MOSFET – Power, **N-Channel** 100 V, 32 A, 37 mΩ

Features

- Low R_{DS(on)}
- High Current Capability
- 100% Avalanche Tested
- NVD Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q101 Qualified and PPAP Capable
- These Devices are Pb-Free and are RoHS Compliant

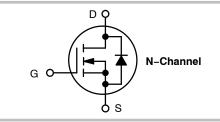
MAXIMUM RATINGS (T_J = 25°C unless otherwise noted)

Para	Symbol	Value	Unit		
Drain-to-Source Volta	Drain-to-Source Voltage			100	V
Gate-to-Source Volta	ge – Conti	nuous	V _{GS}	±20	V
Continuous Drain	Steady State	T _C = 25°C	I _D	32	Α
Current R _{θJC}	State	T _C = 100°C		22	
Power Dissipation $R_{\theta JC}$	Steady State	T _C = 25°C	P _D	100	W
Pulsed Drain Current	t _p	= 10 μs	I _{DM}	117	Α
Operating and Storage Temperature Range			T _J , T _{stg}	-55 to +175	°C
Source Current (Body Diode)			Is	32	Α
Single Pulse Drain-to-Source Avalanche Energy (V_{DD} = 50 Vdc, V_{GS} = 10 Vdc, $I_{L(pk)}$ = 32 A, L = 0.3 mH, R_G = 25 Ω)			E _{AS}	154	mJ
Lead Temperature for Purposes, 1/8" from C		Seconds	TL	260	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

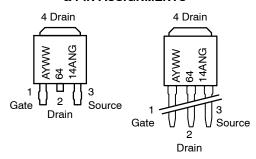
THERMAL RESISTANCE RATINGS

Parameter	Symbol	Max	Unit
Junction-to-Case (Drain) Steady State	$R_{\theta JC}$	1.5	°C/W
Junction-to-Ambient (Note 1)	$R_{\theta JA}$	37	


1. Surface mounted on FR4 board using 1 sq in pad size, (Cu Area 1.127 sq in [1 oz] including traces).

ON Semiconductor®

http://onsemi.com


V _{(BR)DSS}	R _{DS(on)} MAX	I _D MAX (Note 1)
100 V	37 mΩ @ 10 V	32 A

MARKING DIAGRAM & PIN ASSIGNMENTS

= Assembly Location*

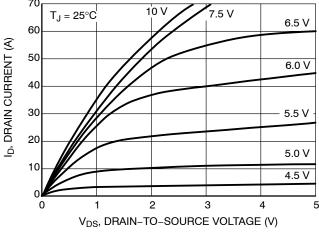
= Year WW = Work Week 6414AN = Device Code = Pb-Free Package

* The Assembly Location code (A) is front side optional. In cases where the Assembly Location is stamped in the package, the front side assembly code may be blank.

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 5 of this data sheet.

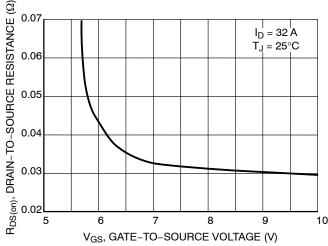
ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise noted)


Drain-to-Source Breakdown Voltage Temperature Coefficient $V_{(BR)DSS}$ $V_{GS} = 0 \text{ V}, I_D = 250 \text{ μA}$ 100 V_{CS} Zero Gate Voltage Drain Current I_{DSS} $V_{GS} = 0 \text{ V}, V_{DS} = 100 \text{ V}$ $I_{J} = 25^{\circ}C$ 1.0 $I_{J} = 125^{\circ}C$ Gate-to-Source Leakage Current I_{GSS} $V_{DS} = 0 \text{ V}, V_{GS} = \pm 20 \text{ V}$ $I_{J} = 125^{\circ}C$ $I_{J} = 100 \text{ V}$	Parameter	Symbol	Test Conditi	on	Min	Тур	Max	Unit
Display	OFF CHARACTERISTICS	•				•		•
Temperature Coefficient Toss V_{GS} = 0 V, V_{DS} = 10 V T_{J} = 125°C 1.0 1.0 μA	Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	V _{GS} = 0 V, I _D = 250 μA		100			V
Section Continue	•	V _{(BR)DSS} /T _J				107		mV/°C
State - to - Source Leakage Current I _{GSS V_{DS} = 0 V, V_{GS} = ±20 V ±100 nA}	Zero Gate Voltage Drain Current	I _{DSS}	V _{GS} = 0 V.	T _J = 25°C			1.0	μΑ
ON CHARACTERISTICS (Note 3) VGS(TH) VGS = VDS, ID = 250 μA 2.0 4.0 V Negative Threshold Temperature Coefficient VGS(TH)/TJ 8.3 mV/°C mV/°C Drain-to-Source On-Resistance RDS(on) VGS = 10 V, ID = 32 A 30 37 mΩ Forward Transconductance gFS VGS = 5.0 V, ID = 10 A 18 S CHARGES, CAPACITANCES AND GATE RESISTANCE Input Capacitance CISS 1450 PF Output Capacitance Coss VGS = 0 V, f = 1.0 MHz, VDS = 25 V 230 PF Total Gate Charge QG(TH) 40 1.7 PF Gate-to-Drain Charge QGS VGS = 10 V, VDS = 80 V, ID = 32 A 8.0 8.0 PR Plateau Voltage VGP 5.9 V V Gate-to-Drain Charge 20 V SWITCHING CHARACTERISTICS (Note 4) VGS = 10 V, VDS = 80 V, ID = 32 A 8.0 11 N N SWITCHING CHARACTERISTICS (Note 4) VGS = 10 V, VDS = 80 V, ID = 80 V, ID = 32 A, RG = 6.1 Ω 38 TI S TI N			$V_{DS} = 100 \text{ V}$	$V_{DS} = 100 \text{ V}$ $T_{J} = 125^{\circ}\text{C}$			100	1
ON CHARACTERISTICS (Note 3) VGS(TH) VGS = VDS, ID = 250 μA 2.0 4.0 V Negative Threshold Temperature Coefficient VGS(TH)/TJ 8.3 mV/°C mV/°C Drain-to-Source On-Resistance RDS(on) VGS = 10 V, ID = 32 A 30 37 mΩ Forward Transconductance gFS VGS = 5.0 V, ID = 10 A 18 S CHARGES, CAPACITANCES AND GATE RESISTANCE Input Capacitance CISS 1450 PF Output Capacitance Coss VGS = 0 V, f = 1.0 MHz, VDS = 25 V 230 PF Total Gate Charge QG(TH) 40 1.7 PF Gate-to-Drain Charge QGS VGS = 10 V, VDS = 80 V, ID = 32 A 8.0 8.0 PR Plateau Voltage VGP 5.9 V V Gate-to-Drain Charge 20 V SWITCHING CHARACTERISTICS (Note 4) VGS = 10 V, VDS = 80 V, ID = 32 A 8.0 11 N N SWITCHING CHARACTERISTICS (Note 4) VGS = 10 V, VDS = 80 V, ID = 80 V, ID = 32 A, RG = 6.1 Ω 38 TI S TI N	Gate-to-Source Leakage Current	I _{GSS}	V _{DS} = 0 V, V _{GS} =				±100	nA
Negative Threshold Temperature Coefficient VGS(TH)/TJ	ON CHARACTERISTICS (Note 3)	•		-		•	•	
Coefficient Setting V _{GS} = 10 V, I _D = 32 A 30 37 mΩ Forward Transconductance gFS V _{GS} = 5.0 V, I _D = 10 A 18 S CHARGES, CAPACITIANCES AND GATE RESISTANCE Input Capacitance C _{ISS} V _{GS} = 5.0 V, I _D = 10 A 1450 P Output Capacitance C _{ISS} V _{GS} = 0 V, f = 1.0 MHz, V _{DS} = 25 V 230 P Feverse Transfer Capacitance C _{RSS} 95 P Total Gate Charge Q _{G(TOT)} 440 nC Threshold Gate Charge Q _{G(TOT)} 1.77 1.77 Gate-to-Source Charge Q _{GS} 1.17 1.7 Gate-to-Drain Charge Q _{GB} 20 20 Plateau Voltage V _{GP} 5.9 V Gate Resistance R _G 1.9 2 SWITCHING CHARACTERISTICS (Note 4) 1.9 2 Turn-On Delay Time t _d (ort) V _{GS} = 10 V, V _{DD} = 80 V, I _D = 80 V, I _D = 32 A, R _G = 6.1 Ω 38 1 Fall Time t ₁ V _{GS} = 0 V, I _S = 32 A	Gate Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}$, $I_D = 3$	250 μΑ	2.0		4.0	V
Forward Transconductance gFS V _{GS} = 5.0 V, I _D = 10 A 18 S S		V _{GS(TH)} /T _J				8.3		mV/°C
CHARGES, CAPACITANCES AND GATE RESISTANCE Input Capacitance C_{ISS} $V_{GS} = 0 \text{ V}, f = 1.0 \text{ MHz}, V_{DS} = 25 \text{ V}$ 1450 PF Output Capacitance C_{OSS} $V_{GS} = 0 \text{ V}, f = 1.0 \text{ MHz}, V_{DS} = 25 \text{ V}$ 230 PF Reverse Transfer Capacitance C_{RSS} 95 95 PF Total Gate Charge $Q_{G(TOT)}$ $V_{GS} = 10 \text{ V}, V_{DS} = 80 \text{ V}, I_{D} = 32 \text{ A}$ 8.0 PC Gate-to-Drain Charge Q_{GS} $V_{GS} = 10 \text{ V}, V_{DS} = 80 \text{ V}, I_{D} = 32 \text{ A}$ 8.0 PC Gate Resistance P_{GS} P_{GS} P_{GS} P_{GS} P_{GS} P_{GS} SWITCHING CHARACTERISTICS (Note 4) P_{GS} <	Drain-to-Source On-Resistance	R _{DS(on)}	V _{GS} = 10 V, I _D =	32 A		30	37	mΩ
$ \begin{array}{ c c c c c } \hline \text{Input Capacitance} & C_{ISS} \\ \hline \text{Output Capacitance} & C_{OSS} \\ \hline \text{Reverse Transfer Capacitance} & C_{RSS} \\ \hline \hline \text{Total Gate Charge} & Q_{G(TOT)} \\ \hline \text{Threshold Gate Charge} & Q_{GS} \\ \hline \text{Gate-to-Source Charge} & Q_{GS} \\ \hline \text{Plateau Voltage} & V_{GP} \\ \hline \text{SWITCHING CHARACTERISTICS (Note 4)} \\ \hline \hline \text{Turn-On Delay Time} & t_{d(off)} \\ \hline \text{Fall Time} & t_{f} \\ \hline \hline \text{DRAIN-SOURCE DIODE CHARACTERISTICS} \\ \hline \text{Reverse Recovery Time} & t_{RR} \\ \hline \text{Charge Time} & T_{a} \\ \hline \text{Discharge Time} & T_{b} \\ \hline \end{array} \begin{array}{c} \textbf{V}_{GS} = 0 \ V, \ d_{IS} / d_{IS} / d_{IS} + 100 \ A/\mu s, \\ l_{S} = 32 \ A \\ \hline \end{array} \begin{array}{c} 1450 \\ 230 \\ 2$	Forward Transconductance	gFS	V _{GS} = 5.0 V, I _D =	= 10 A		18		S
Output Capacitance C_{OSS} $V_{GS} = 0 \text{ V}, f = 1.0 \text{ MHz}, V_{DS} = 25 \text{ V}$ 230 Reverse Transfer Capacitance C_{RSS} 95 Total Gate Charge $Q_{G(TOT)}$ 40 nC Threshold Gate Charge $Q_{G(TH)}$ 1.7 40 nC Gate-to-Source Charge Q_{GS} 8.0 1.7 20 Plateau Voltage V_{GP} 5.9 V Gate Resistance R _G 1.9 Ω SWITCHING CHARACTERISTICS (Note 4) V 11 ns Turn-On Delay Time t _d (ori) V _{GS} = 10 V, V _{DD} = 80 V, I _D = 80 V, I _D = 80 V, I _D = 32 A, R _G = 6.1 Ω 38 11 Fall Time t _f 48 38 11 ns DEAIN-SOURCE DIODE CHARACTERISTICS V _{GS} = 0 V, I _S = 32 A T _J = 25°C 0.87 1.2 V Reverse Recovery Time t _{RR} V _{GS} = 0 V, dI _S /dt = 100 A/µs, I _S = 32 A 51 16 16	CHARGES, CAPACITANCES AND GA	TE RESISTANO	CE					
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Input Capacitance	C _{ISS}	V _{GS} = 0 V, f = 1.0 MHz, V _{DS} = 25 V			1450		pF
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Output Capacitance	Coss				230		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Reverse Transfer Capacitance	C _{RSS}				95		
Content of Delay Time Content of Table Content of Delay Time Content of Table Content	Total Gate Charge	Q _{G(TOT)}				40		nC
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Threshold Gate Charge	Q _{G(TH)}		•		1.7		1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Gate-to-Source Charge	Q _{GS}	$V_{GS} = 10 \text{ V}, V_{DS} = 80$	V, I _D = 32 A		8.0		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Gate-to-Drain Charge	Q_{GD}		•		20		1
	Plateau Voltage	V_{GP}		•		5.9		V
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Gate Resistance	R_{G}				1.9		Ω
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	SWITCHING CHARACTERISTICS (Not	e 4)		-				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Turn-On Delay Time	t _{d(on)}				11		ns
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Rise Time		V _{GS} = 10 V, V _{DD}	= 80 V,		52		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Turn-Off Delay Time	t _{d(off)}	$I_D = 32 \text{ A}, R_G =$	6.1 Ω΄		38		1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Fall Time	t _f		•		48		1
$V_{GS} = 0 \text{ V, } I_S = 32 \text{ A} \\ \hline T_J = 125^{\circ}\text{C} \\ \hline 0.76 \\ \hline \text{Reverse Recovery Time} \\ \hline Charge Time \\ \hline T_a \\ \hline Discharge Time \\ \hline T_b \\ \hline V_{GS} = 0 \text{ V, } dI_S/dt = 100 \text{ A/μs,} \\ \hline I_S = 32 \text{ A} \\ \hline \end{bmatrix} \begin{array}{c} 68 \\ 51 \\ \hline 16 \\ \hline \end{array}$	DRAIN-SOURCE DIODE CHARACTER	RISTICS				•	•	
Reverse Recovery Time t_{RR} $V_{GS} = 0 \text{ V, } dI_S/dt = 100 \text{ A}/\mu\text{s,}$ Discharge Time T_b $I_S = 32 \text{ A}$ 16	Forward Diode Voltage	V_{SD}	., .,,,	$T_J = 25^{\circ}C$		0.87	1.2	V
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			\/ 0 \/ 22 A			0.76		
Discharge Time T_b $I_S = 32 \text{ A}$ I_6	Reverse Recovery Time	t _{RR}		•		68		ns
Discharge Time T _b I _S = 32 A 16	Charge Time	Ta	V _{GS} = 0 V, dl _S /dt =	100 A/us.		51		1
Reverse Recovery Charge Q _{RR} 195 nC	Discharge Time	T _b	l _S = 32 A			16		1
	Reverse Recovery Charge	Q _{RR}		ļ		195		nC

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

2. Surface mounted on FR4 board using 1 in sq pad size (Cu area = 1.127 in sq [1 oz] including traces).

Pulse Test: Pulse Width ≤ 300 μs, Duty Cycle ≤ 2%.
 Switching characteristics are independent of operating junction temperatures.


TYPICAL CHARACTERISTICS

70 V_{DS} ≥ 10 V 60 ID, DRAIN CURRENT (A) 50 40 30 20 = 25°C 125°C 10 -55°Ċ 0 2 5 8 V_{GS}, GATE-TO-SOURCE VOLTAGE (V)

Figure 1. On-Region Characteristics

Figure 2. Transfer Characteristics

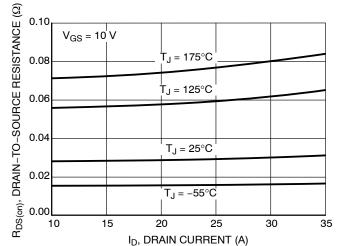
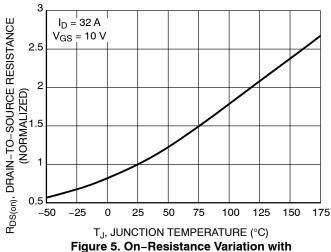
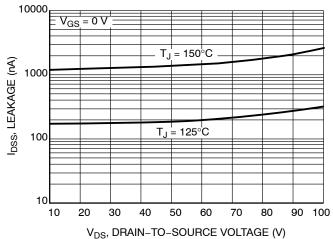
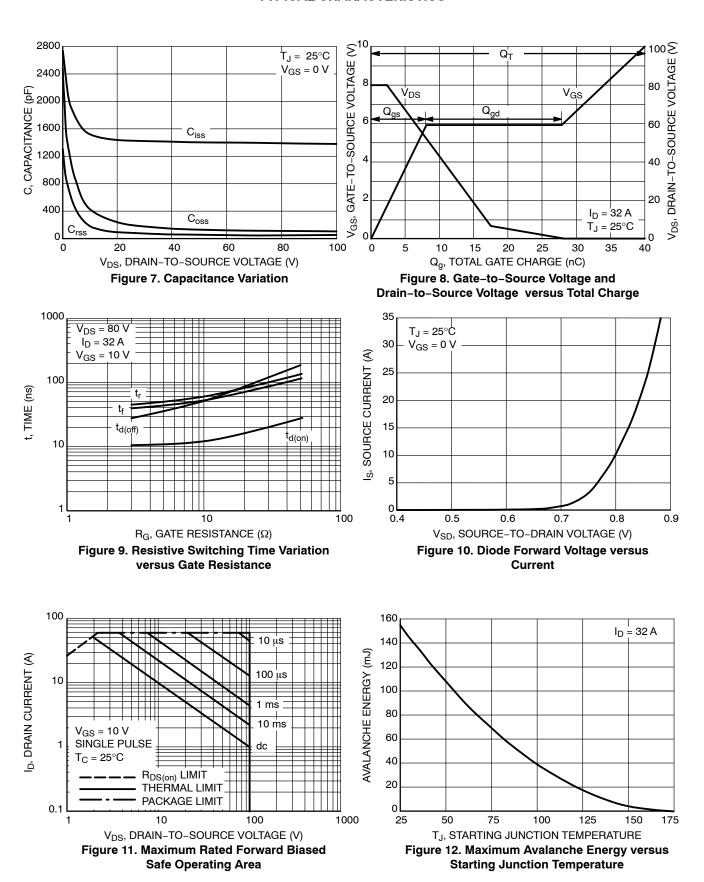




Figure 3. On-Region versus Gate Voltage

Figure 4. On-Resistance versus Drain Current and Gate Voltage



Temperature

Figure 6. Drain-to-Source Leakage Current versus Voltage

TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS

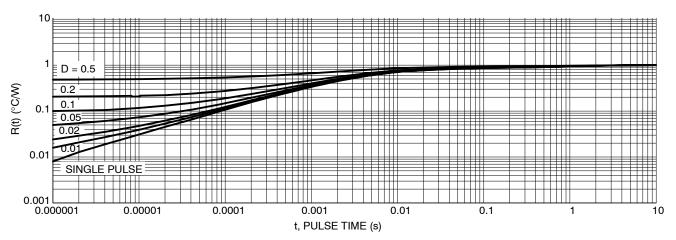
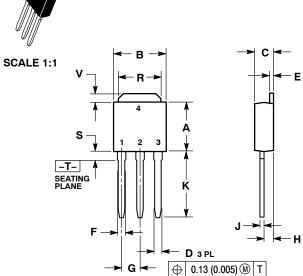


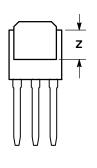
Figure 13. Thermal Response

ORDERING INFORMATION

Device	Package	Shipping†
NTD6414ANT4G	DPAK (Pb-Free)	2500 / Tape & Reel
NTD6414AN-1G	IPAK (Pb-Free)	75 Units / Rail
NVD6414ANT4G*	DPAK (Pb-Free)	2500 / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.


^{*}NVD Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q101 Qualified and PPAP Capable.


MECHANICAL CASE OUTLINE

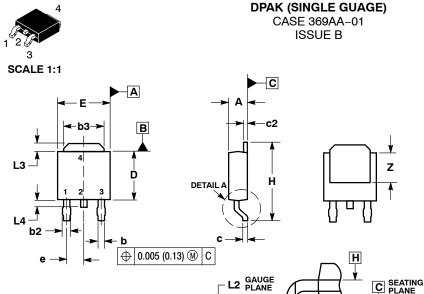
DATE 15 DEC 2010

- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 2. CONTROLLING DIMENSION: INCH.

	INCHES		MILLIN	IETERS
DIM	MIN	MAX	MIN	MAX
Α	0.235	0.245	5.97	6.35
В	0.250	0.265	6.35	6.73
С	0.086	0.094	2.19	2.38
D	0.027	0.035	0.69	0.88
E	0.018	0.023	0.46	0.58
F	0.037	0.045	0.94	1.14
G	0.090	BSC	2.29 BSC	
Н	0.034	0.040	0.87	1.01
J	0.018	0.023	0.46	0.58
K	0.350	0.380	8.89	9.65
R	0.180	0.215	4.45	5.45
S	0.025	0.040	0.63	1.01
٧	0.035	0.050	0.89	1.27
Z	0.155		3.93	

grated rcuits XXXX YWW

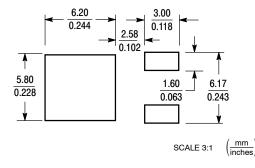
ocation.


= Year WW = Work Week

				MARKING DIAGRAMS
STYLE 1: PIN 1. BASE 2. COLLECTOR 3. EMITTER 4. COLLECTOR	STYLE 2: PIN 1. GATE 2. DRAIN 3. SOURCE 4. DRAIN	STYLE 3: PIN 1. ANODE 2. CATHODE 3. ANODE 4. CATHODE	STYLE 4: PIN 1. CATHODE 2. ANODE 3. GATE 4. ANODE	Discrete Circ
STYLE 5: PIN 1. GATE 2. ANODE 3. CATHODE 4. ANODE	STYLE 6: PIN 1. MT1 2. MT2 3. GATE 4. MT2	STYLE 7: PIN 1. GATE 2. COLLECTOR 3. EMITTER 4. COLLECTOR		YWW ALY
				xxxxxxxxx = Device Code A = Assembly Lo

DOCUMENT NUMBER:	98AON10528D	Electronic versions are uncontrolled except when accessed directly from the Document Repos Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	IPAK (DPAK INSERTION M	IPAK (DPAK INSERTION MOUNT)		

ON Semiconductor and (III) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

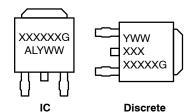

4. ANODE

DETAIL A ROTATED 90° CW STYLE 4: PIN 1. CATHODE 2. ANODE 3. GATE STYLE 1: PIN 1. BASE STYLE 2: PIN 1. GATE STYLE 3: PIN 1. ANODE 2. COLLECTOR 3. EMITTER 2. CATHODE 3. ANODE 2. DRAIN 3. SOURCE 4. COLLECTOR 4. DRAIN CATHODE STYLE 5: STYLE 6: STYLE 7: PIN 1. GATE 2. ANODE 3. CATHODE PIN 1. GATE 2. COLLECTOR PIN 1. MT1 2. MT2 3. GATE 3. EMITTER

COLLECTOR

SOLDERING FOOTPRINT*

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.


DATE 03 JUN 2010

NOTES:

- 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
- 2. CONTROLLING DIMENSION: INCHES.
 3. THERMAL PAD CONTOUR OPTIONAL WITHIN DI-
- MENSIONS b3, L3 and Z.
 4. DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR BURRS. MOLD FLASH, PROTRUSIONS, OR GATE BURRS SHALL NOT EXCEED 0.006 INCHES PER SIDE
- DIMENSIONS D AND E ARE DETERMINED AT THE OUTERMOST EXTREMES OF THE PLASTIC BODY.
- 6. DATUMS A AND B ARE DETERMINED AT DATUM PLANE H

	INCHES		MILLIN	IETERS
DIM	MIN	MAX	MIN	MAX
Α	0.086	0.094	2.18	2.38
A1	0.000	0.005	0.00	0.13
b	0.025	0.035	0.63	0.89
b2	0.030	0.045	0.76	1.14
b3	0.180	0.215	4.57	5.46
С	0.018	0.024	0.46	0.61
c2	0.018	0.024	0.46	0.61
D	0.235	0.245	5.97	6.22
E	0.250	0.265	6.35	6.73
е	0.090	BSC	2.29	BSC
Н	0.370	0.410	9.40	10.41
L	0.055	0.070	1.40	1.78
L1	0.108	REF	2.74	REF
L2	0.020	BSC	0.51	BSC
L3	0.035	0.050	0.89	1.27
L4		0.040		1.01
Z	0.155		3.93	

GENERIC MARKING DIAGRAM*

XXXXXX = Device Code Α = Assembly Location L = Wafer Lot ٧ = Year = Work Week WW = Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part marking.

DOCUMENT NUMBER:	98AON13126D	Electronic versions are uncontrolled except when accessed directly from the Document Repository Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	DPAK (SINGLE GAUGE)		PAGE 1 OF 1	

ON Semiconductor and un are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others

onsemi, ONSEMI., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems. or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales