

[Sample &](http://www.ti.com/product/TRF372017?dcmp=dsproject&hqs=sandbuy&#samplebuy) Buy

SLWS224E –AUGUST 2010–REVISED JANUARY 2016

TRF372017 Integrated IQ Modulator PLL/VCO

Technical [Documents](http://www.ti.com/product/TRF372017?dcmp=dsproject&hqs=td&#doctype2)

- Fully Integrated PLL/VCO and IQ Modulator
-
-
-
-
-
-
-
- 160 MHz the VCO locked for fast start-up.
- • VCO Frequency Divided by 1-2-4-8 Output

2 Applications

- Wireless Infrastructure
	-
	- TDMA: GSM, IS-136, EDGE/UWC-136
	- LTE
- Wireless Local Loop
- Point-to-Point Wireless Access
- Wireless MAN Wideband Transceivers

1 Features 3 Description

Tools & **[Software](http://www.ti.com/product/TRF372017?dcmp=dsproject&hqs=sw&#desKit)**

TRF372017 is a high-performance, direct upconversion device, integrating a high-linearity, low-
LO Frequency from 300 MHz to 4.8 GHz
T6-dBc Single-Carrier WCDMA ACPR at -8-dBm
PLL/VCO. The VCO uses integrated frequency • 76-dBc Single-Carrier WCDMA ACPR at –8-dBm PLL/VCO. The VCO uses integrated frequency dividers to achieve a wide, continuous tuning range of • OIP3 of 26 dBm 300 MHz to 4800 MHz. The LO is available as an P1dB of 11.5 dBm

P1dB of 11.5 dBm device also accepts input from an external LO or

Integer/Fractional PLL device also accepts input from an external LO or

VCO. The modulator baseband inputs can be biased VCO. The modulator baseband inputs can be biased • Phase Noise –132 dBc/Hz either internally or externally. Internal DC offset (at 1 MHz, f_{VCO} of 2.3 GHz) g_{Cov} adjustment enables carrier cancellation. The device is g_{Cov} controlled through a 3-wire serial programming controlled through a 3-wire serial programming • Low Noise Floor: –160 dBm/Hz interface (SPI). A control pin invokes power-save mode to reduce power consumption while keeping

Support & [Community](http://www.ti.com/product/TRF372017?dcmp=dsproject&hqs=support&#community)

22

Device Information[\(1\)](#page-0-0)

- CDMA: IS95, UMTS, CDMA2000, TD-SCDMA (1) For all available packages, see the orderable addendum at the end of the data sheet.

Block Diagram

Table of Contents

4 Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Changes from Revision D (September 2013) to Revision E **Page** Page

Changes from Revision C (May 2012) to Revision D Page Page

Changes from Revision B (March 2012) to Revision C **Page** Page **Page**

• Added graph titles to Figure 56 and 57 that were missing in Revision B... [17](#page-16-0)

Changes from Revision A (August 2010) to Revision B Page

TRF372017 www.ti.com SLWS224E –AUGUST 2010–REVISED JANUARY 2016

5 Pin Configuration and Functions

Pin Functions

TRF372017 SLWS224E –AUGUST 2010–REVISED JANUARY 2016 **www.ti.com**

Pin Functions (continued)

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted) $(1)(2)$

(1) Stresses beyond those listed under *Absolute Maximum Ratings* may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under *[Recommended](#page-4-2) [Operating Conditions](#page-4-2)*. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) ESD rating not valid for RF sensitive pins.

(3) All voltage values are with respect to network ground terminal.

6.2 Recommended Operating Conditions

6.3 Thermal Information

(1) For more information about traditional and new thermal metrics, see the *Semiconductor and IC Package Thermal Metrics* application report, [SPRA953.](http://www.ti.com/lit/pdf/spra953)

TRF372017

SLWS224E –AUGUST 2010–REVISED JANUARY 2016 **www.ti.com**

6.4 Electrical Characteristics

 $V_{CC5V} = 5$ V, $V_{CC3V} = 3.3$ V, VCC_VCO2 = 3.3 V, T_A = 25°C, internal LO, internal VCM (unless otherwise noted)

(1) Maximum current is worst-case overvoltage, temperature, and expected process variations.

The TRF372017 can generate the input common voltage internally or can accept an external common mode voltage. The two modes are selectable through SPI.

(3) When the internal input common mode voltage is selected, it is possible to apply some DC offset with the integrated D/A.
(4) See Application Information for discussion on selection of PFD frequency.

See Application Information for discussion on selection of PFD frequency.

Electrical Characteristics (continued)

(5) With VCO frequency at 4.6 GHz and LO in divide-by-2 mode at 2.3 GHz

INSTRUMENTS

Texas

6.5 Timing Requirements - SPI: Writing Phase(1)

(1) See [Figure 1](#page-7-3) for timing diagram.

6.6 Timing Requirements - SPI: Read-Back Phase(1)

(1) See [Figure 2](#page-8-0) for timing diagram.

(2) Equals Clock period

TRF372017 www.ti.com SLWS224E –AUGUST 2010–REVISED JANUARY 2016

Figure 2. SPI Read-Back Timing Diagram

EXAS STRUMENTS

TRF372017

SLWS224E –AUGUST 2010–REVISED JANUARY 2016 **www.ti.com**

6.7 Typical Characteristics

Typical Characteristics (continued)

EXAS NSTRUMENTS

TRF372017 SLWS224E –AUGUST 2010–REVISED JANUARY 2016 **www.ti.com**

Typical Characteristics (continued)

Typical Characteristics (continued)

TRF372017

SLWS224E –AUGUST 2010–REVISED JANUARY 2016 **www.ti.com**

Typical Characteristics (continued)

Typical Characteristics (continued)

EXAS STRUMENTS

TRF372017 SLWS224E –AUGUST 2010–REVISED JANUARY 2016 **www.ti.com**

Typical Characteristics (continued)

Typical Characteristics (continued)

TRF372017

SLWS224E –AUGUST 2010–REVISED JANUARY 2016 **www.ti.com**

Typical Characteristics (continued)

Typical Characteristics (continued)

TRF372017

SLWS224E –AUGUST 2010–REVISED JANUARY 2016 **www.ti.com**

Typical Characteristics (continued)

Typical Characteristics (continued)

TRF372017

SLWS224E –AUGUST 2010–REVISED JANUARY 2016 **www.ti.com**

Typical Characteristics (continued)

7 Detailed Description

7.1 Overview

The TRF372017 is a high-performance, direct up-conversion device, integrating a high-linearity, low-noise IQ modulator and an integer-fractional PLL/VCO. The VCO uses integrated frequency dividers to achieve a wide, continuous tuning range of 300 MHz to 4800 MHz. The LO is available as an output with independent frequency dividers. The device also accepts input from an external LO or VCO. The modulator baseband inputs can be biased either internally or externally. Internal DC offset adjustment enables carrier cancellation. The device is controlled through a 3-wire serial programming interface (SPI). A control pin invokes power-save mode to reduce power consumption while keeping the VCO locked for fast start-up.

7.2 Functional Block Diagram

7.3 Feature Description

7.3.1 Integer and Fractional Mode Selection

The PLL is designed to operate in either Integer mode or Fractional mode. If the desired local oscillator (LO) frequency is an integer multiple of the phase frequency detector (PFD) frequency, f_{PFD} , then Integer mode can be selected. The normalized in-band phase noise floor in Integer mode is lower than in Fractional mode. In Integer mode, the feedback divider is an exact integer, and the fraction is zero. While operating in Integer mode, the register bits corresponding to the fractional control are *don't care*.

In Fractional mode, the feedback divider fractional portion is non-zero on average. With 25-bit fractional resolution, RF stepsize f_{PFD}/2²⁵ is less than 1 Hz with a f_{PFD} up to 33 MHz. The appropriate fractional control bits in the serial register must be programmed.

SLWS224E –AUGUST 2010–REVISED JANUARY 2016 **www.ti.com**

(2)

Feature Description (continued)

7.3.2 Description of PLL Structure

Figure 79. Block Diagram of the PLL Loop

The output frequency is given by [Equation 1:](#page-23-0)

$$
f_{\text{VCO}} = \frac{f_{\text{REF}}}{\text{RDIV}} \text{ (PLL_DIV_SEL)} \left[\text{NINT} + \frac{\text{NFRAC}}{2^{25}} \right] \tag{1}
$$

The rate at which phase comparison occurs is $f_{REF}/RDIV$. In Integer mode, the fractional setting is ignored and [Equation 2](#page-23-1) is applied.

$$
\frac{t_{\text{VCO}}}{f_{\text{PFD}}} = \text{NINT} \times \text{PLL_DIV_SEL}
$$

The feedback divider block consists of a programmable RF divider, a prescaler divider, and an NF divider. The prescaler can be programmed as either a 4/5 or an 8/9 prescaler. The NF divider includes an *A* counter and an *M* counter.

7.3.2.1 Selecting PLL Divider Values

Operation of the PLL requires the LO_DIV_SEL, RDIV, PLL_DIV_SEL, NINT, and NFRAC bits to be calculated. The LO or mixer frequency is related to f_{VCO} according to divide-by-1/-2/-4/-8 blocks and the operating range of f_{VCO} .

a. **LO_DIV_SEL**

f

LO_DIV_SEL = 1 2400 MHz $\le f_{BE} \le 4800$ MHz $\leq f_{\text{nr}} \leq$ $\leq f_{\text{per}} \leq$ 4 300 MHz $\leq f_{RF} \leq 600$ MHz 2 1200 MHz ≤ f_{RF} ≤ 2400 MHz 3 600 MHz ≤ f_{RF} ≤ 1200 MHz RF RF

Therefore:

 $f_{\text{VCO}} =$ LO_DIV_SEL $\times f_{\text{RF}}$

Feature Description (continued)

b. **PLL_DIV_SEL**

Given f_{VCO} , select the minimum value for PLL_DIV_SEL so that the programmable RF divider limits the input frequency into the prescaler block, f_{PM} , to a maximum of 3000 MHz.

PLL $_$ DIV $_$ SEL = min(1, 2, 4) such that $f_{PM} \leq 3000$ MHz

This calculation can be restated as [Equation 3](#page-24-0).

$$
PLL_DIV_SEL = Ceiling\left(\frac{LO_DIV_SEL \times f_{RF}}{3000 MHz}\right)
$$
\n(3)

Higher values of f_{PFD} correspond to better phase noise performance in Integer mode or Fractional mode. f_{PFD} , along with PLL DIV SEL, determines the f_{VCO} stepsize in Integer mode. Therefore, in Integer mode, select the maximum \bar{f}_{PFD} that allows for the required RF stepsize, as shown by [Equation 4.](#page-24-1)

$$
f_{\text{PFD}} = \frac{f_{\text{VCO, Stepsize}}}{\text{PLL_DIV_SEL}} = \frac{f_{\text{RF, Stepsize}} \times \text{LO_DIV_SEL}}{\text{PLL_DIV_SEL}} \tag{4}
$$

In Fractional mode, a small RF stepsize is accomplished through the Fractional mode divider. A large f_{PFD} should be used to minimize the effects of fractional controller noise in the output spectrum. In this case, f_{PFD} may vary according to the reference clock and fractional spur requirements (for example, $f_{\text{PFD}} = 20 \text{ MHz}$).

c. **RDIV, NINT, NFRAC, PRSC_SEL**

$$
RDIV = \frac{f_{REF}}{f_{PFD}}
$$
\n
$$
NINT = floor \left(\frac{f_{VCO}RDIV}{f_{REF}PLL_DIV_SEL} \right)
$$
\n
$$
NFRAC = floor \left(\left[\frac{f_{VCO}RDIV}{f_{REF}PLL_DIV_SEL} \right] - NINT \right] 2^{25} \right)
$$

The P/(P+1) programmable prescaler is set to 8/9 or 4/5 through the PRSC_SEL bit. To allow proper fractional control, set PRSC_SEL according to [Equation 5.](#page-24-2)

\n
$$
\text{PRSC_SEL} = \frac{8}{9} \text{ NINT} \geq 75 \text{ in Fractional Mode or NINT} \geq 72 \text{ in Integer mode}
$$
\n

\n\n $\frac{4}{5} \cdot 23 \leq \text{NINT} < 75 \text{ in Fractional mode or } 20 \leq \text{NINT} < 72 \text{ in Integer mode}$ \n

The PRSC_SEL limit at NINT < 75 applies to Fractional mode with third-order modulation. In Integer mode, the PRSC_SEL = 8/9 should be used with NINT as low as 72. The divider block accounts for either value of PRSC_SEL without requiring NINT or NFRAC to be adjusted. Then, calculate the maximum frequency to be input to the digital divider at f_N . Use the lower of the possible prescaler divide settings, P = (4,8), as shown by [Equation 6.](#page-25-1)

Copyright © 2010–2016, Texas Instruments Incorporated *[Submit Documentation Feedback](http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLWS224E&partnum=TRF372017)* 25

Feature Description (continued)

$$
f_{N, \text{Max}} = \frac{f_{\text{VCO}}}{PLL_DIV_SEL \times P}
$$

Verify that the frequency into the digital divider, f_N , is less than or equal to 375 MHz. If f_N exceeds 375 MHz, choose a larger value for PLL_DIV_SEL and recalculate f_{PFD} , RDIV, NINT, NFRAC, and PRSC_SEL.

7.3.2.2 Setup Example for Integer Mode

Suppose the following operating characteristics are desired for Integer mode operation:

- f_{BFF} = 40 MHz (reference input frequency)
- Step at $RF = 2$ MHz (RF channel spacing)
- f_{RF} = 1600 MHz (RF frequency)

The VCO range is 2400 MHz to 4800 MHz. Therefore:

- LO DIV SEL $= 2$
- \cdot f_{VCO} = LO_DIV_SEL \times 1600 MHz = 3200 MHz
- To keep the frequency of the prescaler less than 3000 MHz:

• PLL DIV SEL $= 2$

The desired stepsize at RF is 2 MHz, so:

- $f_{\text{PFD}} = 2 \text{ MHz}$
- f_{VCO} , stepsize = PLL_DIV_SEL × f_{PFD} = 4 MHz

Using the reference frequency along with the required f_{PFD} gives:

- RDIV = 20
- NINT $= 800$

NINT \geq 75; therefore, select the 8/9 prescaler.

 $f_{N,Max}$ = 3200 MHz/(2 \times 8) = 200 MHz $<$ 375 MHz

This example shows that Integer mode operation gives sufficient resolution for the required stepsize.

7.3.2.3 Setup Example for Fractional Mode

Suppose the following operating characteristics are desired for Fractional mode operation:

- f_{REF} = 40 MHz (reference input frequency)
- Step at $RF = 5$ MHz (RF channel spacing)
- $f_{RF} = 1,600,000,045 \text{ Hz}$ (RF frequency)
- The VCO range is 2400 MHz to 4800 MHz. Therefore:
- \cdot LO_DIV_SEL = 2
- $f_{VCO} =$ LO_DIV_SEL \times 1,600,000,045 Hz = 3,200,000,090 Hz

To keep the frequency of the prescaler less than 3000 MHz:

• PLL_DIV_SEL = 2

Using a typical f_{PFD} of 20 MHz:

- • RDIV = 2
- $NINT = 80$
- NFRAC $= 75$

NINT \geq 75; therefore, select the 8/9 prescaler.

 $f_{N,MAX}$ = 3200 MHz/(2 \times 8) = 200 MHz $<$ 375 MHz

(6)

Feature Description (continued)

The actual frequency at RF is:

• $f_{RF} = 1600000044.9419$ Hz

Which yields a frequency error of -0.058 Hz.

7.3.3 Fractional Mode Setup

Optimal operation of the PLL in fractional mode requires several additional register settings. Recommended values are listed in [Table 1.](#page-26-0) Optimal performance may require tuning the MOD ORD, ISOURCE SINK, and ISOURCE_TRIM values according to the chosen frequency band.

REGISTER BIT	REGISTER ADDRESSING	RECOMMENDED VALUE
EN ISOURCE	Reg4B18	
EN DITH	Reg4B25	
MOD ORD	Reg4B[2726]	$B[2726] = [10]$
DITH SEL	Reg4B28	0
DEL SD CLK	Reg4B[3029]	$B[3029] = [10]$
EN LD ISOURCE	Reg5B31	0
ISOURCE SINK	Reg7B19	0
ISOURCE TRIM	Reg7B[2220]	$B[2220] = [100]$

Table 1. Fractional Mode Register Settings

7.3.4 Selecting the VCO and VCO Frequency Control

To achieve a broad frequency tuning range, the TRF372017 includes four VCOs. Each VCO is connected to a bank of capacitors that determine its valid operating frequency. For any given frequency setting, the appropriate VCO and capacitor array must be selected.

The device contains logic that automatically selects the appropriate VCO and capacitor bank. Set bit EN_CAL to initiate the calibration algorithm. During the calibration process, the device selects a VCO and a capacitor state so that VTune matches the reference voltage set by VCO CAL REF n. Accuracy of the tune is increased through bits CAL_ACC_n. Because a calibration begins immediately when EN_CAL is set, all registers must contain valid values before initiating calibration.

Calibration logic is driven by a CAL_CLK clock derived from the phase frequency detector frequency scaled according to the setting in CAL_CLK_SEL. Faster CAL_CLK frequency enables faster calibration, but the logic is limited to clock frequencies around 1 MHz. [Table 2](#page-26-2) provides suggested CAL CLK SEL scaling recommendations for several phase frequency detector frequencies. The flag R_SAT_ERR is evaluated during the calibration process to indicate calibration counter overflow errors, which occurs if CAL_CLK runs too fast. If R_SAT_ERR is set during a calibration, the resulting calibration is not valid and CAL_CLK_SEL must be used to slow the CAL_CLK. CAL_CLK frequencies should not be set to less than 0.1 MHz.

PFD FREQUENCY (MHz)	CAL CLK SEL SCALING	CAL CLK FREQUENCY (MHz)
20	1/32	0.625
		0.8

Table 2. Example CAL_CLK_SEL Scaling

When VCOSEL MODE is 0, the device automatically selects both the VCO and capacitor bank within 23 CAL CLK cycles. When VCOSEL MODE is 1, the device uses the VCO selected in VCO SEL 0 and VCO_SEL_1 and automatically selects the capacitor array within 17 CAL_CLK cycles. The VCO and capacitor array settings resulting from calibration cannot be read from the VCO_SEL_n and VCO_TRIM_n bits in registers 2 and 7. They can only be read from register 0.

Automatic calibration can be disabled by setting CAL_BYPASS to 1. In this manual cal mode, the VCO is selected through register bits VCO SEL n, while the capacitor array is selected through register bits VCO_TRIM_n. Calibration modes are summarized in [Table 3](#page-27-0). After calibration is complete, the PLL is released from calibration mode to reach an analog lock.

During the calibration process, the TRF372017 scans through many frequencies. RF and LO outputs should be disabled until calibration is complete. At power up, the RF and LO output are disabled by default.

Once a calibration has been performed at a given frequency setting, the calibration is valid over all operating temperature conditions.

CAL BYPASS	VCOSEL MODE	MAX CYCLES CAL CLK	VCO	CAPACITOR ARRAY
		46		Automatic
		34	VCO SEL n	automatic
	don't care	na	VCO SEL n	VCO TRIM n

Table 3. VCO Calibration Modes

7.3.5 External VCO

An external LO or VCO signal may be applied. EN_EXTVCO powers the input buffer and selects the buffered external signal instead of an internal VCO. Dividers, the pfd, and the charge pump remain enabled and may be used to drive an external VCO. NEG_VCO must correspond to the gain of the external VCO.

7.3.6 VCO Test Mode

Setting VCO_TEST_MODE forces the currently selected VCO to the edge of its frequency range by disconnecting the charge pump input from the pfd and loop filter and forcing its output high or low. The upper or lower edge of the VCO range is selected through COUNT_MODE_MUX_SEL.

VCO_TEST_MODE also reports the value of a frequency counter in COUNT, which can be read back in register 0. COUNT reports the number of digital N divider cycles in the PLL, directly related to the period of fN, that occur during each CAL CLK cycle. Counter operation is initiated through the bit EN CAL.

Table 4. VCO Test Mode

7.3.7 Lock Detect

The lock detect signal is generated in the phase frequency detector by comparing the VCO target frequency against the VCO actual frequency. When the phase of the two compared frequencies remains aligned for several clock cycles, an internal signal goes high. The precision of this comparison is controlled through the LD_ANA_PREC bits. This internal signal is then averaged and compared against a reference voltage to generate the LD signal. The number of averages used is controlled through LD_DIG_PREC. Therefore, when the VCO is frequency locked, LD is high. When the VCO frequency is not locked, LD may pulse high or exhibit periodic behavior.

By default, the internal lock detect signal is driven on the LD terminal. Register bits MUX_CTRL_n can be used to control a mux to output other diagnostic signals on the LD output. The LD control signals are shown in [Table 5.](#page-28-0)

Table 5. LD Control Signals

Table 6. LD Control Signal Mode Settings

7.3.8 Tx Divider

The Tx divider, illustrated in [Figure 80,](#page-28-1) converts the differential output of the VCO into differential I and Q mixer components. The divide by 1 differential quadrature phases are provided through a polyphase. Divide by 2, 4, and 8 differential quadrature phases are provided through flip-flop dividers. Only one of the dividers operates at a time, and the appropriate output is selected by a mux. DIVn bits are controlled through TX_DIV_SELn.

TX DIV I determines the bias level for the divider blocks. The SPEEDUP control is used to bypass a stabilization resistor and reach the final bias level faster after a change in the divider selection. SPEEDUP should be disabled during normal operation.

Figure 80. Tx Divider

7.3.9 LO Divider

The LO divider is shown in [Figure 81](#page-29-0). It frequency divides the VCO output. Only one of the dividers operates at a time, and the appropriate output is selected by a mux. DIVn bits are controlled through LO_DIV_SELn. The output is buffered and provided on output pins LO_OUT_P and LO_OUT_N. The output level is controlled through BUFOUT_BIASn.

LO_DIV_I determines the bias level for the divider blocks. The SPEEDUP control is used to bypass a stabilization resistor and reach the final bias level faster after a change in the divider selection. SPEEDUP should be disabled during normal operation. Although SPEEDUP controls both the Tx and LO divider biases, the Tx and LO divider biases are generated independently.

Figure 81. LO Divider

7.3.10 Mixer

A diagram of the mixer is shown in [Figure 82.](#page-29-1) The mixer is followed by a differential to single-ended converter and buffer for output.

Figure 82. Mixer

7.3.11 Disabling Outputs

RF frequency outputs are generated at the RFOUT and LO* terminals. Unused RF frequency outputs should be disabled to minimize power consumption and noise generation. [Table 7](#page-30-0) lists settings used to disable the outputs. Power-save mode can also be used to disable outputs.

7.3.12 Power Supply Distribution

Power supply distribution for the TRF372017 is shown in [Figure 83](#page-30-1). Proper isolation and filtering of the supplies is critical for low noise operation of the device. Each supply pin should be supplied with local decoupling capacitance and isolated with a ferrite bead. VCC_VCO2 is tolerant of 5-V supply voltages to permit additional supply filtering.

Figure 83. Power Supply Distribution

7.3.13 Carrier Feedthrough Cancellation

The structure of the baseband current DAC is shown in [Figure 84](#page-31-0). For each input pair, there is a programmable reference current. The reference current for each pair (I and Q) is identical and is programmed through the same register bits, but the reference current source itself is duplicated in the device for both I and Q inputs. This current can be set to change the total current flowing into the P and N nodes, which in turn changes the offset programmability range.

The reference current is then mirrored and multiplied before getting injected into the input node. The total mirrored current is routed into the two sides of the differential pair and routed according to eight programmable bits. As the 8-bit setting is changed, current is shifted from one side of the pair into the other side for each of the I and Q input pairs. In practical usage, the offset current routing distributes the adjustment for each side of the pair, while the reference current sets the range of adjustment. This effect can be seen in [Figure 78](#page-21-0), which shows that the gain of the current routing is greater when the reference current setting is higher. However the step size also increases with increase in range. [Figure 78](#page-21-0) shows the effect on common mode voltage of varying the DAC reference current. Adjustment register bits are shown in [Table 8.](#page-31-1)

Offset adjustment may be provided by an external source, such as a DAC QMC block, for DC-coupled systems.

Figure 84. Block Diagram of the Programmable Current DAC

Table 8. Baseband Differential Offset Adjustment Factors

7.3.14 Internal Baseband Bias Voltage Generation

The TRF372017 has the ability to generate DC voltage levels for its baseband inputs internally. Register settings in the device allow the user to adjust common mode voltage of the I and Q signals separately. There are three adjustment factors for the baseband inputs. These are described in [Table 9.](#page-31-2)

Each baseband input pair includes the circuitry depicted in [Figure 85](#page-32-1). The Vref set voltage impacts all four terminals: IP, IN, QP, and QN. The effect of changing the reference voltage is shown in [Figure 77.](#page-21-0) Each node also includes a programmable current DAC that injects current into the positive and negative terminals of each input.

Figure 85. Block Diagram of the Baseband I Input Nodes

7.4 Device Functional Modes

7.4.1 Powersave Mode

Powersave mode can be used to put the device into a low power consumption mode. The PLL block remains active in Powersave mode, reducing the time required for start-up. However, the modulator, dividers, output buffers, and baseband common mode generation blocks are powered down. The SPI block remains active, and registers are addressable. Use the PS pin to activate powersave mode.

7.5 Register Maps

7.5.1 Serial Interface Programming Registers Definition

The TRF372017 features a 3-wire serial programming interface (SPI) that controls an internal 32-bit shift register. There are a total of 3 signals that must be applied: the clock (CLK, pin 47), the serial data (DATA, pin 46) and the latch enable (LE, pin 45). The TRF372017 has an additional pin (RDBK, pin 2) for read-back functionality. This pin is a digital pin and can be used to read-back values of different internal registers.

The DATA (DB0-DB31) is loaded LSB first and is read on the rising edge of the CLOCK. The LE is asynchronous to the CLOCK and at its rising edge the data in the shift register gets loaded onto the selected internal register. The 5 LSB of the Data field are the address bits to select the available internal registers.

7.5.1.1 PLL SPI Registers

7.5.1.1.1 Register 1

Table 11. Register 1

Table 12. Register 1 Field Descriptions

Table 12. Register 1 Field Descriptions (continued)

REGISTER 1	NAME	RESET VALUE	DESCRIPTION	
Bit27	CAL CLK SEL 0		Multiplication or division factor to create VCO calibration clock from PFD frequency	
Bit28	CAL CLK SEL 1			
Bit29	CAL CLK SEL 2			
Bit30	CAL CLK SEL 3			
Bit31	RSV			

CAL_CLK_SEL[3..0]: Set the frequency divider value used to derive the VCO calibration clock from the phase detector frequency.

Table 13. Scaling Factors

ICP[4..0]: Set the charge pump current.

Table 14. ICP and Current

Table 14. ICP and Current (continued)

7.5.1.1.2 Register 2

Table 15. Register 2

Table 16. Register 2 Field Descriptions

ISTRUMENTS

Texas

Table 16. Register 2 Field Descriptions (continued)

PLL_DIV<1,0>: Select division ratio of divider in front of prescaler.

Table 17. Frequency Divider

VCOSEL_MODE<0>: When it is 1, the cap array calibration is run on the VCO selected through bits VCO _SE L <2,1>.

7.5.1.1.3 Register 3

Table 18. Register 3

Table 19. Register 3 Field Descriptions

Table 19. Register 3 Field Descriptions (continued)

7.5.1.1.4 Register 4

Table 20. Register 4

TRF372017 www.ti.com SLWS224E –AUGUST 2010–REVISED JANUARY 2016

7.5.1.1.5 Register 5

Table 22. Register 5

Table 23. Register 5 Field Descriptions

TRF372017 SLWS224E –AUGUST 2010–REVISED JANUARY 2016 **www.ti.com**

7.5.1.1.6 Register 6

Table 24. Register 6

Table 23. Register 5 Field Descriptions (continued) REGISTER 5 NAME RESET VALUE DESCRIPTION

TRF372017 SLWS224E –AUGUST 2010–REVISED JANUARY 2016 **www.ti.com**

7.5.1.1.7 Register 7

Table 26. Register 7

Table 27. Register 7 Field Descriptions

7.5.1.2 Readback Mode

Register 0 functions as a Readback register. TRF372017 implements the capability to read-back the content of any serial programming interface register by initializing register 0.

Each read-back is composed by two phases: writing followed by the actual reading of the internal data. This is shown in the timing diagram in [Figure 2.](#page-8-0) During the writing phase, a command is sent to TRF372017 register 0 to set it in read-back mode and to specify which register is to be read. In the proper reading phase, at each rising clock edge, the internal data is transferred into the RDBK pin and can be read at the following falling edge (LSB first). The first clock after the LE goes high (end of writing cycle) is idle and the following 32 clocks pulses transfer the internal register content to the RDBK pin.

7.5.1.2.1 Readback From the Internal Registers Banks

TRF372017 integrates 8 registers: Register 0 (000) to Register 7 (111). Registers 1 through 7 are used to set-up and control the TRF372017 functionalities, while register 0 is used for the readback function.

The latter register must be programmed with a specific command that sets TRF372017 in read-back mode and specifies the register to be read:

- Set B[31] to 1 to put TRF372017 in read-back mode.
- Set B[30,28] equal to the address of the register to be read (000 to 111).
- Set B27 to control the VCO frequency counter in VCO test mode.

7.5.1.2.1.1 Register 0 Write

Table 28. Register 0 Write

The contents of any register specified in RB_REG can be read back during the read cycle, including register 0.

COUNT_MODE-MUX-SEL

8 Application and Implementation

NOTE

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

8.1 Application Information

The TRF372017 is suited for quadrature up-conversion applications such as wireless radio transmitters.

8.2 Typical Application

Typical Application (continued)

8.2.1 Design Requirements

[Table 29](#page-46-0) shows the design requirements for this application.

Table 29. Quadrature Up-Converter Design Requirements for Wireless Transmitter Application

(1) These requirements represent a hypothetical application and do not reflect the performance of the TRF372017.

8.2.2 Detailed Design Procedure

8.2.2.1 DAC Interfacing With External Baseband Bias Voltage

Common-mode voltage on the baseband inputs can be generated either internally or externally. An external interface must provide 1.7-V DC and any necessary filtering. A typical interface to a DAC device is shown in [Figure 86](#page-46-1).

Figure 86. DAC to TRF372017 Interface With External VCM Generation

8.2.2.2 DAC Interface Using Internal VCM Generation

A typical DAC to TRF372017 interface using internal VCM generation is shown in [Figure 87](#page-47-0).

Figure 87. DAC to TRF372017 Interface With Internal VCM Generation

8.2.2.3 LO Outputs

The LO outputs are open collector outputs. They require a pullup to V_{CC}. 75- Ω pullup resistors to V_{CC} with local decoupling provides a good broadband match and is shown in an example circuit in [Figure 88.](#page-47-2) An inductor pullup in parallel with a cap can provide a tuned load for excellent narrowband load matching.

Figure 88. Example LO_OUT Circuit for Broadband Operation

8.2.2.4 Loop Filter

Loop filter design is critical for achieving low closed loop phase noise. Some typical loop filter component values are given in [Table 30,](#page-47-3) referenced to designators in [Figure 89.](#page-48-0) These loop filters are designed using charge pump current of 1.94 mA to minimize noise.

Figure 89. Loop Filter Component Reference Designators

8.2.2.5 ESD Sensitivity

RF devices may be extremely sensitive to electrostatic discharge (ESD) (see). To prevent damage from electrostatic discharge (ESD), devices must be stored and handled in a way that prevents the build up of electrostatic voltages that exceed the rated level. Rated electrostatic discharge (ESD) levels shall also not be exceeded while the device is installed on a printed-circuit board.

8.2.3 Application Curves

SLWS224E –AUGUST 2010–REVISED JANUARY 2016 **www.ti.com**

TRF372017

9 Power Supply Recommendations

The TRF372017 must be supplied with a low noise 5-V or 3.3-V supply as required. Each supply pin must generally be isolated from the main power bus with a ferrite or other noise filtering component.

10 Layout

10.1 Layout Guidelines

Layout of the application board significantly impacts the analog performance of the TRF372017 device. Noise and high-speed signals must be prevented from leaking onto power-supply pins or analog signals. Follow these recommendations:

- 1. Place supply decoupling capacitors physically close to the device, on the same side of the board. Each supply pin must be isolated with a ferrite bead.
- 2. Maintain a continuous ground plane in the vicinity of the device and as return paths for all high-speed signal lines. Place reference plane vias or decoupling capacitors near any signal line reference transition.
- 3. The pad on the bottom of the device must be electrically grounded. Connect GND pins directly to the pad on the surface layer. Connect the GND pins and pad directly to surface ground where possible.
- 4. Power planes must not overlap each other or high-speed signal lines.
- 5. Isolate REF IN routing from loop filter lines, control lines, and other high-speed lines.

See [Figure 95](#page-50-3) for an example of critical component layout (for the top PCB layer).

10.2 Layout Example

Figure 95. Critical Layout of the TRF372017 EVM Board

FXAS NSTRUMENTS

11 Device and Documentation Support

11.1 Device Support

11.1.1 Third-Party Products Disclaimer

TI'S PUBLICATION OF INFORMATION REGARDING THIRD-PARTY PRODUCTS OR SERVICES DOES NOT CONSTITUTE AN ENDORSEMENT REGARDING THE SUITABILITY OF SUCH PRODUCTS OR SERVICES OR A WARRANTY, REPRESENTATION OR ENDORSEMENT OF SUCH PRODUCTS OR SERVICES, EITHER ALONE OR IN COMBINATION WITH ANY TI PRODUCT OR SERVICE.

11.2 Community Resources

The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's [Terms of](http://www.ti.com/corp/docs/legal/termsofuse.shtml) [Use.](http://www.ti.com/corp/docs/legal/termsofuse.shtml)

[TI E2E™ Online Community](http://e2e.ti.com) *TI's Engineer-to-Engineer (E2E) Community.* Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers.

[Design Support](http://support.ti.com/) *TI's Design Support* Quickly find helpful E2E forums along with design support tools and contact information for technical support.

11.3 Trademarks

E2E is a trademark of Texas Instruments. All other trademarks are the property of their respective owners.

11.4 Electrostatic Discharge Caution

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

11.5 Glossary

[SLYZ022](http://www.ti.com/lit/pdf/SLYZ022) — *TI Glossary*.

This glossary lists and explains terms, acronyms, and definitions.

12 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

PACKAGING INFORMATION

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the \leq =1000ppm threshold requirement.

(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

(6) Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

PACKAGE OPTION ADDENDUM

www.ti.com 23-Apr-2022

TEXAS

TAPE AND REEL INFORMATION

ISTRUMENTS

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

www.ti.com

PACKAGE MATERIALS INFORMATION

www.ti.com 23-May-2023

*All dimensions are nominal

GENERIC PACKAGE VIEW

RGZ 48 VQFN - 1 mm max height

7 x 7, 0.5 mm pitch PLASTIC QUADFLAT PACK- NO LEAD

Images above are just a representation of the package family, actual package may vary. Refer to the product data sheet for package details.

4224671/A

PACKAGE OUTLINE

RGZ0048D VQFN - 1 mm max height

PLASTIC QUAD FLATPACK - NO LEAD

NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
- 2. This drawing is subject to change without notice.
- 3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.

EXAMPLE BOARD LAYOUT

RGZ0048D VQFN - 1 mm max height

PLASTIC QUAD FLATPACK - NO LEAD

NOTES: (continued)

4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).

5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown on this view. It is recommended that vias under paste be filled, plugged or tented.

EXAMPLE STENCIL DESIGN

RGZ0048D VQFN - 1 mm max height

PLASTIC QUAD FLATPACK - NO LEAD

NOTES: (continued)

6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to [TI's Terms of Sale](https://www.ti.com/legal/terms-conditions/terms-of-sale.html) or other applicable terms available either on [ti.com](https://www.ti.com) or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2023, Texas Instruments Incorporated