

Dual-/Triple-Voltage, Power-Supply Sequencers/Supervisors

General Description

The MAX6880–MAX6883 dual-/triple-voltage monitors are designed to sequence power supplies during power-up condition. When all of the voltages exceed their respective thresholds, these devices turn on voltages to the system sequentially, enhancing n-channel MOSFETs used as switches. The time between each sequenced voltage is determined by an external capacitor, thus allowing flexibility in delay timing. The MAX6880/MAX6881 sequence three voltages and the MAX6882/MAX6883 sequence two voltages.

These devices initially monitor all of the voltages and when all of them are within their tolerances, the internal charge pumps enhance external n-channel MOSFETs in a sequential manner to apply the voltages to the system. Internal charge pumps drive the gate voltages 5V above the respective input voltage thereby ensuring the MOSFETs are fully enhanced to reduce the on-resistance.

The MAX6880–MAX6883 feature capacitor-adjustable slew-rate control to provide controlled turn-on characteristics. After all of the voltages reach 92.5% of their final value, a power-good output (MAX6880/MAX6882) signal is active. The power-good output (PG/RST) can be delayed with an external capacitor to create a power-on reset delay. After the initial power-up phase, the MAX6880–MAX6883 continue to monitor the voltages. If any of the voltages falls below its threshold, the MOSFETs are quickly turned off and the voltages are tracked down together. An internal 100 Ω pulldown resistor ensures that the capacitance at the MOSFET's source is discharged quickly. The power-good output goes low to provide a system reset.

The MAX6880–MAX6883 are available in small 4mm x 4mm 24-pin and 16-pin thin QFN packages and specified over the -40°C to $+85^{\circ}$ C extended operating temperature range.

Applications

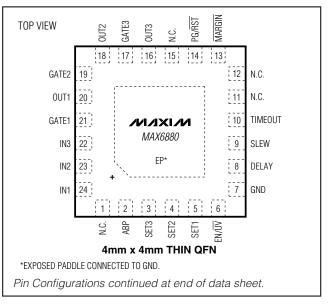
- Multivoltage Systems
- Networking Systems
- Telecom
- Storage Equipment
- Servers/Workstations

Selector Guide appears at end of data sheet.

Maxim Integrated Products 1

For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at 1-888-629-4642, or visit Maxim's website at www.maxim-ic.com.

_ Features


- Capacitor-Adjustable Power-Up Sequencing Delay
- Internal Charge Pumps to Enhance External n-Channel FETs
- Capacitor-Adjustable Timeout Period Power-Good Output (MAX6880/MAX6882)
- Adjustable Undervoltage Lockout or Logic-Enable Input
- Internal 100Ω Pulldown for Each Output to Discharge Capacitive Load Quickly
- ♦ 0.5V to 5.5V Nominal IN_/OUT_ Range
- ♦ 2.7V to 5.5V Operating Voltage Range
- Immune to Short Voltage Transients
- Small 4mm x 4mm 24-Pin or 16-Pin Thin QFN Packages

Ordering Information

PART	TEMP RANGE	PIN- PACKAGE	PKG CODE
MAX6880ETG+	-40°C to +85°C	24 Thin QFN	T2444-4
MAX6881ETE+	-40°C to +85°C	16 Thin QFN	T1644-4
MAX6882ETE+	-40°C to +85°C	16 Thin QFN	T1644-4
MAX6883ETE+	-40°C to +85°C	16 Thin QFN	T1644-4

+Denotes lead-free package.

Pin Configurations

ABSOLUTE MAXIMUM RATINGS

(All voltages referenced to GND, unless otherwise noted.)

ABP SET1, SET2, SET3 GATE1, GATE2, GATE3 OUT1, OUT2, OUT3 MARGIN PG/RST, EN/UV DELAY, SLEW, TIMEOUT	-0.3V to +6V 0.3V to the highest of V _{IN1} - V _{IN3} 0.3V to +6V 0.3V to +12V 0.3V to +12V 0.3V to +6V 0.3V to +6V 0.3V to +6V 0.3V to +6V
DELAY, SLEW, TIMEOUT	
—	±50mA

Input/Output Current (all pins except OUT_ and GND)±20mA Continuous Power Dissipation ($T_A = +70^{\circ}$ C) 16-Pin 4mm x 4mm Thin QFN (derate 16.9mW/°C above +70°C)1349mW 24-Pin 4mm x 4mm Thin QFN (derate 20.8mW/°C above +70°C)1667mW Operating Temperature Range-40°C to +85°C Storage Temperature Range-65°C to +150°C Maximum Junction Temperature+150°C Lead Temperature (soldering, 10s)+300°C

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

(IN1, IN2, or IN3 = +2.7V to +5.5V, EN/ \overline{UV} = \overline{MARGIN} = ABP, T_A = -40°C to +85°C, unless otherwise specified. Typical values are at T_A = +25°C, unless otherwise noted.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS	MIN	ТҮР	MAX	UNITS
Operating Voltage Range	IN_	Voltage on the highest of IN_ to ensure that PG/RST is valid and GATE_ = 0	1.4			V
Operating voltage hange		Voltage on the highest of IN_ to ensure the device is fully operational	2.7		5.5	v
Supply Current	Icc	IN1 = 5.5V, IN2 = IN3 = 3.3V, no load		1.1	1.8	mA
SET. Threshold Dange		SET_ falling, $T_A = +25^{\circ}C$	0.4925	0.5	0.5075	V
SET_ Threshold Range	V _{TH}	SET_ falling, $T_A = -40 \degree C$ to $+85 \degree C$	0.4875	0.5	0.5125	v
SET_ Threshold Hysteresis	VTH_HYST	SET_ rising		0.5		%
SET_ Input Current	ISET	SET_ = 0.5V	-100		+100	nA
	V _{EN_R}	Input rising		1.286		v
EN/UV Input Voltage	V _{EN_F}	Input falling	1.22	1.25	1.28	v
EN/UV Input Current	I _{EN}		-5		+5	μA
EN/UV Input Pulse Width	t _{EN}	EN/UV falling, 100mV overdrive	7			μs
DELAY, TIMEOUT Output Current	ID	(Notes 2, 3)	2.12	2.5	2.88	μA
DELAY, TIMEOUT Threshold Voltage		$V_{CC} = 3.3V$		1.25		V
SLEW Output Current	Is	(Note 4)	22.5	25	27.5	μA
Sequence Slew-Rate Timebase Accuracy	SR	C _{SLEW} = 200pF	-15		+15	%
Timebase/C _{SLEW} Ratio		100pF < C _{SLEW} < 1nF		104		kΩ
Slew-Rate Accuracy during Power- Up and Power-Down		$C_{SLEW} = 200 pF, V_{IN} = 5.5V (Note 4)$	-50		+50	%

ELECTRICAL CHARACTERISTICS (continued)

(IN1, IN2, or IN3 = +2.7V to +5.5V, EN/ \overline{UV} = \overline{MARGIN} = ABP, T_A = -40°C to +85°C, unless otherwise specified. Typical values are at T_A = +25°C, unless otherwise noted.) (Note 1)

	, , ,					
Power-Good Threshold	Vth_pg	V _{OUT} _falling	91.5	92.5	93.5	%
Power-Good Threshold Hysteresis	VHYS_PG	V _{OUT} _ rising		0.5		%
GATE_ Output High	V _{GOH}	Isource = 0.5µA	IN_ + 4.2	IN_ + 5.0	IN_ + 5.8	V
GATE_ Pullup Current	IGUP	During power-up and power-down, VGATE_ = 1V	2.5	4		μA
	I _{GD}	During power-up and power-down, V _{GATE} = 5V	2.5	4		μA
GATE_ Pulldown Current		When disabled, $V_{GATE} = 5V$, $V_{IN} \ge 2.7V$		9.5		
	IGDS	When disabled, $V_{GATE} = 5V$, $V_{IN} \ge 4V$		20		mA
SET_ to GATE_ Delay	td-gate	SET falling, 25mV overdrive		10		μs
PG/RST Output Low	V _{OL}	$V_{IN} \ge 2.7V$, $I_{SINK} = 1$ mA, output asserted			0.3	V
	VOL	$V_{IN} \ge 4.0V$, $I_{SINK} = 4mA$, output asserted			0.4	v
Tracking Differential Voltage Stop Ramp	Vtrk	Differential between each of the OUT_ and the ramp voltage during power-up and power-down, Figure 1 (Note 5)	75	125	180	mV
Tracking Differential Fault Voltage	Vtrk_f	Differential between each of the OUT_ and the ramp voltage, Figure 1 (Note 5)	200	250	310	mV
Power-Low Threshold	VTH_PL	OUT_ falling	125	142	170	mV
Power-Low Hysteresis	V _{TH_PLHYS}	OUT_ rising		10		mV
OUT to GND Pulldown Impedance		IN_ > 2.7V (Note 6)		100		Ω
MARGIN Pullup Current	lin		7	10	13	μA
MARGIN Input Voltage	VIL				0.8	V
	VIH		2.0			v
MARGIN Glitch Rejection				100		ns

Note 1: Specifications guaranteed for the stated global conditions. 100% production tested at $T_A = +25^{\circ}C$ and $T_A = +85^{\circ}C$. Specifications at $T_A = -40^{\circ}C$ to $+85^{\circ}C$ are guaranteed by design. These devices meet the parameters specified when at least one of IN1/IN2/IN3 is between 2.7V to 5.5V, while the remaining IN1/IN2/IN3 are between 0 and 5.5V.

Note 2: A current I_D = 2.5µA ±15% is generated internally and is used to set the DELAY and TIMEOUT periods and used as a reference for t_{DELAY} and t_{TIMEOUT}.

Note 3: The total DELAY is $t_{DELAY} = 200\mu s + (500k\Omega \times C_{DELAY})$. Leave DELAY unconnected for 200 μs delay. The total TIMEOUT is $t_{TIMEOUT} = 200\mu s + (500k\Omega \times C_{TIMEOUT})$. Leave TIMEOUT unconnected for 200 μs timeout.

Note 4: A current I_S = 25μ A ±10% is generated internally and used as a reference for t_{FAULT}, t_{RETRY}, and slew rate.

Note 5: During power-up, only the condition OUT_ < ramp - V_{TRK} is checked in order to stop the ramp. However, both conditions OUT_ < ramp - V_{TRK_F} and OUT_ > ramp + V_{TRK_F} cause a fault. During power-down, only the condition OUT > ramp + V_{TRK} is checked in order to stop the ramp. However, both conditions OUT_ < ramp - V_{TRK_F} and OUT_ > ramp + V_{TRK_F} cause a fault (see Figure 10). Therefore, if OUT1, OUT2, and OUT3 (during power-up tracking and power-down) differ by more than 2 x V_{TRK_F}, a fault condition is asserted.

Note 6: A 100Ω pulldown to GND activated by a fault condition. See the *Internal Pulldown* section.

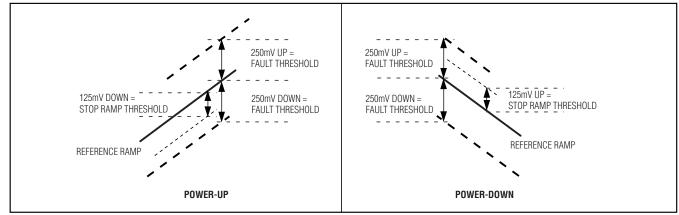


Figure 1. Stop Ramp/Fault Window During Power-Up and Power-Down

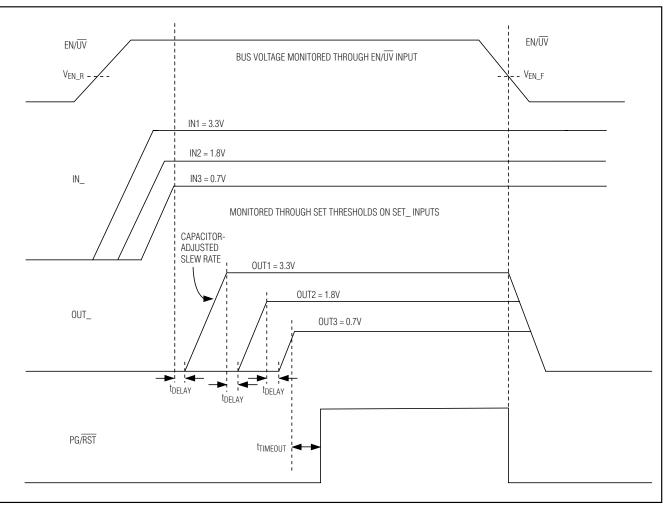


Figure 2. Sequencing In Normal Mode

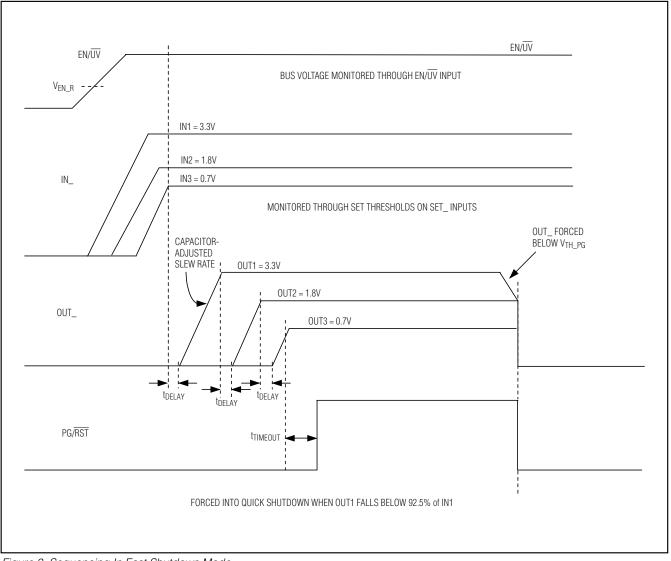


Figure 3. Sequencing In Fast Shutdown Mode

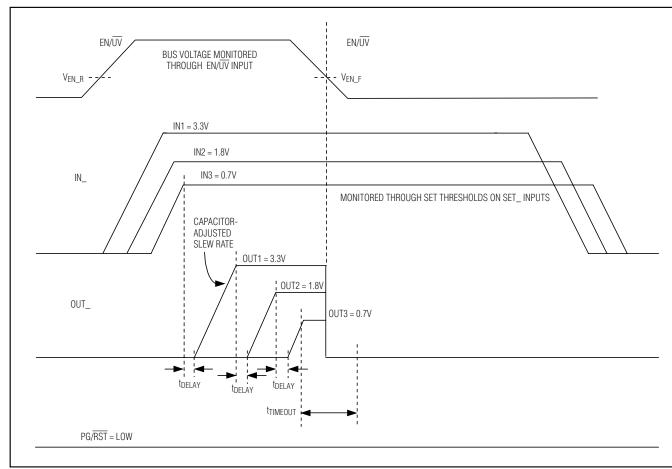


Figure 4. Timing Diagram (Aborted Sequencing)

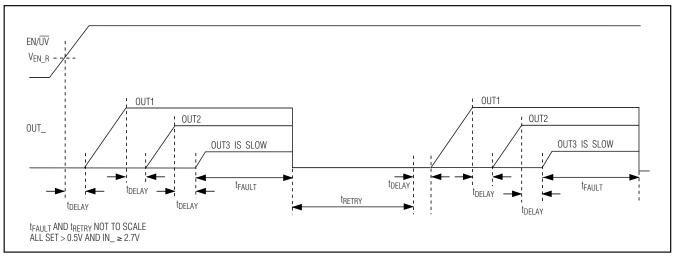
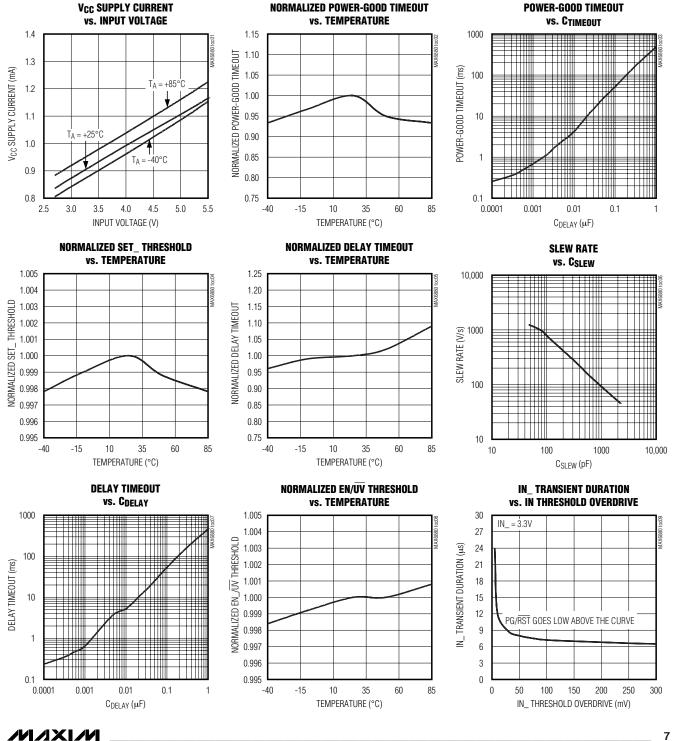
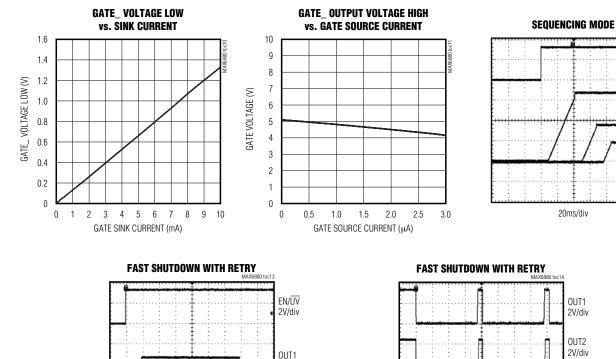



Figure 5. tFAULT and tRETRY Timing Diagram in Sequencing

M/IXI/M

Typical Operating Characteristics


(VIN = 2.7V to 5.5V, C_{SLEW} = 200pF, EN = \overline{MARGIN} = ABP, T_A = +25°C, unless otherwise noted.)

7

Typical Operating Characteristics (continued)

(V_{IN} = 2.7V to 5.5V, C_{SLEW} = 200pF, EN = \overline{MARGIN} = ABP, T_A = +25°C, unless otherwise noted.)

1V/div

OUT2 1V/div

OUT3

1V/div

40ms/div

MAX6880 toc12

EN/UV

2V/div

OUT1

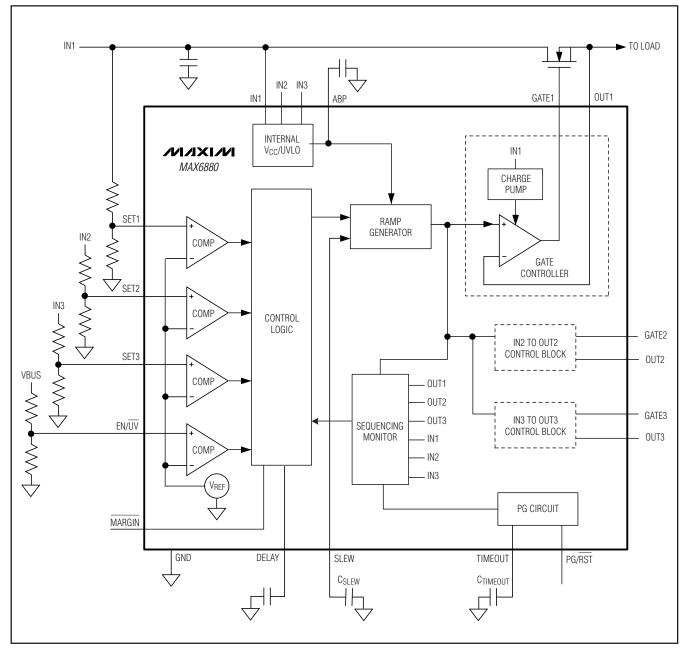
1V/div

OUT2

1V/div

OUT3

1V/div


_Pin Description

	P	N			
MAX6880	MAX6881	MAX6882	MAX6883	NAME	FUNCTION
1, 11, 12, 15	_	_	1, 8, 9, 10	N.C.	No Connection. Not internally connected.
2	_	1	_	ABP	Internal Supply Bypass Input. Bypass ABP with a 1μ F capacitor to GND. ABP maintains the device supply voltage during rapid power-down conditions.
3	2			SET3	Externally Adjusted IN_ Undervoltage Lockout Threshold. Connect
4	3	2	2	SET2	SET_ to an external resistor-divider network to set the desired
5	4	3	3	SET1	undervoltage threshold for each IN_ supply (see the <i>Typical Application Circuit</i>). All SET_ inputs must be above the internal SET_ threshold (0.5V) to enable sequencing functionality.
6	5	4	4	EN/UV	Logic-Enable Input or Undervoltage Lockout Monitor Input. EN/\overline{UV} must be high ($EN/\overline{UV} > V_{EN_R}$) to enable voltage sequencing power-up operation. OUT_ begins tracking down when $EN/\overline{UV} < V_{EN_F}$. Connect EN/\overline{UV} to an external resistor-divider network to set the external UVLO threshold.
7	6	5	5	GND	Ground
8	7	6	6	DELAY	Sequence Delay Select Input. Connect a capacitor from DELAY to GND to select the desired delay period before sequencing is enabled (after all SET_ inputs and EN/UV are above their respective thresholds) or between supply sequences. Leave DELAY unconnected for the default 200µs delay period.
9	8	7	7	SLEW	Slew-Rate Adjustment Input. Connect a capacitor from SLEW to GND to select the desired OUT_ slew rate.
10		8		TIMEOUT	PG/RST Timeout Period Adjust Input. PG/RST asserts high after the timeout period when all OUT_ exceed their IN_ referenced threshold. Connect a capacitor from TIMEOUT to GND to set the desired timeout period. Leave TIMEOUT unconnected for the default 200µs delay period.
13	_	9	_	MARGIN	Margin Input, Active-Low. Drive MARGIN low to enable margin mode (see the <i>Margin Input (MARGIN) (MAX6880/MAX6882)</i> section). The MARGIN functionality is disabled (returns to normal monitoring mode) after MARGIN returns high. MARGIN is internally pulled up to ABP through a 10µA current source.

Pin Description (continued)

	Р	IN			EUNOTION
MAX6880	MAX6881	MAX6882	MAX6883	NAME	FUNCTION
14	_	10	_	PG/RST	Power-Good Output, Open-Drain. PG_ \overline{RST} asserts high tTIMEOUT after all OUT_ voltages exceed the VTH_PG thresholds.
16	9	_		OUT3	Channel 3 Monitored Output Voltage. Connect OUT3 to the source of an n-channel FET. A fault condition activates a 100 Ω pulldown to ground.
17	10	_	_	GATE3	Gate Drive for External n-Channel FET. An internal charge pump boosts GATE3 to V_{IN3} + 5V to fully enhance the external n-channel FET when power-up is complete.
18	11	11	11	OUT2	Channel 2 Monitored Output Voltage. Connect OUT2 to the source of an n-channel FET. A fault condition activates a 100Ω pulldown to ground.
19	12	12	12	GATE2	Gate Drive for External n-Channel FET. An internal charge pump boosts GATE2 to V_{IN2} + 5V to fully enhance the external n-channel FET when power-up is complete.
20	13	13	13	OUT1	Channel 1 Monitored Output Voltage. Connect OUT1 to the source of an n-channel FET. A fault condition activates a 100Ω pulldown to ground.
21	14	14	14	GATE1	Gate Drive for External n-Channel FET. An internal charge pump boosts GATE1 to $V_{\rm IN1}$ + 5V to fully enhance the external n-channel FET when power-up is complete.
22	15			IN3	Supply Input Voltage. IN1, IN2, or IN3 must be greater than the internal undervoltage lockout ($V_{ABP} = 2.7V$) to enable the
23	16	15	15	IN2	sequencing functionality. Each IN_ input is simultaneously monitored by SET_ inputs to ensure all supplies have stabilized before power-up is enabled. If IN_ is connected to ground or left
24	1	16	16	IN1	unconnected and SET_ is above 0.5V, then no sequencing control is performed on that channel. Each IN_ is internally pulled down by a 100k Ω resistor.
EP	EP	EP	EP	EP	Exposed Paddle. Connect exposed paddle to ground.

Functional Diagram

Detailed Description

The MAX6880–MAX6883 multivoltage power sequencers/supervisors monitor three (MAX6880/MAX6881) and two (MAX6882/MAX6883) system voltages and provide proper power-up and power-down control for systems requiring voltage sequencing. These devices ensure the controlled voltages sequence in the proper order as system power supplies are enabled. The MAX6880–MAX6883 generate all required voltages and timing to control up to three external n-channel pass FETs for the OUT1/OUT2/OUT3 supply voltages.

The MAX6880–MAX6883 feature adjustable undervoltage thresholds for each input supply. When all of the voltages are above the adjusted thresholds these devices turn on the external n-channel MOSFETs to sequence the voltages to the system. The outputs are turned on one after the other, OUT1 first and OUT3 last.

The MAX6880–MAX6883 feature internal charge pumps to fully enhance the external FETs for low-voltage drops at highpass currents. The MAX6880/MAX6882 also feature a power-good output (PG/RST) with a selectable timeout period that can be used for system reset.

The MAX6880–MAX6883 monitor up to three voltages. Devices may be configured to exclude any IN_. To disable sequencing operation of any IN_, connect the IN_ to ground (or leave unconnected) and connect SET_ to a voltage greater than 0.5V. The channel exclusion feature adds more flexibility to the device in a variety of different applications. As an example, the MAX6880 can sequence two voltages using IN1 and IN2 while IN3 is left disabled.

Powering the MAX6880-MAX6883

These devices derive power from either IN1, IN2, or IN3 voltage inputs (see the *Functional Diagram*). In order to ensure proper operation, at least one of the IN_ inputs must be at least +2.7V.

The highest input voltage on IN1/IN2/IN3 supplies power to the devices. Internal hysteresis ensures that the supply input that initially powers these devices continues to power the MAX6880–MAX6883 when multiple input voltages are within 100mV (typ) of each other.

Sequencing

The sequencing operation can be initiated after all input conditions for power-up are met $V_{EN/UV} > 1.25V$ and all SET_ inputs are above the internal SET_ threshold (0.5V). In sequencing mode, the outputs are turned on sequentially, OUT1 first and OUT3 last. Before turning on each channel, a delay period is waited (programmable by connecting a capacitor from DELAY to ground. The power-up phase for each channel ends

when its output voltage exceeds a fixed percentage (V_{TH_PG}) of the corresponding IN_ voltage. When all channels have exceeded these thresholds, PG/RST asserts high after t_{TIMEOUT}, indicating a successful sequence.

If there is a fault condition during the initial power-up sequence, the process is aborted.

When powering down, all outputs turn off simultaneously, tracking each other. No reverse power-down sequencing occurs.

The power-supply sequencing operation should be completed within the selected fault timeout period (t_{FAULT}) (see Figure 5). The total sequencing time is extended when the devices must vary the control slew rate to allow slow supplies to catch up. If the external FET is too small (R_{DS} is too high for the selected load current and IN_ source current), the OUT_ voltage may never reach the control ramp voltage. For a slew rate of 935V/s, a fault is signaled if all outputs have not stabilized within 22ms. For a slew rate of 93.5V/s, a fault is signaled if sequencing takes too long (more than 219ms).

The fault time period (t_{FAULT}) is set through the capacitor at SLEW (C_{SLEW}). Use the following formula to estimate the fault timeout period:

 $t_{FAULT} = 2.191 \times 10^8 \times C_{SLEW}$

Autoretry Function

The MAX6880/MAX6881/MAX6882 feature autoretry modes to power-on again after a fault condition has been detected (see the *Typical Operating Characteristics*).

When a fault is detected, for a period of tRETRY, GATE_ remains off and the 100 Ω pulldowns are turned on. After the tRETRY period, the device waits tDELAY and retry sequencing if all power-up conditions are met (see Figure 5). These include all VSET_ > 0.5V, EN/UV > VEN_R, and OUT_ voltages < VTH_PL. The autoretry period tRETRY is a function of CSLEW (see Table 1).

Power-Up and Power-Down

During power-up, OUT_ is forced to follow the internal reference ramp voltage by an internal loop that controls the GATE_ of the external MOSFET. This phase must be completed within the adjustable fault timeout period (tFAULT); otherwise, the part forces a shutdown on all GATE_.

Once the power-up is completed, a power-down phase can be initiated by forcing $V_{EN/UV}$ below V_{EN_F} . The reference voltage ramp ramps down at the capacitor-adjusted slew rate. The control-loop comparators monitor each OUT_ voltage with respect to the common

reference ramp voltage. During ramp down, if an OUT_ voltage is greater than the reference ramp voltage by more than VTRK, the control loop dynamically stops the control ramp voltage from decreasing until the slow OUT_ voltage catches up. If an OUT_ voltage is greater or less than the reference ramp voltage by more than VTRK_F, a fault is signaled and the fast-shutdown mode is initiated. In fast-shutdown mode, a 100 Ω pulldown resistor is connected from OUT_ to GND to quickly discharge capacitance at OUT_, and GATE_ is pulled low with a strong IGDS current (see Figure 3).

Figure 4 shows the aborted sequencing mode. When EN/UV goes low before tTIMEOUT expires, all the outputs go low, and the device goes into fast shutdown.

Internal Pulldown

To ensure that the OUT_ voltages are not held high by a large output capacitance after a fault has occurred, there is a 100 Ω internal pulldown at OUT_. The pulldown ensures that all OUT_ voltages are below V_{TH_PL} (referenced to GND) before power-up cycling is initiated. The internal pulldown also ensures a fast discharge of the output capacitor during fast shutdown and fault modes. The pulldowns are not present during normal operation.

Stability Comment

No external compensation is required for sequencing or slew-rate control.

Inputs

IN1/IN2/IN3

The highest voltage on IN1, IN2, or IN3 supplies power to the device. The undervoltage threshold for each IN_ supply is set with an external resistor-divider from each IN_ to SET_ to ground. To disable sequencing on any IN_, connect IN_ to ground (or leave unconnected) and connect SET_ to a voltage greater than 0.5V.

Undervoltage Lockout Threshold Inputs (SET_) The MAX6880/MAX6881 feature three and the MAX6882/ MAX6883 feature two externally adjustable IN_ undervoltage lockout thresholds (SET1/SET2/SET3). The 0.5V SET_ threshold enables monitoring IN_ voltages as low as 0.5V. The undervoltage threshold for each IN_ supply is set with an external resistor-divider from each IN_ to SET_ to ground (see Figure 6). All SET_ inputs must be above the internal SET_ threshold (0.5V) to enable sequencing functionality. Use the following formula to set the UVLO threshold:

where V_{IN} is the undervoltage lockout threshold and V_{TH} is the 500mV SET threshold.

Margin Input (MARGIN) (MAX6880/MAX6882)

MARGIN allows system-level testing while power supplies are below the normal ranges as adjusted by the SET_ inputs. Drive MARGIN low before varying system voltages below the adjusted thresholds to avoid signaling an error. The state of PG/RST does not change while MARGIN is low. PG/RST and all monitoring functions are disabled while MARGIN is low. MARGIN makes it possible to vary the supplies without a need to adjust the thresholds to prevent sequencer alerts. Drive MARGIN high or leave it unconnected for normal operating mode.

Slew-Rate Control Input (SLEW)

The reference ramp voltage slew rate during any controlled power-up/down phase can be programmed in the 90V/s to 950V/s range by connecting a capacitor (C_{SLEW}) from SLEW to ground. Use the following formula to calculate the typical slew rate:

where slew rate is in V/s and CSLEW is in farads.

The capacitor at C_{SLEW} also sets the retry timeout period (t_{RETRY}), see Table 1.

For example, if $C_{SLEW} = 100pF$, we have $t_{RETRY} = 350ms$, $t_{FAULT} = 21.91ms$, slew rate = 935V/s. For example, if $C_{SLEW} = 1nF$, we have $t_{RETRY} = 3.5s$, slew rate = 93.5V/s.

 C_{SLEW} is the capacitor on SLEW pad, and must be large enough so the parasitic PC board capacitance is negligible. C_{SLEW} should be in the range of 100pF < $C_{SLEW} < 1nF.$

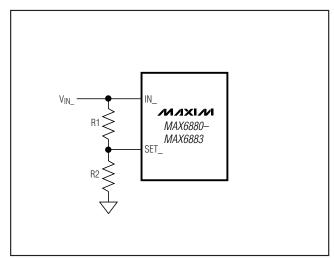


Figure 6. Setting the Undervoltage (UVLO) Thresholds

MAX6880-MAX6883

Table 1. C_{SLEW} Timing Formulas

TIME PERIOD	FORMULAS
Slew Rate	(9.35 x 10 ⁻⁸) / C _{SLEW}
^t RETRY	3.506 x 10 ⁹ x C _{SLEW}
t FAULT	2.191 x 10 ⁸ x C _{SLEW}

Limiting Inrush Current

The capacitor (C_{SLEW}) at SLEW to ground, controls the OUT_ slew rate, thus controlling the inrush current required to charge the load capacitor at OUT_. Using the programmed slew rate, limit the inrush current by using the following formula:

IINRUSH = COUT X SR

where $I_{\mbox{INRUSH}}$ is in amperes, $C_{\mbox{OUT}}$ is in farads, and SR is in V/s.

Delay Time Input (DELAY)

To adjust the desired delay period (tDELAY) before sequencing is enabled, connect a capacitor (CDELAY) between DELAY to ground (see Figures 2 to 5). The selected delay time is also enforced when EN/UV rises from low to high when all the input voltages are present. Use the following formula to calculate the delay time:

$t_{DELAY} = 200\mu s + (500k\Omega \times C_{DELAY})$

where t_{DELAY} is in μs and C_{DELAY} is in farads. Leave DELAY unconnected for the default 200 μs delay.

Timeout Period Input (TIMEOUT) (MAX6880/MAX6882)

These devices feature a PG/ \overrightarrow{RST} timeout period. Connect a capacitor (CTIMEOUT) from TIMEOUT to ground to program the PG/RST timeout period. After all OUT_ outputs exceed their IN_ referenced thresholds (VTH_PG), PG/RST remains low for the selected timeout period tTIMEOUT (see Figure 3).

 $t_{TIMEOUT} = 200 \mu s + (500 k \Omega \times C_{TIMEOUT})$

where tTIMEOUT is in μs and CTIMEOUT is in farads. Leave TIMEOUT unconnected for the default 200 μs timeout delay.

Logic-Enable Input (EN/UV)

Drive logic EN/UV input above V_{EN_R} to initiate voltage sequencing during power-up operation. Drive logic EN/UV below V_{EN_F} to initiate tracking power-down operation. Connect EN/UV to an external resistor-divider network to set the external undervoltage lockout threshold.

ABP Input (MAX6880/MAX6882)

ABP powers the analog circuitry. Bypass ABP to GND with a 1 μ F ceramic capacitor installed as close to the device as possible. ABP takes the highest voltage of IN_. Do not use ABP to provide power to external circuitry. ABP maintains the device supply voltage during rapid power-down conditions.

OUT1/OUT2/OUT3

The MAX6880/MAX6881 monitor three OUT_ and the MAX6882/MAX6883 monitor two OUT_ outputs to control the sequencing performance. After the internal supply (ABP) exceeds the minimum voltage (2.7V) requirements, EN/UV > V_{EN_R}, and IN1/IN2/IN3 are all greater than their adjusted SET_ thresholds, OUT1/ OUT2/OUT3 begin to sequence.

During fault conditions, an internal pulldown resistor (100Ω) on OUT_ is enabled to help discharge load capacitance (100Ω) is connected for fast power-down control).

Outputs

GATE_

The MAX6880–MAX6883 feature up to three GATE_ outputs to drive up to three external n-channel FET gates. The following conditions must be met before GATE_ begins enhancing the external n-channel FET_:

- 1) All SET_ inputs (SET1/SET2/SET3) are above their 0.5V thresholds.
- 2) At least one IN_ input is above the minimum operating voltage (2.7V).
- 3) EN/UV > 1.25V.

At power-up mode, GATE_ voltages are enhanced by control loops so all OUT_ voltages sequence at a capacitor-adjusted slew rate. Each GATE_ is internally pulled up to 5V above its relative IN_ voltage to fully enhance the external n-channel FET when power-up is complete.

Power-Good Output (PG/RST) (MAX6880/MAX6882)

The MAX6880/MAX6882 include a power-good (PG/RST) output. PG/RST is an open-drain output and requires an external pullup resistor.

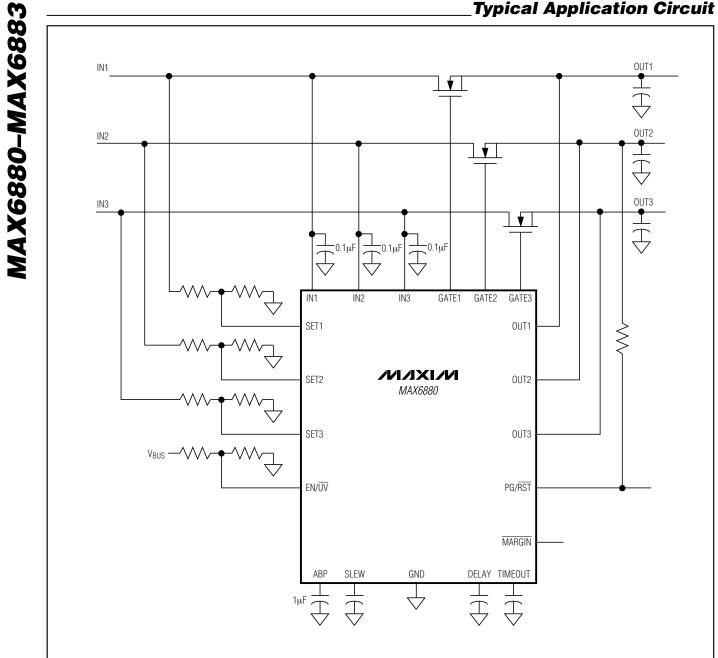
All the OUT_ outputs must exceed their IN_ referenced thresholds (IN_ x V_{TH_PG}) for the selected reset timeout period tTIMEOUT_(see the *TIMEOUT Period Input* section) before PG/RST asserts high. PG/RST stays low for the selected reset timeout period (tTIMEOUT) after all the OUT_ voltages exceed their IN_ referenced thresholds. PG/RST goes low when V_{SET_} < V_{TH} or V_{EN/UV} < V_{EN_R} (see Figure 2).

Layout and Bypassing

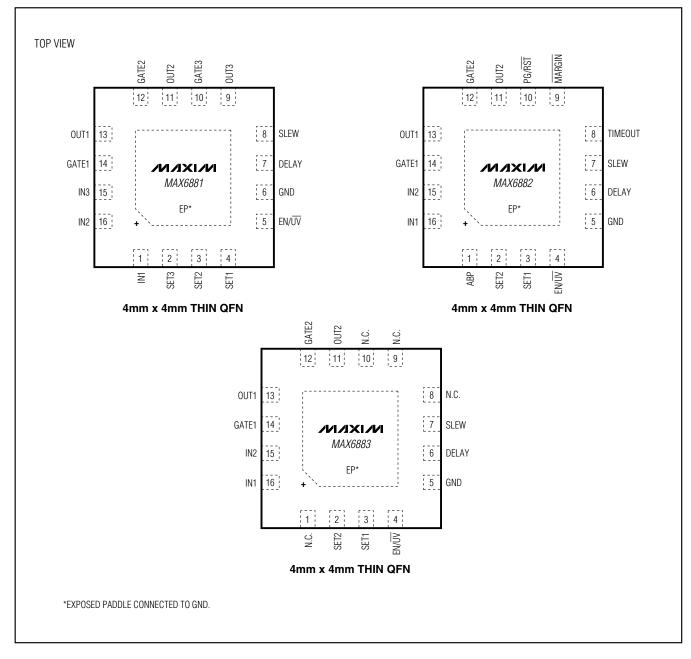
For better noise immunity, bypass each of the IN_ inputs to GND with 0.1 μ F capacitors installed as close to the device as possible. Bypass ABP to GND with a 1 μ F capacitor installed as close to the device as possible. ABP is an internally generated voltage and must not be used to supply power to external circuitry.

Applications Information

MOSFET Selection

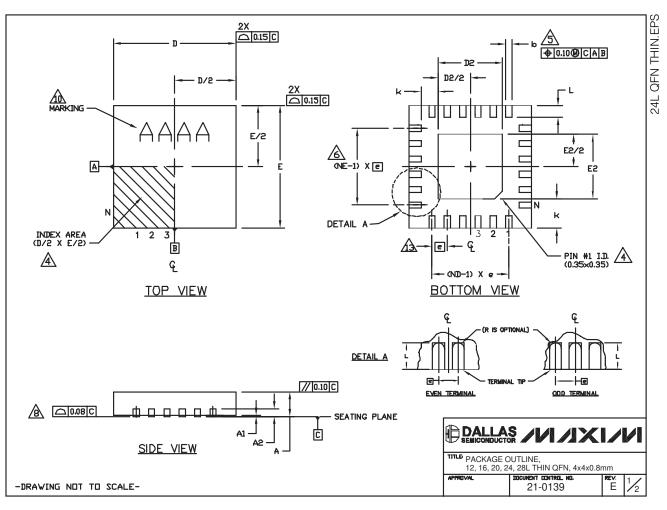

The external pass MOSFET is connected in series with the sequenced power-supply source. Since the load current and the MOSFET drain-to-source impedance (RDS) determine the voltage drop, the on characteristics of the MOSFET affect the load supply accuracy. The MAX6880–MAX6883 fully enhance the external MOSFET out of its linear range to ensure the lowest drain-to-source on-impedance. For highest supply accuracy/lowest voltage drop, select a MOSFET with an appropriate drain-to-source on-impedance with a gate-to-source bias of 4.5V to 6.0V.

_Selector Guide


PART	CHANNEL	TIMEOUT SELECTABLE	PG/RST	MARGIN	PG THRESHOLD VOLTAGE (%)
MAX6880	3	Yes	Yes	Yes	92.5
MAX6881	3	No	No	No	—
MAX6882	2	Yes	Yes	Yes	92.5
MAX6883	2	No	No	No	_

Chip Information

PROCESS: BICMOS


Typical Application Circuit

Pin Configurations (continued)

Package Information

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to **www.maxim-ic.com/packages**.)

M/IXI/M

Package Information (continued)

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to **www.maxim-ic.com/packages**.)

					10N	DIME	NSI	SNE									E	XPDS	ED	PAD	VAR	RIATI	ONS	
PKG	12	2L 4×	4	16	5L 4x	4	20	L 4x	4	24	4L 4>	(4	28	3L 4×	<4	1	PKG.		D2			E5		DOWN
REF.	MIN.	NDM.	MAX.	MIN.	NDM.	MAX.	MEN.	NDM.	MAX.	MIN.	NDM.	MAX.	MIN.	NDM.	MAX.		PKG. CODES	MIN.	NDM.	MAX.	MIN.	NDM.	MAX.	ALLOVE
A	0.70	0.75	0.80	0.70	0.75	0.80	0.70	0.75	0.80	0.70	0.75	0.80	0.70	0.75	0.80		T1244-3	1.95	2.10	2.25	1.95	2.10	2.25	YES
A1	0.0	0.02	0.05	0.0	20,0	0.05	0.0	0.02	0.05	0.0	0.02	0.05	0,0	0.02	0.05		T1244-4	1.95	2.10	2.25	1.95	2.10	2.25	ND
A2	().20 RE	F	0.	20 REI	F	0	20 RE	F	0	.20 RE	F	0	20 RE	F		T1644-3	1.95	2.10	2.25	1.95	2.10	2.25	YES
b	0.25	0.30	0.35	0.25	0.30	0.35	0.20	0.25	0.30	0.18	0.23	0.30	0.15	0.20	0.25		T1644-4	1.95	2.10	2.25	1.95	2.10	2.25	ND
D	3,90	4.00	4.10	3.90	4.00	4.10	3.90	4.00	4.10	3.90	4.00	4.10	3.90	4.00	4.10		T2044-2	1.95	2.10	2.25	1.95	2.10	2.25	YES
E	3.90	4.00	4.10	3.90	4.00	4.10	3.90	4.00	4.10	3.90	4.00	4.10	3.90	4.00	4.10		T2044-3	1.95	2.10	2.25	1.95	2.10	2.25	ND
e .	-	D.80 BS	-		65 BS			50 BS	-		1.50 BS	1		1.40 BS	1		T2444-2	1.95	2.10	2.25	1.95	2.10	2.25	YES
<u>к</u>	0.25	- 0.55	- 0.65	0.25 0.45	- 0.55	-	0.25	- 0.55	- 0.65	0.25	- 0.40	- 0.50	0.25	- 0.40	0.50		T2444-3	2.45	2.60	2.63 2.63	2.45	2.60	2.63	YES
L	0.43	12	0.65	0.43	16	0.65	0.43	20	0.65	0.30		0.50	0.30		0.30		T2444-4	2.45	2.60		2.45 2.50	2.60 2.60	2.63 2.70	
	-	3			4			5			2 4 6			28		1 1	T2844-1	5.30	2.60	2.70	2.30	2.00	2.70	
NE	-	3			4			5			6			7										
Jedec Var.	-	VGGB			VGGC				1		WGGD-	.2		VGGE										
2. 3.	dimens All di n is t	Mensioi He tot	ns are 'Al Nui	in Mi Meer C	llinete Df teri		GLES	ARE IN	DEGR	EES.														
1. 2. 3.	DIMENS ALL DI N IS T THE TE JESD 9	Mensioi He tot Rminal 15—1 si	NS ARE AL NUM .∯1 ID PP012	: IN MI MBER C ENTIFIE 1. DETA	LLIMETE DF TERI IR AND	ERS. AN MINALS. TERMIN	GLES KAL NI AL #1	are in Imberii Identi	I DEGR NG COI FIER AI	ees. Mentk Re opt	IONAL,	BUT M	UST BE	LOCAT	TED WIT	(HIN								
1. 2. 3.	DIMENS ALL DI N IS T THE TE JESD 9 THE ZO DIMENS	Mensioi He tot Rninal 15—1 si Sne ine	NS ARE AL NUM PP-012 DICATED	in Mi Meer C Entifie Deta . The	LUNETE DF TERI IR AND ILS OF TERMIN	ers, an Minals, Termin Termin Ial # 1	GLES IAL NI AL #1 IDENTI	are in Imberii Identi Fier m	I DEGR Ng Coi Fier Ai Ay Be	ees. Mentk Re opt Either	'IONAL, ₹AMC	BUT M	ust be Marke	ED FEA										
1. 2. 3. (A)	DIMENS ALL DI N IS T THE TE JESD 9 THE ZO DIMENS FROM ND AN	Mension He tot (Rminal 15—1 Si (5—1 Si (5—1 Si (5—1 Si (5—1 Si (5) (5) (5) (5) (5) (5) (5) (5) (5) (5)	NS ARE AL NUM PP-012 DICATED APPLIE AL TIP, REFER 1	IN MI MBER C ENTIFIE DETA DETA DETA STON	LUMETE DF TERI ILS OF TERMIN METALUI	ERS. AN MINALS. TERMIN TERMIN IAL #1 ZED TEI IER OF	gles Ial ni Al ∦1 Identii Rminal Termii	ARE IN IMBERII IDENTI FIER M . AND VALS O	I DEGR NG COI FIER AI AY BE IS MEA IN EAC	ees. Nventk Re opt Either Sured	'IONAL, RAMC BETWI	BUT M ALD OR EEN 0.1	UST BE MARKE 25 mm	ed fea I And	TURE.									
1. 2. 3. (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)	DIMENS ALL DI N IS T THE TE JESD 9 THE ZO DIMENS FROM ND AN DEPOP	Mensioi He tot :Rminal 15-1 Si Dne ine Sion B termin/ D ne fi Ulation	ns are al num pp-012 dicated applie al tip, refer 1 i is po	in Mi Mener (Entifie Detai Detai The S TO N To The DSSIBLE	Llinete df teri ils of termin Metalui i numb	ers. An minals. Termin termin Nal #1 Zed te Ner of Symmet	GLES IAL NIL AL ∯1 IDENTII RMINAL TERMII TRICAL	ARE IN IMBERII IDENTI FIER M . AND . AND VALS (0 FASHK	I DEGR NG COI FIER AI AY BE IS MEA IS MEA IN EAC ON.	ees. Nventk Re opt Eithef Sured H d ai	NONAL, RAMC BETWI NDE S	BUT M DLD OR EEN 0.: SIDE RE	UST BE MARKE 25 mm ESPECTI	E LOCAT ED FEA I AND IVELY.	TURE.									
1. 2. 3. (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)	DIMENS ALL DII N IS T THE TE JESD 9 THE ZO DIMENS FROM ND AN DEPOP COPLAI	MENSION HE TOT RMINAL 5-1 SI 5NE INE SION 5 TERMIN/ D NE F ULATION NARITY	NS ARE TAL NUM PP-012 DICATED APPLIE AL TIP. REFER 1 N IS PC APPLIE	IN MI MBER C ENTIFIE DETA DETA STON STON STON STOT	LLIMETE DF TERI ILS OF TERMIN METALUI NUMB I NUMB I N A	ers. An minals. Termin termin Val #1 Zed tei Rer of Symmet Posed	GLES IAL NI IDENTII RMINAL TERMII TRICAL HEAT :	ARE IN IMBERII IDENTI FIER M . AND VALS O FASHIK SINK S	I DEGR NG COI FIER AI AY BE IS MEA IN EAC ON.	ees. Nventk Re opt Either Sured H d Ai S Well	ND E S	BUT M DLD OR EEN 0.1 SIDE RE	ust be Marke 25 mm Specti Ninals	E LOCAT ED FEA I AND IVELY.	TURE.									
1. 2. 3. ▲ ▲	DIMENS ALL DII N IS T THE TE JESD 9 THE ZC DIMENS FROM ND AN DEPOP COPLAI DRAWIN	MENSION HE TOT RMINAL 15-1 SI SNE INE SION 6 TERMIN/ D NE F ULATION NARITY NG CON	NS ARE TAL NUM PP-012 DICATED APPLIE AL TIP. REFER T I IS PC APPLIE IFORMS	IN MI MBER C ENTIFIE DETA DETA THE STO N SSIBLE STO T TO JE	LLIMETE DF TERI TERMIN METALUI NUMB NUMB NIN A THE EXI DEC MI	ers. An minals. Termin termin Nal #1 Zed te Ner of Symmet	GLES	ARE IN IMBERII IDENTI FIER M . AND VALS O FASHK SINK S FOR	I DEGR NG COI FIER AI AY BE IS MEA IN EAC ON. LUG AS T2444-	ees. Nventk Re opt Either Sured H d Ai S Well	ND E S	BUT M DLD OR EEN 0.1 SIDE RE	ust be Marke 25 mm Specti Ninals	E LOCAT ED FEA I AND IVELY.	TURE.									
1. 2. 3. (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)	DIMENS ALL DI N IS T THE TE JESD 9 THE ZO DIMENS FROM ND AN DEPOP COPLAI DRAWIN (ARKING	MENSION HE TOT RMINAL 15-1 SI 50NE INE SION & TERMIN/ D NE R ULATION NARITY NG CON G IS FO	NS ARE (AL NUM) (AL	IN MI MBER C ENTIFIE DETAIL THE S TO N S TO N E S TO T TO JE KAGE C	LUNETE DF TERI TR AND US OF TERMIN METALU: NUMB IN A THE EXI DRIENTA	ERS. AN MINALS. TERMIN TERMIN IAL #1 ZED TE ER OF SYMMET POSED 0220, 1	GLES	ARE IN IMBERII IDENTI FIER M . AND VALS O FASHK SINK S FOR	I DEGR NG COI FIER AI AY BE IS MEA IN EAC ON. LUG AS T2444-	ees. Nventk Re opt Either Sured H d Ai S Well	ND E S	BUT M DLD OR EEN 0.1 SIDE RE	ust be Marke 25 mm Specti Ninals	E LOCAT ED FEA I AND IVELY.	TURE.									
1. 2. 3. 4. 7. 6. 7. 9. 9. 11. 0	DIMENS ALL DI N IS T THE TE JESD 9 THE ZC DIMENS FROM ND AN DEPOP COPLAI DRAWIN (ARKING COPLAN.	MENSION HE TOT RMINAL 55-1 SI 50-1 SI	NS ARE (AL NUM PP-012 CAL NUM PP-012 CAL NO APPLIE APPLIE FORMS CAL NO APPLIE FORMS CAL NO APPLIE FORMS	IN MI MEER C ENTIFIE DETA DETA THE S TO N S TO N S TO N E S TO T TO JE KAGE C NOT EX	LLINETE CF TERI CR AND LLS OF TERMIN METALU: NUMB CN A THE EXI CDEC MI DRIENTA CEED C	ERS. AN MINALS. TERMIN TERMIN IAL #1 ZED TEI ER OF SYMMET POSED 0220, I JION R 0.08mm	GLES	ARE IN IMBERII IDENTI FIER M . AND VALS O FASHK SINK S FOR	I DEGR NG COI FIER AI AY BE IS MEA IN EAC ON. LUG AS T2444-	ees. Nventk Re opt Either Sured H d Ai S Well	ND E S	BUT M DLD OR EEN 0.1 SIDE RE	ust be Marke 25 mm Specti Ninals	E LOCAT ED FEA I AND IVELY.	TURE.									
1. 2. 3. 4. 7. 9. 11. 0 12. W	DIMENS ALL DI N IS T THE TE JESD 9 THE ZO DIMENS FROM ND AN DEPOP COPLAI DRAWIN (ARKING COPLAN. VARPAG LEAD CI	MENSION HE TOT SEMINAL 5-1 SI SNE INE SION & TERMIN/ D NE FO ULATION NARITY SIG CON G IS FO ARITY S E SHAL ENTERLI	NS ARE AL NUM AL NUM PP-012 DICATED APPLIE APPLIE IS PC APPLIE IS PC APPLIE IFORMS IN PACI IN NOT NES TO	IN MI MBER C ENTIFIE DETAIL THE STO IN STO IN SSIBLE STO T TO JE KAGE C JOT EX EXCEE D BE A	LLINETE OF TERNI ILS OF TERMIN METALLI: INUMB IN A THE EXI OPEC MI ORIENTA CEED C ND 0.1 T TRUE	ERS. AN MINALS. TERMIN TERMIN IAL #1 ZED TEI ER OF SYMMET POSED 0220, I JION R 0.08mm	GLES	ARE IN IMBERII IDENTI FIER M AND VALS O FASHIK SINK S FOR ICE OF	I DEGR NG COI FIER AI AY BE IS MEA IN EAC ON. ILUG AS T2444- NLY.	ees. Nventk Re opt Sured H D AI S Well -3, T2	10 nal, R A MC P BETWI ND E \$ - AS TI 444-4	BUT M DLD OR EEN 0.: SIDE RE HE TER AND 1	ust be Marke 25 mm Specti Ninals "2844-	E LOCAT ED FEA I AND IVELY.	TURE.			DA		S			X	1/1
1. 2. 3. 4. 7. 9. 11. 0 12. W	DIMENS ALL DI N IS T THE TE JESD 9 THE ZO DIMENS FROM ND AN DEPOP COPLAI DRAWIN (ARKING COPLAN. VARPAG LEAD CI	MENSION HE TOT SEMINAL 5-1 SI SNE INE SION & TERMIN/ D NE FO ULATION NARITY SIG CON G IS FO ARITY S E SHAL ENTERLI	NS ARE AL NUM AL NUM PP-012 DICATED APPLIE APPLIE IS PC APPLIE IS PC APPLIE IFORMS IN PACI IN NOT NES TO	IN MI MBER C ENTIFIE DETAIL THE STO IN STO IN SSIBLE STO T TO JE KAGE C JOT EX EXCEE D BE A	LLINETE OF TERNI ILS OF TERMIN METALLI: INUMB IN A THE EXI OPEC MI ORIENTA CEED C ND 0.1 T TRUE	ERS. AN MINALS. TERMIN TERMIN VAL #1 ZED TEI VER OF SYMMET POSED 0220, I UTION R: 0,08mm 0mm 2 POSITI	GLES	ARE IN IMBERII IDENTI FIER M AND VALS O FASHIK SINK S FOR ICE OF	I DEGR NG COI FIER AI AY BE IS MEA IN EAC ON. ILUG AS T2444- NLY.	ees. Nventk Re opt Sured H D AI S Well -3, T2	10 nal, R A MC P BETWI ND E \$ - AS TI 444-4	BUT M DLD OR EEN 0.: SIDE RE HE TER AND 1	ust be Marke 25 mm Specti Ninals "2844-	E LOCAT ED FEA I AND IVELY.	TURE.			PAC	KAGE	OUTLI 24, 281		QFN, 4		

MAX6880-MAX6883

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 __

Г

MAXIM is a registered trademark of Maxim Integrated Products, Inc.

_ 19