.	1
VSEN1	0	Analog voltage output terminal of temperature sensor. Monitor the output voltage to VDD.	1

2. Electrical characteristics

ltem	Symbol	Condition	Spec	ificatior	Unit	Applicable	
nem	Symbol	Condition	Min.	Тур.	Max.	Unit	PIN
Operating voltage	SVS	(VDD standard)	-5.5	-5.0	-4.5	V	SVS1
		(VDD standard) Ta=–40°C	-4.35	-3.62	-2.89		
Output voltage	VSEN	(VDD standard) Ta=25°C	-3.48	-2.88	-2.28	V	VSEN1
		(VDD standard) Ta=85°C	-2.92	-2.20	-1.47		
Output voltage	Vgra	*1	9.4	11.4	13.4	mV/°C	VSEN1
temperature gradient							
Output voltage	ΔVL	*2	-1.5	_	1.5	%	VSEN1
linearity							
Output voltage	tsen	*3	100	_	_	mS	VSEN1
setup time							
Operating current	ISEN	Ta=25°C	-	40	150	μA	SVS1


*Notes:

- *1: Slope of approximate line of Typ. output voltage.
- *2: Maximum deviation of output voltage curve and approximate line. When the output voltage difference between -40° C and 85° C is Δ VSEN, the difference between the approximate line and the output voltage value is Δ DIFF and the maximum value is Δ DIFF(Max.), output voltage linearity Δ VL will be expressed using the following formula:


*3: Waiting time until monitoring is enabled with stable output voltage after applying power voltage SVS to terminal SVS1. The output voltage needs to be sampled after a longer than standard waiting time.

Output voltage characteristics

3. Output terminal load

Load capacity CL of VSEN output terminal VSEN1 should be under 100pF and load resistance RL higher than $1M\Omega$. Be careful not to build a current path between VSS in order to obtain an accurate output voltage value.

17. NOTES

The following points should be noted when this development specification is used:

Please be advised on the following points in use of this development specification.

- 1. This development Specification is subject to change without previous notice.
- 2. This development Specification does not guarantee or furnish the industrial property right not its execution. Application examples in this development specification are intended to ensure your better understanding of the product. Thus the manufacturer shall not be liable for any trouble arising in your circuits from using such application example.

Numerical values provided in the property table of this manual are represented with their magnitude on the numerical line.

3. No part of this development specification may not be reproduced, copied or used for commercial purpose without a written permission from the manufacturer.

In handling of semiconductor devices, your attention is required to following points.

[Precaution on light]

Property of semiconductor devices may be affected when they are exposed to light, possibly resulting in malfunctioning of the ICs. To prevent such malfunctioning of the ICs mounted on the boards or products, make sure that:

- (1) Your design and mounting layout done are so that the IC is not exposed to light in actual use.
- (2) The IC is protected from light in the inspection process.
- (3) The IC is protected from light in its front, rear and side faces.

Attention to COG module

When this IC is used as chip on glass (COG) module, it needs the greatest care as follows, because the resistance of ITO wire inserted between IC and external input / output pins may influence the display quality.

- (1) The resistance of ITO wire connected to external capacitor must be as low as possible.
- (2) The resistance of ITO wire connected to power source must be as low as possible.

EPSON

International Sales Operations

AMERICA

EPSON ELECTRONICS AMERICA, INC.

HEADQUARTERS 150 River Oaks Parkway San Jose, CA 95134, U.S.A.

Phone: +1-800-228-3964

SALES OFFICES West

1960 E.Grand Avenue Flr 2 El Segundo, CA 90245, U.S.A. Phone: +1-800-249-7730 FAX: +1-310-955-5400

FAX: +1-408-922-0238

Central

101 Virginia Street, Suite 290 Crystal Lake, IL 60014, U.S.A. Phone: +1-800-853-3588 FAX: +1-815-455-7633

Northeast

301 Edgewater Place, Suite 210 Wakefield, MA 01880, U.S.A. Phone: +1-800-922-7667 FAX: +1-781-246-5443

Southeast

3010 Royal Blvd. South, Suite 170 Alpharetta, GA 30005, U.S.A. Phone: +1-877-332-0020 FAX: +1-770-777-2637

EUROPE

EPSON EUROPE ELECTRONICS GmbH

HEADQUARTERS Riesstrasse 15 80992 Munich, GERMANY Phone: +49-89-14005-0 FAX: +49-89-14005-110

DÜSSELDORF BRANCH OFFICE

Altstadtstrasse 176 51379 Leverkusen, GERMANY Phone: +49-2171-5045-0 FAX: +49-2171-5045-10

FRENCH BRANCH OFFICE

1 Avenue de l' Atlantique, LP 915 Les Conquerants Z.A. de Courtaboeuf 2, F-91976 Les Ulis Cedex, FRANCE Phone: +33-1-64862350 FAX: +33-1-64862355

BARCELONA BRANCH OFFICE

Barcelona Design Center Edificio Testa, C/Alcalde Barnils 64-68, Modulo C 2a planta E-08190 Sant Cugat del Vallès, SPAIN Phone: +34-93-544-2490 FAX: +34-93-544-2491

UK & IRELAND BRANCH OFFICE

8 The Square, Stockley Park, Uxbridge Middx UB11 1FW, UNITED KINGDOM Phone: +44-1295-750-216/+44-1342-824451 FAX: +44-89-14005 446/447

Scotland Design Center

Integration House, The Alba Campus Livingston West Lothian, EH54 7EG, SCOTLAND Phone: +44-1506-605040 FAX: +44-1506-605041

ASIA

EPSON (CHINA) CO., LTD. 23F, Beijing Silver Tower 2# North RD DongSanHuan ChaoYang District, Beijing, CHINA Phone: +86-10-6410-6655 FAX: +86-10-6410-7320

SHANGHAI BRANCH

7F, High-Tech Bldg., 900, Yishan Road, Shanghai 200233, CHINA Phone: +86-21-5423-5522 FAX: +86-21-5423-5512

EPSON ELECTRONIC TECHNOLOGY **DEVELOPMENT (SHENZHEN) CO., LTD** 12/F, Dawning Mansion, Keji 12 Road South, Hi-tech Park, Shenzhen, CHINA

FAX: +86-755-2699-3838 Phone: +86-755-2699-3828

EPSON HONG KONG LTD.

20/F., Harbour Centre, 25 Harbour Road Wanchai, Hong Kong Phone: +852-2585-4600 FAX: +852-2827-4346 Telex: 65542 EPSCO HX

EPSON TAIWAN TECHNOLOGY & TRADING LTD.

14F, No. 7, Song Ren Road, Taipei 110 Phone: +886-2-8786-6688 FAX: +886-2-8786-6677

HSINCHU OFFICE

No. 99. Jiangong Road. Hsinchu City 300 Phone: +886-3-573-9900

EPSON SINGAPORE PTE., LTD.

401 Commonwealth Drive #07-01 Haw Par Technocentre, SINGAPORE 149598 Phone: +65-6586-3100 FAX: +65-6472-4291

EPSON TRADING (MALAYSIA) SDN. BHD. ED PENANG OFFICE

8-1-04, Sunny Point Complex, Jalan Batu Uban 11700 Pulau Penang, MALAYSIA Phone: +60-4-6589243 FAX: +60-4-6589249

SEIKO EPSON CORPORATION **KOREA OFFICE**

50F, KLI 63 Bldg., 60 Yoido-dong Youngdeungpo-Ku, Seoul, 150-763, KOREA Phone: +82-2-784-6027 FAX: +82-2-767-3677

GUMI OFFICE

6F, Good Morning Securities Bldg., 56 Songjeong-Dong, Gumi-City, Seoul, 730-090, KOREA Phone: +82-54-454-6027 FAX: +82-54-454-6093

SEIKO EPSON CORPORATION **ELECTRONIC DEVICES MARKETING & SALES DIV.**

ED International Sales Dept.

421-8, Hino, Hino-shi, Tokyo 191-8501, JAPAN Phone: +81-42-587-5814 FAX: +81-42-587-5117

FAX: +886-3-573-9169

EPSON Electronic Devices Website

http://www.epsondevice.com/

Document code : 404948201 First issue December, 1992@ Printed December, 2004 in Japan (*) A

EPSON

AMERICA

EPSON ELECTRONICS AMERICA, INC.

HEADQUARTERS 150 River Oaks Parkway San Jose, CA 95134, U.S.A.

Phone: +1-800-228-3964

SALES OFFICES West

1960 E.Grand Avenue Flr 2 El Segundo, CA 90245, U.S.A. Phone: +1-800-249-7730 FAX: +1-310-955-5400

FAX: +1-408-922-0238

Central

101 Virginia Street, Suite 290 Crystal Lake, IL 60014, U.S.A. Phone: +1-800-853-3588 FAX: +1-815-455-7633

Northeast

 301 Edgewater Place, Suite 210

 Wakefield, MA 01880, U.S.A.

 Phone: +1-800-922-7667

 FAX: +1-781-246-5443

Southeast

3010 Royal Blvd. South, Suite 170 Alpharetta, GA 30005, U.S.A. Phone: +1-877-332-0020 FAX: +1-770-777-2637

EUROPE

EPSON EUROPE ELECTRONICS GmbH

 HEADQUARTERS

 Riesstrasse 15

 80992 Munich, GERMANY

 Phone: +49-89-14005-0

 FAX: +49-89-14005-110

DÜSSELDORF BRANCH OFFICE

Altstadtstrasse 176 51379 Leverkusen, GERMANY Phone: +49-2171-5045-0 FAX: +49-2171-5045-10

FRENCH BRANCH OFFICE

1 Avenue de l'Atlantique, LP 915 Les Conquerants Z.A. de Courtaboeuf 2, F-91976 Les Ulis Cedex, FRANCE Phone: +33-1-64862350 FAX: +33-1-64862355

BARCELONA BRANCH OFFICE

Barcelona Design CenterEdificio Testa, C/Alcalde Barnils 64-68, Modulo C 2a plantaE-08190 Sant Cugat del Vallès, SPAINPhone: +34-93-544-2490FAX: +34-93-544-2491

UK & IRELAND BRANCH OFFICE

8 The Square, Stockley Park, Uxbridge Middx UB11 1FW, UNITED KINGDOM Phone: +44-1295-750-216/+44-1342-824451 FAX: +44-89-14005 446/447

Scotland Design Center

Integration House, The Alba Campus Livingston West Lothian, EH54 7EG, SCOTLAND Phone: +44-1506-605040 FAX: +44-1506-605041

International Sales Operations

ASIA

EPSON (CHINA) CO., LTD. 23F, Beijing Silver Tower 2# North RD DongSanHuan ChaoYang District, Beijing, CHINA Phone: +86-10-6410-6655 FAX: +86-10-6410-7320

SHANGHAI BRANCH

7F, High-Tech Bldg., 900, Yishan Road, Shanghai 200233, CHINA Phone: +86-21-5423-5522 FAX: +86-21-5423-5512

EPSON HONG KONG LTD.

20/F., Harbour Centre, 25 Harbour Road Wanchai, Hong Kong Phone: +852-2585-4600 FAX: +852-2827-4346 Telex: 65542 EPSCO HX

EPSON Electronic Technology Development (Shenzhen) LTD.

12/F, Dawning Mansion, Keji South 12th Road, Hi- Tech Park, Shenzhen Phone: +86-755-2699-3828 FAX: +86-755-2699-3838

EPSON TAIWAN TECHNOLOGY & TRADING LTD.

14F, No. 7, Song Ren Road, Taipei 110 Phone: +886-2-8786-6688 FAX: +886-2-8786-6677

HSINCHU OFFICE

No. 99, Jiangong Road, Hsinchu City 300 Phone: +886-3-573-9900 FAX: +886-3-573-9169

EPSON SINGAPORE PTE., LTD.

1 HarbourFront Place, #03-02 HarbourFront Tower One, Singapore 098633 Phone: +65-6586-5500 FAX: +65-6271-3182

SEIKO EPSON CORPORATION KOREA OFFICE

50F, KLI 63 Bldg., 60 Yoido-dong Youngdeungpo-Ku, Seoul, 150-763, KOREA Phone: +82-2-784-6027 FAX: +82-2-767-3677

GUMI OFFICE

2F, Grand B/D, 457-4 Songjeong-dong, Gumi-City, KOREA Phone: +82-54-454-6027 FAX: +82-54-454-6093

SEIKO EPSON CORPORATION SEMICONDUCTOR OPERATIONS DIVISION

IC Sales Dept. IC Marketing Group 421-8, Hino, Hino-shi, Tokyo 191-8501, JAPAN Phone: +81-42-587-5814 FAX: +81-42-587-5117