ON Semiconductor

Is Now

To learn more about onsemi™, please visit our website at www.onsemi.com

onsemi and ONSEMI. and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/ or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application,

SWITCHMODE™ NPN Silicon Planar Power Transistor

The BUH51 has an application specific state-of-art die designed for use in 50 W Halogen electronic transformers.

This power transistor is specifically designed to sustain the large inrush current during either the startup conditions or under a short circuit across the load.

- Improved Efficiency Due to the Low Base Drive Requirements:
 High and Flat DC Current Gain h_{FE}
 Fast Switching
- Epoxy Meets UL 94 V-0 @ 0.125 in
- ESD Ratings:

Machine Model, C Human Body Model, 3B

• This device is available in Pb-free package(s). Specifications herein apply to both standard and Pb-free devices. Please see our website at www.onsemi.com for specific Pb-free orderable part numbers, or contact your local ON Semiconductor sales office or representative.

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Sustaining Voltage	V_{CEO}	500	Vdc
Collector-Base Breakdown Voltage	V_{CBO}	800	Vdc
Collector-Emitter Breakdown Voltage	V _{CES}	800	Vdc
Emitter-Base Voltage	V _{EBO}	10	Vdc
Collector Current - Continuous - Peak (Note 1)	I _C I _{CM}	3.0 8.0	Adc
Base Current - Continuous - Peak (Note 1)	I _B I _{BM}	2.0 4.0	Adc
*Total Device Dissipation @ T _C = 25°C *Derate above 25°C	P _D	50 0.4	Watt W/°C
Operating and Storage Temperature	T _J , T _{stg}	-65 to 150	°C

THERMAL CHARACTERISTICS

Thermal Resistance, Junction-to-Case	$R_{\theta JC}$	2.5	°C/W
Thermal Resistance, Junction-to-Ambient	$R_{\theta JA}$	100	°C/W
Maximum Lead Temperature for Soldering Purposes: 1/8" from case for 5 seconds	TL	260	°C

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

1. Pulse Test: Pulse Width = 5 ms, Duty Cycle ≤ 10%.

ON Semiconductor®

http://onsemi.com

900 POWER TRANSISTOR 3.0 AMPERE 800 VOLTS 50 WATTS

MARKING DIAGRAM

Y = Year WW = Work Week

ORDERING INFORMATION

Device	Package	Shipping
BUH51	TO-225	500 Units/Box

ELECTRICAL CHARACTERISTICS (To = 25°C unless otherwise noted)

	Characteristic			Min	Тур	Max	Unit
OFF CHARACTERISTICS					•		
Collector–Emitter Sustaining Voltage (I _C = 100 mA, L = 25 mH)			V _{CEO(sus)}	500	550	-	Vdc
Collector-Base Breakdown (I _{CBO} = 1.0 mA)	n Voltage		V _{CBO}	800	950	-	Vdc
Emitter-Base Breakdown (I _{EBO} = 1.0 mA)	Voltage		V _{EBO}	10	12.5	-	Vdc
Collector Cutoff Current (V _{CE} = Rated V _{CEO} , I _B =	= 0		I _{CEO}	-	-	100	μAdc
Collector Cutoff Current (V _{CE} = Rated V _{CES} , V _E	B = 0)	@ T _C = 25°C @ T _C = 125°C	I _{CES}	- -	- -	100 1000	μAdc
Collector Base Current (V _{CB} = Rated V _{CBO} , V _E	B = 0	@ T _C = 25°C @ T _C = 125°C	I _{CBO}	- -	- -	100 1000	μAdc
Emitter–Cutoff Current (V _{EB} = 9.0 Vdc, I _C = 0)			I _{EBO}	-	-	100	μAdc
ON CHARACTERISTICS							
Base–Emitter Saturation V ($I_C = 1.0 \text{ Adc}, I_B = 0.2 \text{ Add}$	•	@ T _C = 25°C @ T _C = 125°C	V _{BE(sat)}	- -	0.92 0.8	1.1 -	Vdc
Collector–Emitter Saturation Voltage (I _C = 1.0 Adc, I _B = 0.2 Adc)		@ T _C = 25°C @ T _C = 125°C	V _{CE(sat)}	- -	0.3 0.32	0.5 0.6	Vdc
DC Current Gain (I _C = 1.0 Adc, V _{CE} = 1.0 Vdc)		@ T _C = 25°C @ T _C = 125°C	h _{FE}	8.0 6.0	10 8.0	- -	_
$(I_C = 2.0 \text{ Adc}, V_{CE} = 5.0 \text{ Vdc})$		@ T _C = 25°C @ T _C = 125°C		5.0 4.0	7.5 6.2	- -	-
$(I_C = 0.8 \text{ Adc}, V_{CE} = 5.0 \text{ Vdc})$		@ T _C = 25°C @ T _C = 125°C		10 8.0	14 13	- -	_
$(I_C = 10 \text{ mAdc}, V_{CE} = 5.0 \text{ Vdc})$		@ T _C = 25°C @ T _C = 125°C		14 18	20 25	- -	_
DYNAMIC SATURATION V	OLTAGE						
Dynamic Saturation	I _C = 1.0 Adc, I _{B1} = 0.2 Adc V _{CC} = 300 V	@ T _C = 25°C	V _{CE(dsat)}	-	1.7	-	V
Voltage:		@ T _C = 125°C		-	6.0	-	V
Determined 3.0 μs after rising I _{B1} reaches	I _C = 2.0 Adc, I _{B1} = 0.4 Adc V _{CC} = 300 V	@ T _C = 25°C		-	5.1	-	V
90% of final I _{B1}		@ T _C = 125°C		_	15	_	V
OYNAMIC CHARACTERIS	TICS						
Current Gain Bandwidth ($I_C = 1.0 \text{ Adc}$, $V_{CE} = 10 \text{ Vdc}$, $f = 1.0 \text{ MHz}$)		f _T	-	23	-	MHz	
Output Capacitance $(V_{CB} = 10 \text{ Vdc}, I_E = 0, f = 1.0 \text{ MHz})$			C _{ob}	-	34	100	pF
Input Capacitance (V _{EB} = 8.0 Vdc, f = 1.0 MHz)			C _{ib}	-	200	500	pF

ELECTRICAL CHARACTERISTICS (T_C = 25°C unless otherwise noted)

	Symbol	Min	Тур	Max	Unit		
SWITCHING CHARACTE	RISTICS: Resistive Load (D.C.	≤ 10%, Pulse Wid	th = 40 μs)				
Turn-on Time	I _C = 1.0 Adc, I _{B1} = 0.2 Adc	@ T _C = 25°C @ T _C = 125°C	t _{on}	- -	110 125	150 -	ns
Turn-off Time	$I_{B2} = 0.2 \text{ Adc}$ $V_{CC} = 300 \text{ Vdc}$	@ T _C = 25°C @ T _C = 125°C	t _{off}	_ _	3.5 4.1	4.0 -	μs
Turn-on Time	I _C = 2.0 Adc, I _{B1} = 0.4 Adc	@ T _C = 25°C @ T _C = 125°C	t _{on}	- -	700 1250	1000 -	ns
Turn-off Time	$I_{B2} = 0.4 \text{ Adc}$ $V_{CC} = 300 \text{ Vdc}$	@ T _C = 25°C @ T _C = 125°C	t _{off}	- -	1.75 2.1	2.0 -	μs
WITCHING CHARACTE	RISTICS: Inductive Load (V _{clai}	mp = 300 V, V _{CC} =	15 V, L = 200 μ	- ıН)	-		
Fall Time	$I_{C} = 1.0 \text{ Adc}$ $I_{B1} = 0.2 \text{ Adc}$ $I_{B2} = 0.2 \text{ Adc}$	@ T _C = 25°C @ T _C = 125°C	t _{fi}	- -	200 320	300 -	ns
Storage Time		@ T _C = 25°C @ T _C = 125°C	t _{si}	- -	3.4 4.0	3.75 -	μs
Crossover Time	- 1 _{B2} = 0.2 / d0	@ T _C = 25°C @ T _C = 125°C	t _c	- -	350 640	500 -	ns
Fall Time		@ T _C = 25°C @ T _C = 125°C	t _{fi}	- -	140 300	200 -	ns
Storage Time	$I_C = 2.0 \text{ Adc}$ $I_{B1} = 0.4 \text{ Adc}$ $I_{B2} = 0.4 \text{ Adc}$	@ T _C = 25°C @ T _C = 125°C	t _{si}	_ _	2.3 2.8	2.75 -	μs
Crossover Time	162 = 0.47140	@ T _C = 25°C @ T _C = 125°C	t _c	- -	400 725	600 -	ns

TYPICAL STATIC CHARACTERISTICS

Figure 1. DC Current Gain @ 1.0 V

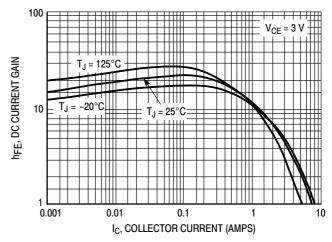


Figure 2. DC Current Gain @ 3.0 V

TYPICAL STATIC CHARACTERISTICS

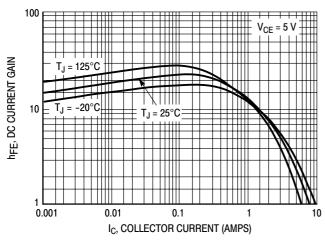


Figure 3. DC Current Gain @ 5.0 V

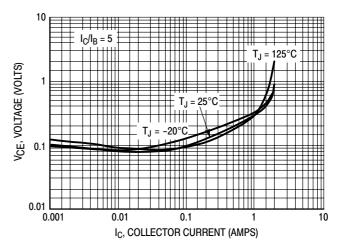


Figure 4. Collector-Emitter Saturation Voltage

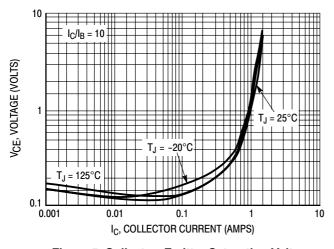


Figure 5. Collector-Emitter Saturation Voltage

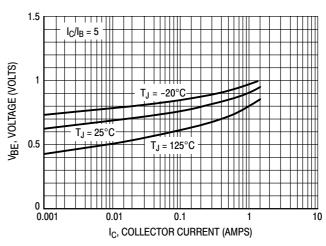


Figure 6. Base-Emitter Saturation Region

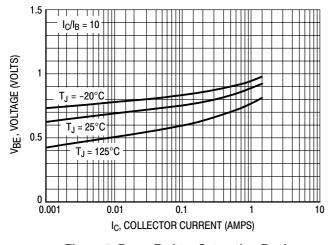


Figure 7. Base-Emitter Saturation Region

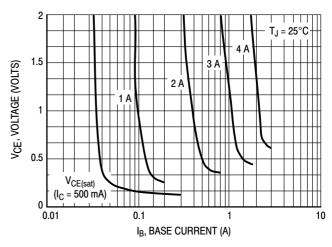
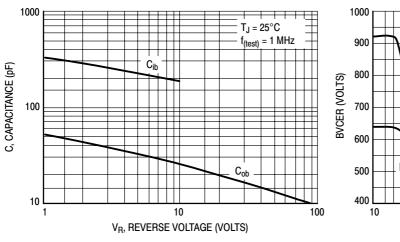



Figure 8. Collector Saturation Region

TYPICAL STATIC CHARACTERISTICS

1000 900 800 700 BVCER @ 10 mA 600 BVCER(sus) @ 200 mA, 25 mH 400 10 100 1000 10000 100000 R_{BE} (Ω)

Figure 9. Capacitance

Figure 10. Resistive Breakdown

TYPICAL SWITCHING CHARACTERISTICS

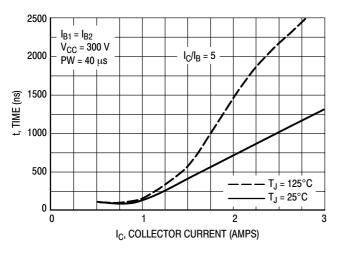


Figure 11. Resistive Switching, ton

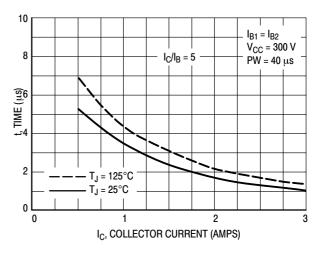


Figure 12. Resistive Switch Time, toff

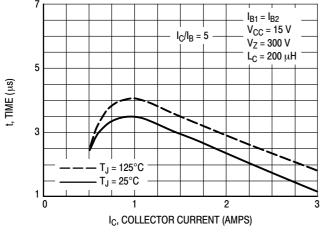


Figure 13. Inductive Storage Time, tsi

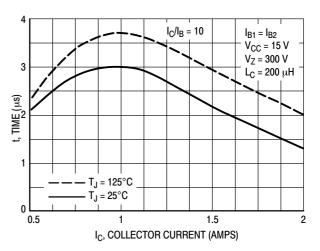


Figure 13 Bis. Inductive Storage Time, tsi

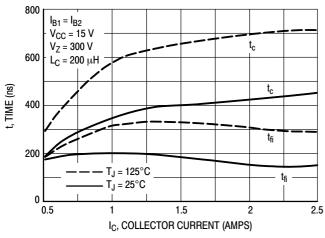
TYPICAL SWITCHING CHARACTERISTICS

1000

800

600

400


t, TIME (ns)

 $I_{B1} = I_{B2}$

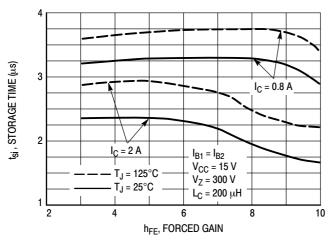
V_{CC} = 15 V

 $V_Z = 300 \text{ V}$

 $L_C = 200 \mu H$

200 0 0.5 IC, COLLECTOR CURRENT (AMPS)

Figure 14. Inductive Storage Time, $t_c \& t_{fi} @ I_C/I_B = 5$


Figure 15. Inductive Storage Time, $t_c \& t_{fi} @ I_C/I_B = 10$

1.5

- T_J = 125°C

 $T_J = 25^{\circ}C$

2.5

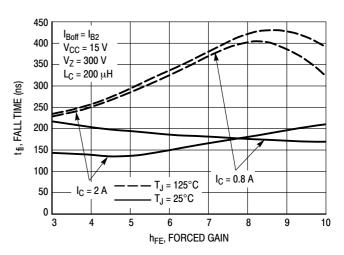


Figure 16. Inductive Storage Time

Figure 17. Inductive Fall Time

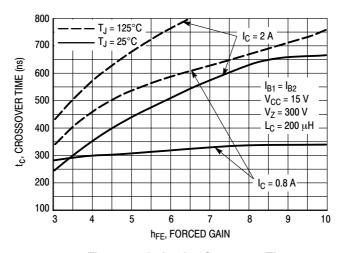
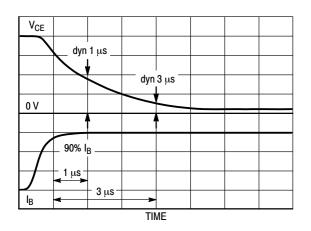
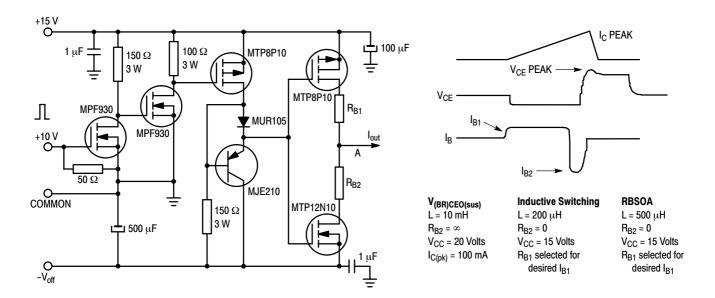



Figure 18. Inductive Crossover Time

TYPICAL SWITCHING CHARACTERISTICS



10 9 8 7 6 5 V_{clamp}
10% V_{clamp}
10% I_C

Figure 19. Dynamic Saturation Voltage Measurements

Figure 20. Inductive Switching Measurements

Table 1. Inductive Load Switching Drive Circuit

TYPICAL THERMAL RESPONSE

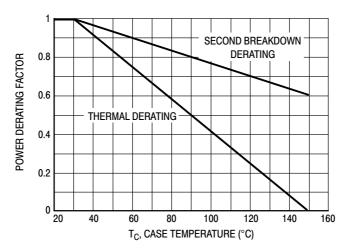


Figure 21. Forward Bias Power Derating

There are two limitations on the power handling ability of a transistor: average junction temperature and second breakdown. Safe operating area curves indicate I_C – V_{CE} limits of the transistor that must be observed for reliable operation; i.e., the transistor must not be subjected to greater dissipation than the curves indicate. The data of Figure 22 is based on T_C = 25°C; $T_{J(pk)}$ is variable depending on power level. Second breakdown pulse limits are valid for duty cycles to 10% but must be derated when T_C > 25°C. Second breakdown limitations do not derate the same as thermal limitations. Allowable current at the voltages shown on

Figure 22 may be found at any case temperature by using the appropriate curve on Figure 21.

 $T_{J(pk)}$ may be calculated from the data in Figure 24. At any case temperatures, thermal limitations will reduce the power that can be handled to values less than the limitations imposed by second breakdown. For inductive loads, high voltage and current must be sustained simultaneously during turn–off with the base to emitter junction reverse biased. The safe level is specified as a reverse biased safe operating area (Figure 23). This rating is verified under clamped conditions so that the device is never subjected to an avalanche mode.

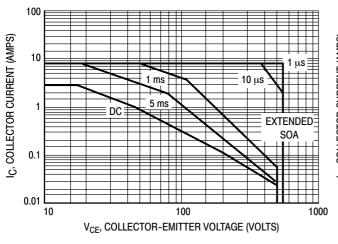


Figure 22. Forward Bias Safe Operating Area

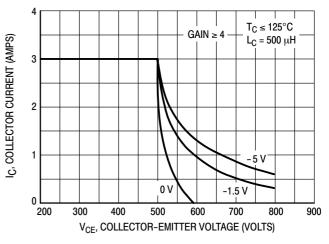


Figure 23. Reverse Bias Safe Operating Area

TYPICAL THERMAL RESPONSE

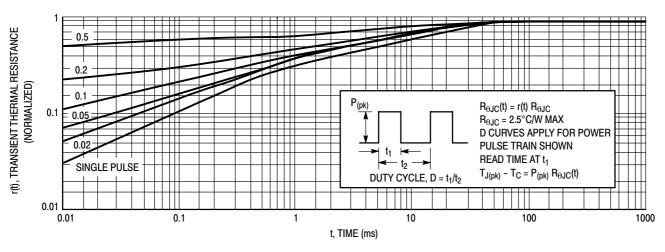
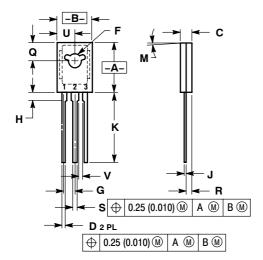



Figure 24. Typical Thermal Response ($Z_{\theta JC}(t)$) for BUH51

PACKAGE DIMENSIONS

TO-225 CASE 77-09 ISSUE Z

NOTES:

- 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
- 2. CONTROLLING DIMENSION: INCH.
 3. 077-01 THRU -08 OBSOLETE, NEW STANDARD

	INCHES		MILLIMETERS		
DIM	MIN	MAX	MIN	MAX	
Α	0.425	0.435	10.80	11.04	
В	0.295	0.305	7.50	7.74	
С	0.095	0.105	2.42	2.66	
D	0.020	0.026	0.51	0.66	
F	0.115	0.130	2.93	3.30	
G	0.094	BSC	2.39	BSC	
Н	0.050	0.095	1.27	2.41	
J	0.015	0.025	0.39	0.63	
K	0.575	0.655	14.61	16.63	
M	5° TYP		5° TYP		
Q	0.148	0.158	3.76	4.01	
R	0.045	0.065	1.15	1.65	
S	0.025	0.035	0.64	0.88	
U	0.145	0.155	3.69	3.93	
٧	0.040		1.02		

STYLE 3:

PIN 1. BASE

2. COLLECTOR EMITTER

SWITCHMODE is a trademark of Semiconductor Components Industries, LLC (SCILLC).

ON Semiconductor and un are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice on semiconductor and are registered readerlands of semiconductor Components industries, Ite (SCILLC) solicit esserves the right to make changes without further holice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 61312, Phoenix, Arizona 85082-1312 USA Phone: 480-829-7710 or 800-344-3860 Toll Free USA/Canada Fax: 480-829-7709 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free

Japan: ON Semiconductor, Japan Customer Focus Center 2-9-1 Kamimeguro, Meguro-ku, Tokyo, Japan 153-0051 Phone: 81-3-5773-3850

ON Semiconductor Website: http://onsemi.com

Order Literature: http://www.onsemi.com/litorder

For additional information, please contact your local Sales Representative.