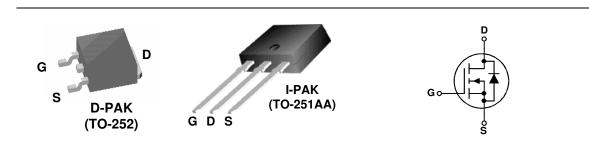


General Description

This N-Channel MOSFET has been designed specifically to improve the overall efficiency of DC/DC converters using either synchronous or conventional switching PWM controllers. It has been optimized for low gate charge, low $R_{DS(ON)}$, fast switching speed and extremely low $R_{DS(ON)}$ in a small package.


Applications

- DC/DC converter
- Motor Drives

Features

• 30 A, 30 V
$$R_{DS(ON)} = 20 \ m\Omega @ V_{GS} = 10 \ V$$

 $R_{DS(ON)} = 28 \ m\Omega @ V_{GS} = 4.5 \ V$

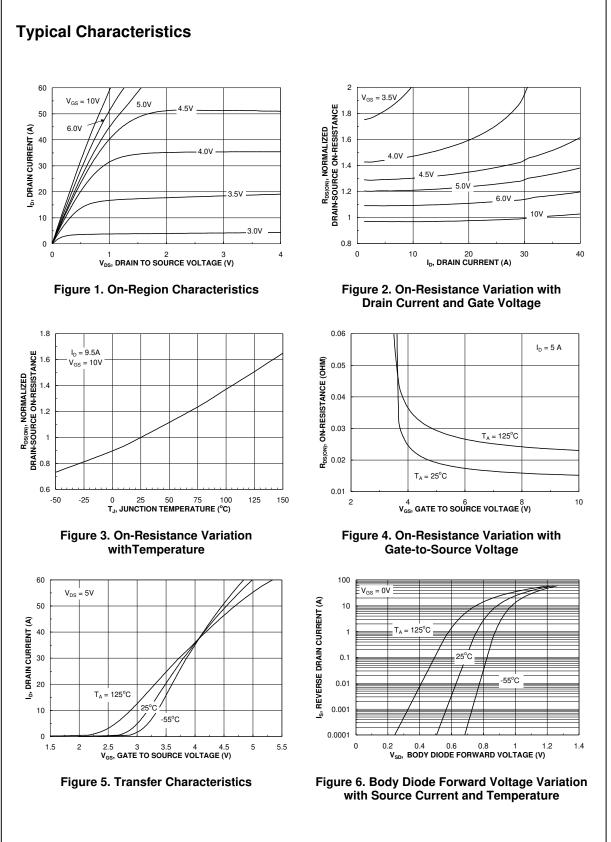
- Low gate charge
- Fast Switching
- High performance trench technology for extremely low R_{DS(ON)}

Absolute Maximum Ratings T_A=25°C unless otherwise noted

Symbol	Parameter			Ratings	Units
V _{DSS}	Drain-Source Voltage			30	V
V _{GSS}	Gate-Source Voltage			±20	V
ID	Continuous Drain Current	@T _c =25°C	(Note 3)	30	А
		@T _A =25°C	(Note 1a)	9.5	
		Pulsed	(Note 1a)	60	
PD	Power Dissipation	@T _c =25°C	(Note 1)	36	W
		@T _A =25°C	(Note 1a)	2.8	
		@T _A =25°C	(Note 1b)	1.3	
T_{J}, T_{STG}	Operating and Storage Ju	nction Temperatu	ire Range	-55 to +175	°C
Therma	I Characteristics				
$R_{ ext{ hetaJC}}$	Thermal Resistance, Junction-to-Case (Note 1)		3.9	°C/W	
$R_{\theta JA}$	Thermal Resistance, Junc	tion-to-Ambient	(Note 1a)	45	°C/W
$R_{\theta JA}$	Thermal Resistance, Junc	tion-to-Ambient	(Note 1b)	96	°C/W

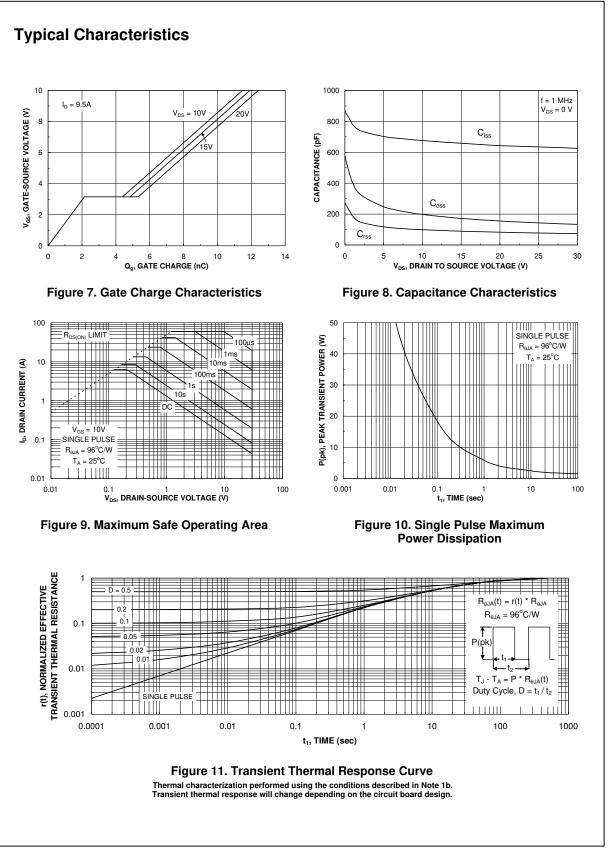
Package Marking and Ordering Information

Device Marking	Device	Package	Reel Size	Tape width	Quantity
FDD6612A	FDD6612A	D-PAK (TO-252)	13"	12mm	2500 units
FDU6612A	FDU6612A	I-PAK (TO-251)	Tube	N/A	75


©2004 Fairchild Semiconductor Corporation

Symbol	Parameter	Test Conditions	Min	Тур	Max	Units
Drain-So	ource Avalanche Ratings (Not	e 2)				
W _{DSS}	Drain-Source Avalanche Energy	Single Pulse, $V_{DD} = 27 \text{ V}$, $I_D = 10 \text{ A}$			51	mJ
AR	Drain-Source Avalanche Current				10	А
Off Char	acteristics					
BV _{DSS}	Drain-Source Breakdown Voltage	$V_{GS} = 0 V$, $I_D = 250 \mu A$	30			V
<u>ΔBV_{DSS}</u> ΔT _J	Breakdown Voltage Temperature Coefficient	$I_D = 250 \ \mu\text{A}, \text{Referenced to } 25^{\circ}\text{C}$		25		mV/°C
DSS	Zero Gate Voltage Drain Current	$V_{\text{DS}} = 24 \text{ V}, \qquad V_{\text{GS}} = 0 \text{ V}$			1	μA
I _{GSS}	Gate–Body Leakage	$V_{\text{GS}}=\pm 20 \text{ V}, V_{\text{DS}}=0 \text{ V}$			±100	nA
On Char	acteristics (Note 2)					
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}$, $I_D = 250 \ \mu A$	1	2.0	3	V
$\Delta V_{GS(th)} \Delta T_J$	Gate Threshold Voltage Temperature Coefficient	$I_D = 250 \ \mu\text{A}, \text{Referenced to } 25^\circ\text{C}$		-5.1		mV/°C
R _{DS(on)}	Static Drain–Source On–Resistance	$ \begin{array}{ll} V_{GS} = 10 \; V, & I_D = 9.5 \; A \\ V_{GS} = 4.5 \; V, & I_D = 8 \; A \\ V_{GS} = 10 \; V, & I_D = 9.5 \; A, \; T_J \!=\! 125^\circ \! C \end{array} $		15 20 23	20 28 33	mΩ
g fs	Forward Transconductance	$V_{DS} = 5 V$, $I_D = 9.5 A$		28		S
Dvnamio	Characteristics					
C _{iss}	Input Capacitance			660		pF
Coss	Output Capacitance	$V_{DS} = 15 V$, $V_{GS} = 0 V$,		170		pF
C _{rss}	Reverse Transfer Capacitance	f = 1.0 MHz		90		pF
R _G	Gate Resistance	$V_{GS} = 15 \text{ Mv}, f = 1.0 \text{ MHz}$		2.3		Ω
Switchin	g Characteristics (Note 2)					
d(on)	Turn–On Delay Time			9	18	ns
tr	Turn–On Rise Time	$V_{DD} = 15 V$, $I_D = 1 A$,		5	10	ns
t _{d(off)}	Turn-Off Delay Time	$V_{GS} = 10 \text{ V}, R_{GEN} = 6 \Omega$		24	38	ns
ł	Turn–Off Fall Time			4	8	ns
Qg	Total Gate Charge			6.7	9.4	nC
Q _{gs}	Gate–Source Charge	$V_{DS} = 15 \text{ V}, I_D = 9.5 \text{ A}, V_{GS} = 5 \text{ V}$		2.1		nC
Q _{gd}	Gate-Drain Charge	$v_{\rm GS} = 5 v$		2.7		nC

Symbol	Parameter	Test Conditions	Min	Тур	Max	Units
Drain-So	ource Diode Characteristic	s and Maximum Batings				I
ls	Maximum Continuous Drain–Sour				2.3	А
V _{SD}	Drain–Source Diode Forward Voltage	$V_{GS} = 0 \ V, \ I_S = 2.3 \ A \qquad (\text{Note 2})$		0.8	1.2	V
rr	Diode Reverse Recovery Time	IF = 9.5 A, diF/dt = 100 A/µs		20		nS
Qrr	Diode Reverse Recovery Charge			10		nC
	■ a) R _{aJA} = 45°C 1in ² pad of 3	/W when mounted on a 2 oz copper		_= 96°C/W minimum	' when mou pad.	nted
Scale 1 : 1 on le	etter size paper					
Pulse Test: Pul	se Width < 300µs, Duty Cycle < 2.0%					
Maximum curr	rent is calculated as: $\sqrt{\frac{P_D}{R_{DS(ON)}}}$					
where P _D is ma	aximum power dissipation at $T_{c} = 25^{\circ}C$ and R_{D}	$_{S(on)}$ is at $T_{J(max)}$ and V_{GS} = 10V. Package current	limitation is a	21A		
Where F D is in	axinani power alsoipation at 10 - 20 0 and 10	S(on) is at 1 J(max) and VGS - 10 V. 1 ackage barrent				


FDD6612A/FDU6612A

FDD6612A/FDU6612A Rev. E(W)

FDD6612A/FDU6612A Rev. E(W)

FDD6612A/FDU6612A

FDD6612A/FDU6612A

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

	FAST®		Power247™	SuperFET™
ActiveArray™	FASTr™	LittleFET™	PowerSaver™	SuperSOT™-3
Bottomless™	FPS™	MICROCOUPLER™	PowerTrench [®]	SuperSOT™-6
CoolFET™	FRFET™	MicroFET™	QFET [®]	SuperSOT™-8
CROSSVOLT™	GlobalOptoisolator™	MicroPak™	QS™	SyncFET™
DOME™	GTO™	MICROWIRE™	QT Optoelectronics [™]	TinyLogic [®]
EcoSPARK™	HiSeC™	MSX™	Quiet Series [™]	TINYOPTO™
E ² CMOS™	l²C™	MSXPro™	RapidConfigure™	TruTranslation™
EnSigna™	<i>i-Lo</i> ™	OCX™	RapidConnect™	UHC™
FACT™	ImpliedDisconnect [™]	OCXPro™	µSerDes™	UltraFET [®]
FACT Quiet Serie	es™	OPTOLOGIC [®]	SILENT SWITCHER®	VCX™
Across the board	d. Around the world.™	OPTOPLANAR™	SMART START™	
The Power France		PACMAN™	SPM™	
Programmable A		POP™	Stealth™	
i iogiainnabio/				

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.
		Rev. I11