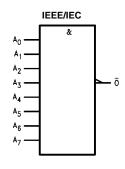


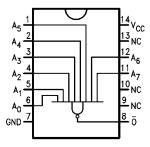
April 1988 Revised January 2004

74F30 8-Input NAND Gate

General Description


This device contains a single gate, which performs the logic NAND function.

Ordering Code:


Order Number	Package Number	Package Description						
74F30SC (Note 1)	M14A	14-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow						
74F30SJ	M14D	14-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide						
74F30PC	N14A	14-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide						

Note 1: Devices also available in Tape and Reel. Specify by appending the letter "X" to the ordering code.

Logic Symbol

Connection Diagram

Unit Loading/Fan Out

Din Names	Description	U.L.	Input I _{IH} /I _{IL}	
riii ivailles	Description	HIGH/LOW	Output I _{OH} /I _{OL}	
A ₀ -A ₇	Inputs	1.0/1.0	20 μA/-0.6 mA	
ō	Output	50/33.3	-1 mA/20 mA	

Function Table

Inputs								Output
A ₀	A ₁	A ₂	A ₃	A ₄	A ₅	A ₆	A ₇	0
L	Х	Χ	Х	Х	Χ	Х	Х	Н
Х	L	Χ	Χ	Χ	Χ	Χ	X	Н
Х	Χ	L	Χ	Χ	Χ	Χ	X	Н
Х	Χ	Χ	L	Χ	Χ	Χ	Χ	Н
Х	Χ	Χ	Χ	L	Χ	Χ	Χ	Н
Х	Χ	Χ	Χ	Χ	L	Χ	Χ	Н
Х	Χ	Χ	Χ	Χ	Χ	L	X	Н
Х	Χ	Χ	Χ	Χ	Χ	Χ	L	Н
Н	Н	Н	Н	Н	Н	Н	Н	L

H = HIGH Voltage Level

L = LOW Voltage Level X = Immaterial

Absolute Maximum Ratings(Note 2)

-65°C to +150°C Storage Temperature -55°C to +125°C Ambient Temperature under Bias

Junction Temperature under Bias -55°C to +150C V_{CC} Pin Potential to Ground Pin -0.5V to +7.0V Input Voltage (Note 3) -0.5V to +7.0VInput Current (Note 3) -30 mA to +5.0 mA

Voltage Applied to Output

in HIGH State (with $V_{CC} = 0V$) Standard Output

-0.5V to V_{CC} 3-STATE Output -0.5V to +5.5V

Current Applied to Output

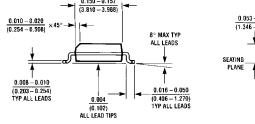
in LOW State (Max) twice the rated I_{OL} (mA)

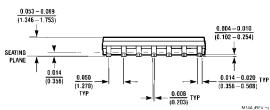
Recommended Operating Conditions

Free Air Ambient Temperature 0°C to +70°C Supply Voltage +4.5V to +5.5V

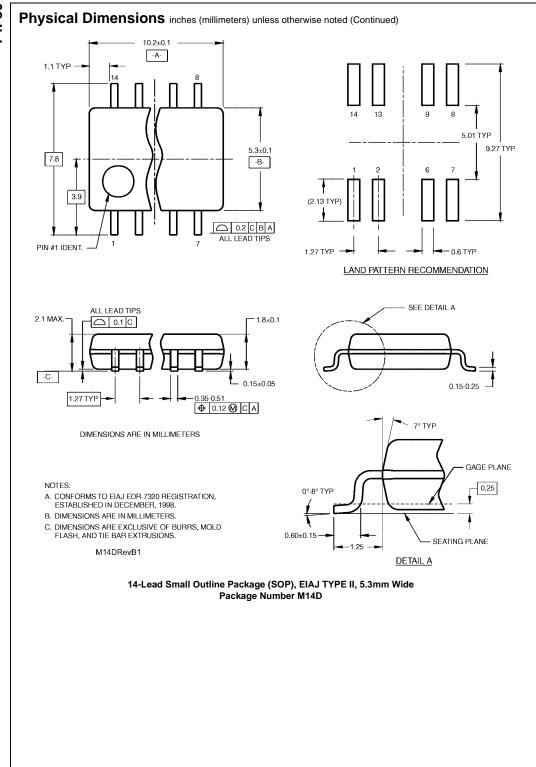
Note 2: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.

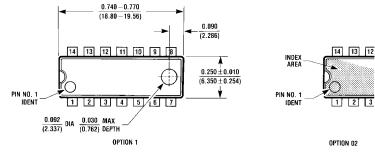
Note 3: Either voltage limit or current limit is sufficient to protect inputs.

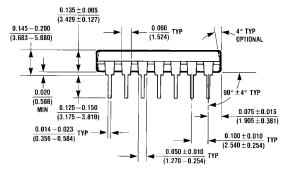

DC Electrical Characteristics

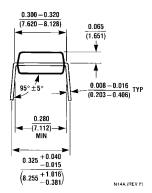

Symbol	Parameter		Min	Тур	Max	Units	v _{cc}	Conditions
V _{IH}	Input HIGH Voltage		2.0			V		Recognized as a HIGH Signal
V _{IL}	Input LOW Voltage				0.8	V		Recognized as a LOW Signal
V _{CD}	Input Clamp Diode Voltage				-1.2	V	Min	I _{IN} = -18 mA
V _{OH}	Output HIGH 10% V _{CC}		2.5			V Mir	Min	I _{OH} = -1 mA
	Voltage	$5\% V_{CC}$	2.7			V	IVIIII	$I_{OH} = -1 \text{ mA}$
V _{OL}	Output LOW Voltage	10% V _{CC}			0.5	V	Min	I _{OL} = 20 mA
I _{IH}	Input HIGH Current				5.0	μА	Max	V _{IN} = 2.7V
I _{BVI}	Input HIGH Current Breakdown Test				7.0	μА	Max	V _{IN} = 7.0V
I _{CEX}	Output HIGH Leakage Current				50	μА	Max	V _{OUT} = V _{CC}
V _{ID}	Input Leakage Test		4.75			V	0.0	$I_{ID} = 1.9 \ \mu A$ All Other Pins Grounded
I _{OD}	Output Leakage Circuit Current				3.75	μА	0.0	V _{IOD} = 150 mV All Other Pins Grounded
I _{IL}	Input LOW Current				-0.6	mA	Max	V _{IN} = 0.5V
Ios	Output Short-Circuit Current		-60		-150	mA	Max	V _{OUT} = 0V
I _{CCH}	Power Supply Current			0.5	1.5	mA	Max	V _O = HIGH
I _{CCL}	Power Supply Current				4.5	mA	Max	$V_O = LOW$

AC Electrical Characteristics


			$\textbf{T}_{\textbf{A}} = +25^{\circ}\textbf{C}$		$T_A = 0$ °C to $+70$ °C		
Symbol	Parameter	$egin{aligned} V_{CC} = +5.0V \ C_L = 50 \ pF \end{aligned}$			V _{CC} = +5.0V C _L = 50 pF		Units
		Min	Тур	Max	Min	Max	
t _{PLH}	Propagation Delay	1.0	3.7	5.0	1.0	5.5	ns
t _{PHL}	A_n to \overline{O}	1.5	2.8	5.0	1.5	5.5	115






14-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow Package Number M14A

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

14-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide Package Number N14A

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com

DATASHEETS, SAMPLES, BUY

Search:

Home >> Find products >>

74F30

8-Input NAND Gate

Contents

- General description
- •Product status/pricing/packaging
- •Order Samples
- Qualification Support

General description

This device contains a single gate, which performs the logic NAND function.

back to top

BUY

Datasheet Download this datasheet

e-mail this datasheet

This page Print version

Related Links

Request samples

How to order products

Product Change Notices (PCNs)

Support

Sales support

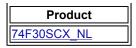
Quality and reliability

Design center

Product status/pricing/packaging

BUY

Product	Product status	Pb-free Status	Package type	Leads	Packing method	Package Marking Convention**
74F30SCX_NL	Not recommended for new designs	0	SOIC	14	TAPE REEL	Line 1: \$Y (Fairchild logo) & Z (Asm. Plant Code) & 2 (2-Digit Date Code) & T (Die Trace Code) Line 2: 74F30


Indicates product with Pb-free second-level interconnect. For more information click here.

Package marking information for product 74F30 is available. Click here for more information .

back to top

Qualification Support

Click on a product for detailed qualification data

back to top

© 2007 Fairchild Semiconductor

Products | Design Center | Support | Company News | Investors | My Fairchild | Contact Us | Site Index | Privacy Policy | Site Terms & Conditions | Standard Terms & Conditions |