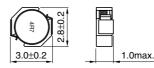
SMD Inductors(Coils) For Power Line(Wound, Magnetic Shielded)

VLF Series VLF3010S

FEATURES


- Miniature size Mount area: 2.8×3.0mm
- Low profile: 1.0mm max. height
- Generic use for portable DC to DC converter line.
- High magnetic shield construction should actualize high resolution for EMC protection.
- Available for automatic mounting in tape and real package.
- The products contain no lead and also support lead-free soldering.
- · It is a product conforming to RoHS directive.

APPLICATIONS

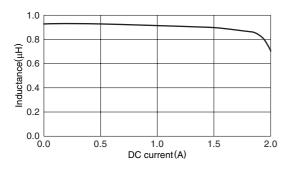
Power souce inductor for mobile devices such as mobile phones, HDDs, and DSCs

ELECTRICAL CHARACTERISTICS

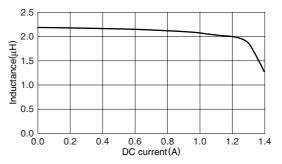
SHAPES AND DIMENSIONS

Dimensions in mm

RECOMMENDED PC BOARD PATTERN

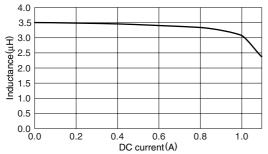

Dimensions in mm

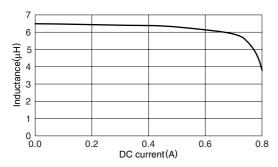
Part No.	Inductance (µH)	Inductance tolerance(%)	Test frequency (MHz)	DC resistance(Ω)		Rated current(A)*	
				max.	typ.	Based on inductance change max.	Based on temperature rise typ.
VLF3010ST-1R0N1R7	1	±30	1	0.049	0.041	1.7	2.3
VLF3010ST-2R2M1R1	2.2	±20	1	0.092	0.077	1.1	1.6
VLF3010ST-3R3MR88	3.3	±20	1	0.13	0.11	0.88	1.3
VLF3010ST-4R7MR75	4.7	±20	1	0.18	0.15	0.75	1.1
VLF3010ST-6R8MR65	6.8	±20	1	0.25	0.22	0.65	0.95
VLF3010ST-100MR53	10	±20	1	0.49	0.41	0.53	0.7
VLF3010ST-150MR38	15	±20	1	0.61	0.51	0.38	0.63
VLF3010ST-220MR34	22	±20	1	0.97	0.81	0.34	0.5


* Rated current: Value obtained when current flows and the temperature has risen to 40°C or when DC current flows and the nominal value of inductance has fallen by 30%, whichever is smaller.

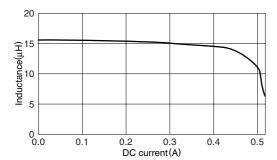
• Operating temperature range: -40 to +105°C (Including self-temperature rise)

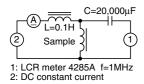
TYPICAL ELECTRICAL CHARACTERISTICS INDUCTANCE vs. DC SUPERPOSITION CHARACTERISTICS VLF3010ST-1R0N1R7

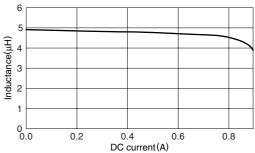

VLF3010ST-2R2M1R1

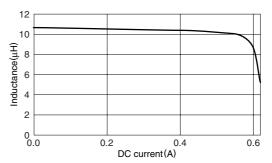

• Conformity to RoHS Directive: This means that, in conformity with EU Directive 2002/95/EC, lead, cadmium, mercury, hexavalent chromium, and specific bromine-based flame retardants, PBB and PBDE, have not been used, except for exempted applications.

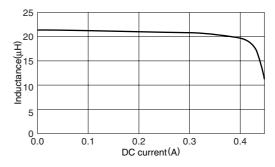
• All specifications are subject to change without notice.


TYPICAL ELECTRICAL CHARACTERISTICS INDUCTANCE vs. DC SUPERPOSITION CHARACTERISTICS VLF3010ST-3R3MR88


VLF3010ST-6R8MR65


VLF3010ST-150MR38


TEST CIRCUIT


VLF3010ST-4R7MR75

VLF3010ST-100MR53

VLF3010ST-220MR34

