# i.MX 7ULP

### ULTRA LOW POWER PLATFORM FOR PORTABLE APPLICATIONS





SECURE CONNECTIONS FOR A SMARTER WORLD

EXTERNAL USE

## **ULP Family: Market Opportunity in Power Efficiency**



## SCALABILITY OF EMBEDDED PROCESSING THE NEW NORMAL



## HETEROGENEOUS PROCESSING: PROVIDING SOLUTIONS TO MARKET CHALLENGES



## i.MX 7ULP Key Highlights

# i.MX 7ULP

## Bringing together Apps Processor performance and MCU Low Power





#### • FDSOI

- Effective control of the transistor channel through biasing
- High Performance/mW
   ovtonding battery life for part

extending battery life for portable devices.

 Performance on Demand with fast wake up times Efficient 3D & 2D Graphics

#### · GC7000 nanoULTRA

OpenGL ES 2.0/1.1
 OpenVG 1.1

#### GC320 2D Composition

Offloads tasks from 3D GPU
Stretch/Shrinking, rotation, GUI processing



#### Heterogeneous Domain Computing

Multiple software execution:

- Powerful processing using **Cortex**-**A7** and Neon co-processor
- Real-time performance through
   Cortex-M4
- System integrity and security
  - Resource Domain Controller
  - Fast Low Power Boot
  - Safe Recovery of Application domain



.

## **Target Applications**









- Wearables
- Home Control
- Portable Healthcare
- Portable Printing
- Gaming Accessories
- General Embedded
   Control
- IoT Edge



## **Cortex-A7 enables power efficiency**





## i.MX 7ULP Applications Processor

Timers

#### **Specifications:**

#### CPU:

- Cortex-A7 @ 720MHz
- Cortex-M4 @ 200Mhz

#### Process: 28nm FD-SOI

#### Package:

- 14x14 393BGA, 0.5mm pitch: Consumer & Industrial
- 10x10 361BGA, 0.5mm pitch: Consumer Only

#### Temp Range (junction):

Industrial: -40C to +105C Consumer: 0C to +95C

#### Key Features:

- Graphics
  - GC7000 nanoULTRA GPU: OpenGL 2.0 / OpenVG
  - GC320 Composition Engine
- Ultra Low Power
  - Independent Real-time domain
  - Ultra Low Run Current
- Memory options
  - QSPI (on the fly decryption)
  - 32-bit LPDDR2/3 @380MHz
  - eMMC 5.0 /SD3.0
- Connectivity
  - USB HS OTG with PHY
  - USB HS HOST HSIC
  - I2C X 8, SPI X 4, UART X 8, SDIO X 2, I2S X 2
- Security
  - High Assurance Boot
  - Crypto Acceleration: AES-128/256, SHA-1, SHA-224, SHA-256
  - RNG and Tamper Detection



**Application Domain** 



A7 Connectivity

7 EXTERNAL USE

## 28nm FD SOI

#### Power – Performance Benefits

- Improved electrostatics enables shorter gate lengths
- Reduced device parasitics
- Device back bias allows for **lower Vdd** while maintaining performance
- **Device tuning** with back biasing to compensate process variation

#### Analog Integration and Performance Benefits

- Higher gain, better matching and lower 1/f noise
- Gate first integration removes density rules for precision analog

#### Better SER and Latchup Immunity

- 10-100x better SER performance versus 28nm bulk alternatives
- Thin buried oxide layer makes device immune to latchup





**Body Biasing**: Faster when required and more energy efficient when performance isn't as critical



## **NXP Complete Solutions**

+

#### i.MX7 ULP Family Processors

- **720 MHz** Cortex<sup>™</sup>-A7
  - NEON<sup>™</sup> coprocessor
- ARM<sup>®</sup> Cortex<sup>™</sup>-M4,
- Targeting a broad range of Low Power Applications that rely on a multitude of Low power states to extend battery life to its fullest.

#### PF1550 PMIC

- Integration of NXP's PMIC chip set with i.MX processor for optimization of power efficiency and software/hardware integration
- One-stop customer service and support during development phase to enable the design process

#### Sensors

- MEMS gyroscopes for reliable sensing and measuring
- Magnetometers: measuring the magnitude and direction of magnetic fields
- Pressure Sensing Devices, composed of single silicon, piezoresistive devices

#### ULP EVK Development Platform

=

Development platform:

- SOM based evaluation kit
- Linux<sup>®</sup> and Android<sup>™</sup> Board Support Packages are available through NXP









### A Single Solution for Streamlined Performance

+



## i.MX WiFi & Bluetooth Strategy

3 companies partnering to deliver world-class solutions for connected products



- Out-of-box processor and wireless connectivity for Linux and Android based systems
  - Wi-Fi (802.11bgn, abgn, abgn/ac) & Bluetooth Smart Ready Options



## i.MX 7ULP SOM Based Platform

- Enables fast use case evaluation through quick builds of of customized base boards.
- Allows customers to leverage the critical features of SOM design including DDR and PMIC design/layout.
- Design Files provided
  - Schematics
  - -Layout
  - -BOM



## Part Numbers: i.MX 7ULP Family

All parts are orderable now and shipment is expected to start in Jun 2019 (Consumer) /Q3 2019 (Industrial)

| Part number     | Qual tier  | Package       | Main CPU                 | On-chip SRAM | Real-time<br>companion CPU | Real-time<br>companion CPU:<br>Tightly-coupled<br>memory | 2D & 3D GPU | I²S | SPI | UART | I <sup>2</sup> C | USB                                        | Temperature<br>range |
|-----------------|------------|---------------|--------------------------|--------------|----------------------------|----------------------------------------------------------|-------------|-----|-----|------|------------------|--------------------------------------------|----------------------|
| MCIMX7U5DVP07SC | Consumer   | MAPBGA<br>393 | ARM Cortex-A7 720<br>MHz | 256 KB       | ARM Cortex-M4 200<br>MHz   | 256 KB                                                   | Y           | 4   | 4   | 8    | 8                | USB 2.0 OTG<br>+PHY, USB 2.0 Hosi<br>+HSIC | t 0-95°C             |
| MCIMX7U5DVK07SC | Consumer   | VFBGA<br>361  | ARM Cortex-A7 720<br>MHz | 256 KB       | ARM Cortex-M4 200<br>MHz   | 256 KB                                                   | Y           | 4   | 4   | 8    | 8                | USB 2.0 OTG<br>+PHY, USB 2.0 Hosi<br>+HSIC | t 0-95°C             |
| MCIMX7U3DVK07SC | Consumer   | VFBGA<br>361  | ARM Cortex-A7 720<br>MHz | 256 KB       | ARM Cortex-M4 200<br>MHz   | 256 KB                                                   | -           | 4   | 4   | 8    | 8                | USB 2.0 OTG<br>+PHY, USB 2.0 Host<br>+HSIC | i 0-95°C             |
| MCIMX7U5CVP06SC | Industrial | MAPBGA<br>393 | ARM Cortex-A7 650<br>MHz | 256 KB       | ARM Cortex-M4 200<br>MHz   | 256 KB                                                   | Y           | 4   | 4   | 8    | 8                | USB 2.0 OTG<br>+PHY, USB 2.0 Host<br>+HSIC | i -40-105°C          |
| MCIMX7U3CVP06SC | Industrial | MAPBGA<br>393 | ARM Cortex-A7 650<br>MHz | 256 KB       | ARM Cortex-M4 200<br>MHz   | 256 KB                                                   | -           | 4   | 4   | 8    | 8                | USB 2.0 OTG<br>+PHY, USB 2.0 Host<br>+HSIC | t -40-105°C          |





## SECURE CONNECTIONS FOR A SMARTER WORLD