

PHC21025

Complementary intermediate level FET Rev. 04 — 17 March 2011

Product data sheet

Product profile 1.

1.1 General description

Intermediate level N-channel and P-channel complementary pair enhancement mode Field-Effect Transistor (FET) in a plastic package using vertical D-MOS technology. This product is designed and qualified for use in computing, communications, consumer and industrial applications only.

1.2 Features and benefits

- Low conduction losses due to low on-state resistance
- Suitable for high frequency applications due to fast switching characteristics

1.3 Applications

- Motor and actuator drivers
- Power management

Synchronized rectification

1.4 Quick reference data

Table 1. Quick reference data

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
V_{DS}	drain-source voltage	$T_j \ge 25$ °C; $T_j \le 150$ °C; N-channel		-	-	30	V
		$T_j \ge 25 \text{ °C}; T_j \le 150 \text{ °C};$ P-channel		-	-	-30	V
I _D	drain current	T _{sp} ≤ 80 °C; P-channel		-	-	-2.3	Α
		T _{sp} ≤ 80 °C; N-channel		-	-	3.5	Α
P _{tot}	total power dissipation	T _{amb} = 25 °C	[1]	-	-	1	W
Static chara	acteristics						
R _{DSon}	drain-source on-state resistance	V_{GS} = -10 V; I_D = -1 A; T_j = 25 °C; P-channel; see <u>Figure 16</u> ; see <u>Figure 19</u>		-	0.22	0.25	Ω
		$V_{GS} = 10 \text{ V}; I_D = 2.2 \text{ A};$ $T_j = 25 ^{\circ}\text{C}; \text{ N-channel};$ see Figure 15; see Figure 18		-	0.08	0.1	Ω

Complementary intermediate level FET

Table 1. Quick reference data ...continued

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Dynamic o	characteristics					
Q_{GD}	gate-drain charge	V_{GS} = -10 V; I_D = -2.3 A; V_{DS} = -15 V; T_j = 25 °C; P-channel; see Figure 12	-	3	-	nC
		$V_{GS} = 10 \text{ V}; I_D = 2.3 \text{ A};$ $V_{DS} = 15 \text{ V}; T_j = 25 \text{ °C};$ N-channel; see Figure 11	-	2.5	-	nC

^[1] Maximum permissible dissipation per MOS transistor. Device mounted on printed-circuit board with a thermal resistance from ambient to solder point of 90 K/W.

2. Pinning information

Table 2. Pinning information

Pin	Symbol	Description	Simplified outline	Graphic symbol
1	S1	source1		D. D. D. D.
2	G1	gate1	8 <u>月 月 月</u> 5	D1 D1 D2 D2
3	S2	source2		
4	G2	gate2		
5	D2	drain2	1 日 日 日 4	S1 G1 S2 G2
6	D2	drain2	SOT96-1 (SO8)	sym114
7	D1	drain1		
8	D1	drain1		

3. Ordering information

Table 3. Ordering information

Type number	Package		
	Name	Description	Version
PHC21025	SO8	plastic small outline package; 8 leads; body width 3.9 mm	SOT96-1

Complementary intermediate level FET

4. Limiting values

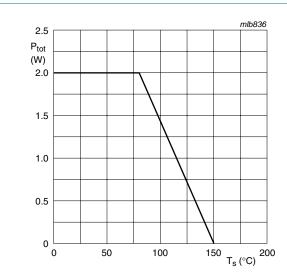
Table 4. Limiting values

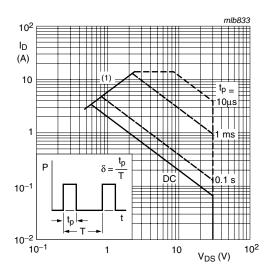
In accordance with the Absolute Maximum Rating System (IEC 60134).

Symbol	Parameter	Conditions		Min	Max	Unit
V_{DS}	drain-source voltage	$T_j \ge 25 \text{ °C}; T_j \le 150 \text{ °C}; \text{ N-channel}$		-	30	V
		$T_j \ge 25 \text{ °C}; T_j \le 150 \text{ °C}; P-channel}$		-	-30	V
V_{GS}	gate-source voltage			-	-	V
V_{GSO}	gate-source voltage	open drain		-20	20	V
I _D drain current		T _{sp} ≤ 80 °C; P-channel		-	-2.3	Α
		T _{sp} ≤ 80 °C; N-channel		-	3.5	Α
I _{DM}	peak drain current	T _{sp} = 25 °C; pulsed; N-channel; see <u>Figure 2</u>	<u>[1]</u>	-	14	Α
	T _{sp} = 25 °C; pulsed; P-channel; see Figure 3	<u>[1]</u>	-	-10	Α	
P _{tot} total power dissipation	T _{amb} = 25 °C	[2]	-	1	W	
		T _{sp} = 80 °C; see <u>Figure 1</u>	[3]	-	2	W
		T _{amb} = 25 °C	[4]	-	1.3	W
			[5]	-	2	W
T _{stg}	storage temperature			-65	150	°C
Tj	junction temperature			-	150	°C
Source-drai	in diode					
Is	source current	T _{sp} ≤ 80 °C; P-channel		-	-1.25	Α
		T _{sp} ≤ 80 °C; N-channel		-	1.5	Α
I _{SM}	peak source current	T _{sp} = 25 °C; pulsed; P-channel	[6]	-	-5	Α
		T _{sp} = 25 °C; pulsed; N-channel	[6]	-	6	Α

^[1] Pulse width and duty cycle limited by maximum junction temperature.

^[2] Maximum permissible dissipation per MOS transistor. Device mounted on printed-circuit board with a thermal resistance from ambient to solder point of 90 K/W.

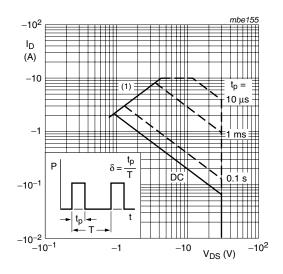

^[3] Maximum permissible dissipation per MOS transistor. Both devices may be loaded up to 2 W at the same time.


^[4] Maximum permissible dissipation if only one MOS transistor dissipates. Device mounted on printed-circuit board with thermal resistance from ambient to solder point of 90 K/W.

^[5] Maximum permissible dissipation per MOS transistor. Device mounted on printed-circuit board with a Thermal resistance from ambient to solder point of 27.5 K/W.

^[6] Pulse width and duty cycle limited by maximum junction temperature.

Complementary intermediate level FET


 $\delta = 0.01.$

 $T_s = 80 \, ^{\circ}C$.

(1) R_{DSon} limitation.

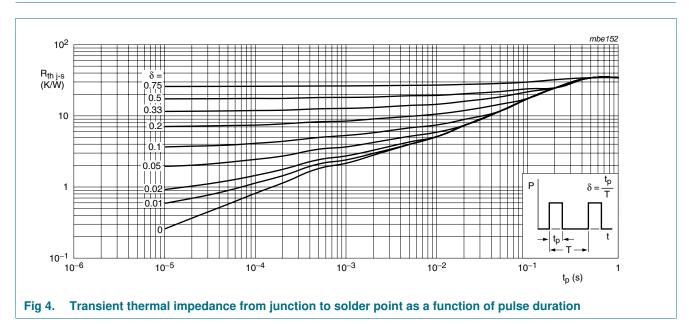
Fig 1. Power derating curve

Fig 2. SOAR; N-channel

 $\delta = 0.01$

T_s = 80 °C.

(1) R_{DSon} limitation.


Fig 3. SOAR; P-channel

Complementary intermediate level FET

5. Thermal characteristics

Table 5. Thermal characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
$R_{th(j-sp)}$	thermal resistance from junction to solder point		-	-	35	K/W

Complementary intermediate level FET

6. Characteristics

Table 6. Characteristics

Table 6.	Characteristics					
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Static cha	aracteristics					
V _{(BR)DSS} drain-source breakdown voltage		I_D = -10 μ A; V_{GS} = 0 V; T_j = 25 °C; P-channel	-30	-	-	V
		I_D = 10 μ A; V_{GS} = 0 V; T_j = 25 °C; N-channel	30	-	-	V
$V_{GS(th)}$	gate-source threshold voltage	I_D = -1 mA; V_{DS} = V_{GS} ; T_j = 25 °C; P-channel; see <u>Figure 17</u>	-1	-	-2.8	V
		I_D = 1 mA; V_{DS} = V_{GS} ; T_j = 25 °C; N-channel; see <u>Figure 17</u>	1	-	2.8	V
I _{DSS}	drain leakage current	V_{DS} = -24 V; V_{GS} = 0 V; T_j = 25 °C; P-channel	-	-	-100	nA
		V_{DS} = 24 V; V_{GS} = 0 V; T_j = 25 °C; N-channel	-	-	100	nA
I _{GSS} gate leakage current		V_{GS} = 20 V; V_{DS} = 0 V; T_j = 25 °C; N-channel	-	-	100	nA
		V_{GS} = 20 V; V_{DS} = 0 V; T_j = 25 °C; P-channel	-	-	100	nA
		V_{GS} = -20 V; V_{DS} = 0 V; T_j = 25 °C; P-channel	-	-	100	nA
		V_{GS} = -20 V; V_{DS} = 0 V; T_j = 25 °C; N-channel	-	-	100	nA
R_{DSon}	drain-source on-state resistance	$V_{GS} = -10 \text{ V}; I_D = -1 \text{ A}; T_j = 25 \text{ °C};$ P-channel; see Figure 16; see Figure 19	-	0.22	0.25	Ω
		V_{GS} = 10 V; I_D = 2.2 A; T_j = 25 °C; N-channel; see <u>Figure 15</u> ; see <u>Figure 18</u>	-	0.08	0.1	Ω
		V_{GS} = -4.5 V; I_D = -0.5 A; T_j = 25 °C; P-channel; see <u>Figure 16</u> ; see <u>Figure 19</u>	-	0.33	0.4	Ω
		$V_{GS} = 4.5 \text{ V}$; $I_D = 1 \text{ A}$; N-channel; see Figure 15; see Figure 18	-	0.11	0.2	Ω
I_{DSon}	on-state drain current	$V_{DS} = 5 \text{ V}$; $V_{GS} = 4.5 \text{ V}$; N-channel	2	-	-	Α
		$V_{DS} = -5 \text{ V}; V_{GS} = -4.5 \text{ V}; P-channel}$	-1	-	-	Α
		$V_{DS} = -1 V$; $V_{GS} = -10 V$; P-channel	-2.3	-	-	Α
		$V_{DS} = 1 \text{ V}; V_{GS} = 10 \text{ V}; N-channel}$	3.5	-	-	Α
Dynamic	characteristics					
Q _{G(tot)}	total gate charge	I_D = 2.3 A; V_{DS} = 15 V; V_{GS} = 10 V; T_j = 25 °C; N-channel; see Figure 11	-	10	30	nC
		$I_D = -2.3 \text{ A}; V_{DS} = -15 \text{ V};$ $V_{GS} = -10 \text{ V}; T_j = 25 ^{\circ}\text{C}; P\text{-channel};$ see Figure 12	-	10	25	nC

Complementary intermediate level FET

 Table 6.
 Characteristics ... continued

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Q_{GS}	gate-source charge	I_D = 2.3 A; V_{DS} = 15 V; V_{GS} = 10 V; T_j = 25 °C; N-channel; see Figure 11	-	1	-	nC
		I_D = -2.3 A; V_{DS} = -15 V; V_{GS} = -10 V; T_j = 25 °C; P-channel; see Figure 12	-	1	-	nC
Q_{GD}	gate-drain charge	$I_D = -2.3 \text{ A}; V_{DS} = -15 \text{ V};$ $V_{GS} = -10 \text{ V}; T_j = 25 ^{\circ}\text{C}; P\text{-channel};$ see Figure 12	-	3	-	nC
		I_D = 2.3 A; V_{DS} = 15 V; V_{GS} = 10 V; T_j = 25 °C; N-channel; see Figure 11	-	2.5	-	nC
C _{iss}	input capacitance	$V_{DS} = 20 \text{ V}; V_{GS} = 0 \text{ V}; f = 1 \text{ MHz};$ $T_j = 25 ^{\circ}\text{C}; \text{ N-channel}; \text{ see } \underline{\text{Figure 5}}$	-	250	-	pF
		$V_{DS} = -20 \text{ V}; V_{GS} = 0 \text{ V}; f = 1 \text{ MHz};$ $T_j = 25 \text{ °C}; P\text{-channel}; \text{see } \frac{\text{Figure 6}}{Constant of the first of the first$	-	250	-	pF
C _{oss}	output capacitance	$V_{DS} = 20 \text{ V}; V_{GS} = 0 \text{ V}; f = 1 \text{ MHz};$ $T_j = 25 \text{ °C}; \text{ N-channel}; \text{ see } \frac{\text{Figure 5}}{\text{ or } 100 \text{ Pigure 5}}$	-	140	-	pF
		V_{DS} = -20 V; V_{GS} = 0 V; f = 1 MHz; T_j = 25 °C; P-channel; see <u>Figure 6</u>	-	140	-	pF
C _{rss}	reverse transfer capacitance	$V_{DS} = 20 \text{ V}; V_{GS} = 0 \text{ V}; f = 1 \text{ MHz};$ $T_j = 25 \text{ °C}; \text{ N-channel}; \text{ see } \frac{\text{Figure 5}}{ Signs of the second of the$	-	50	-	pF _
		$V_{DS} = -20 \text{ V}; V_{GS} = 0 \text{ V}; f = 1 \text{ MHz};$ $T_j = 25 \text{ °C}; P\text{-channel}; \text{see } \underline{\text{Figure 6}}$	-	50	-	pF
9fs	transfer conductance	$V_{DS} = -20 \text{ V}; I_D = -1 \text{ A}; T_j = 25 \text{ °C};$ P-channel	1	2	-	S
		$V_{DS} = 20 \text{ V}; I_D = 2.2 \text{ A}; T_j = 25 \text{ °C};$ N-channel	2	4.5	-	S
t _{off}	turn-off time	$\begin{split} &V_{DS}=20 \text{ V}; V_{GS}=10 \text{ V}; \\ &R_{G(ext)}=4.7 \Omega; I_{D}=1 \text{ A}; R_{L}=20 \Omega; \\ &T_{j}=25 ^{\circ}\text{C}; \text{ N-channel} \end{split}$	-	25	140	ns
		$V_{DS} = -20 \text{ V}; V_{GS} = -10 \text{ V};$	-	50	140	ns
t _{on}	turn-on time	$R_{G(ext)} = 4.7 \Omega$; $I_D = -1 A$; $R_L = 20 \Omega$; $T_j = 25 °C$; P-channel	-	20	80	ns
		$\begin{split} &V_{DS}=20 \text{ V; } V_{GS}=10 \text{ V;} \\ &R_{G(ext)}=4.7 \text{ \Omega; } I_{D}=1 \text{ A; } R_{L}=20 \text{ \Omega;} \\ &T_{j}=25 \text{ °C; N-channel} \end{split}$	-	15	40	ns
Source-dr	ain diode					
V_{SD}	source-drain voltage	$I_S = 1.25 \text{ A}$; $V_{GS} = 0 \text{ V}$; $T_j = 25 \text{ °C}$; N-channel; see Figure 13	-	-	1.2	V
		$I_S = -1.25 \text{ A}$; $V_{GS} = 0 \text{ V}$; $T_j = 25 \text{ °C}$; P-channel; see Figure 14	-	-	-1.6	V
t _{rr}	reverse recovery time	I_S = -1.25 A; dI_S/dt = 100 A/ μ s; V_{GS} = 0 V; V_{DS} = -25 V; T_j = 25 °C; P-channel	-	150	200	ns
		I_S = 1.25 A; dI_S/dt = -100 A/ μ s; V_{GS} = 0 V; V_{DS} = 25 V; T_j = 25 °C; N-channel	-	35	100	ns

Complementary intermediate level FET

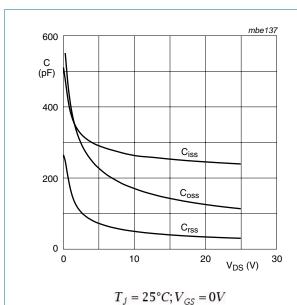


Fig 5. Capacitance as a function of drain-source voltage; N-channel; typical values

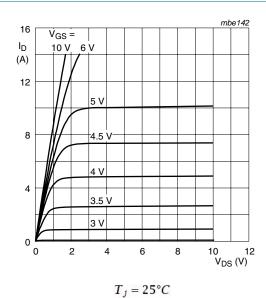
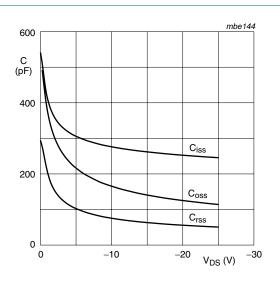
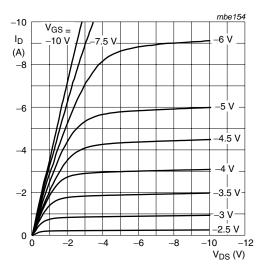




Fig 7. Output characteristics: drain current as a function of drain-source voltage; N-channel; typical values

$$T_j = 25^{\circ}C; V_{GS} = 0V$$

Fig 6. Capacitance as a function of drain-source voltage; P-channel; typical values

 $T_j = 25^{\circ}C$

Fig 8. Output characteristics: drain current as a function of drain-source voltage; P-channel; typical values

Complementary intermediate level FET

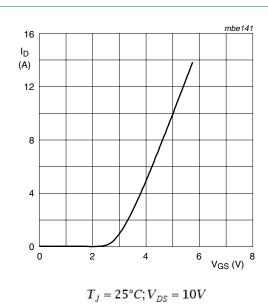


Fig 9. Transfer characteristics: drain current as a function of gate-source voltage; N-channel; typical values

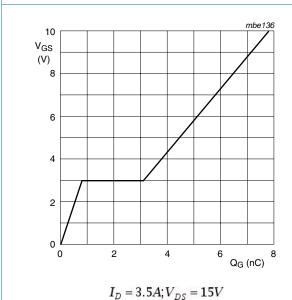
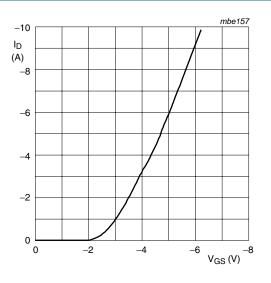
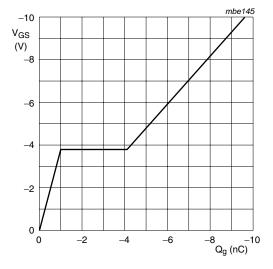
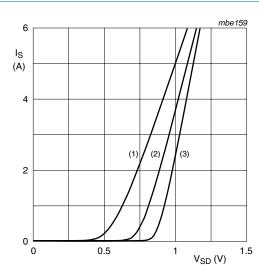




Fig 11. Gate-source voltage as a function of gate charge; N-channel; typical values

 $T_j = 25^{\circ}C; V_{DS} = -10V$


Fig 10. Transfer characteristics: drain current as a function of gate-source voltage; P-channel; typical values

$$I_D = -2.3A; V_{DS} = -15V$$

Fig 12. Gate-source voltage as a function of gate charge; P-channel; typical values

Complementary intermediate level FET

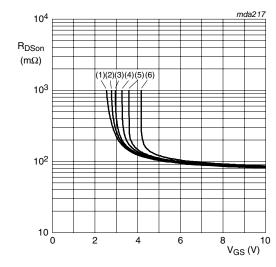
$$V_{GD} = 0$$
.

(1)
$$T_i = 150 \, ^{\circ}C$$
.

(2)
$$T_i = 25 \, ^{\circ}C$$
.

(3)
$$T_i = -55 \, ^{\circ}C$$
.

Fig 13. Source current as a function of source-drain voltage; N-channel; typical values


$$V_{GD} = 0$$
.

(1)
$$T_i = 150 \, ^{\circ}C$$
.

(2)
$$T_i = 25 \, ^{\circ}C$$
.

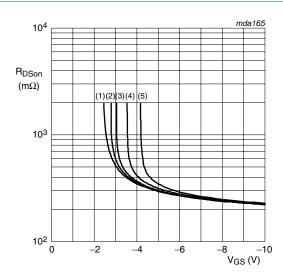
(3)
$$T_i = -55 \, ^{\circ}C$$
.

Fig 14. Source current as a function of source-drain voltage; P-channel; typical values

 $V_{DS} \ge I_D \times R_{DSon}$; $T_i = 25 \, {}^{\circ}C$.

(1)
$$I_D = 0.1 A$$
.

(2)
$$I_D = 0.5 A$$
.


(3)
$$I_D = 1 A$$
.

(4)
$$I_D = 2.2 A$$
.

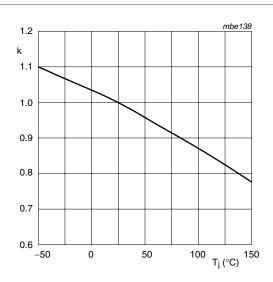
(5)
$$I_D = 3.5 A$$
.

(6)
$$I_D = 7 A$$
.

Fig 15. Drain-source on-state resistance as a function of drain current; N-channel; typical values

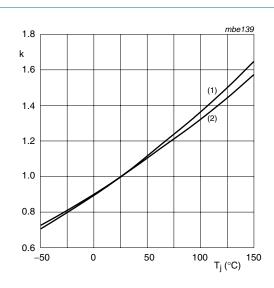
 $-V_{DS} \ge -I_D \times R_{DSon}$; $T_i = 25 \, ^{\circ}C$.

(1)
$$I_D = -0.1 A$$
.


(2)
$$I_D = -0.5 A$$
.

(3)
$$I_D = -1 A$$
.
(4) $I_D = -2.3 A$.

(5) $I_D = -4.5 A$.

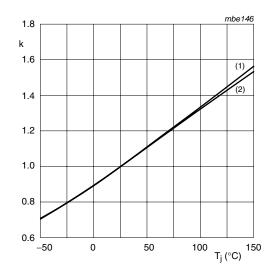

Fig 16. Drain-source on-state resistance as a function of drain current; typical values

Complementary intermediate level FET

$$k = \frac{V_{GSth} \text{ at } T_j}{V_{GSth} \text{ at } 25^{\circ}C}$$

Typical V_{GSth} at $I_D = 1$ mA; $V_{DS} = V_{GS} = V_{GSth}$.

$$k = \frac{R_{DSon} \text{ at } T_j}{R_{DSon} \text{ at } 25 \text{ °C}}$$


Typical R_{DSon} at:

(1)
$$I_D = 2.2 A$$
; $V_{GS} = 10 V$.

(2)
$$I_D = 1 A$$
; $V_{GS} = 4.5 V$.

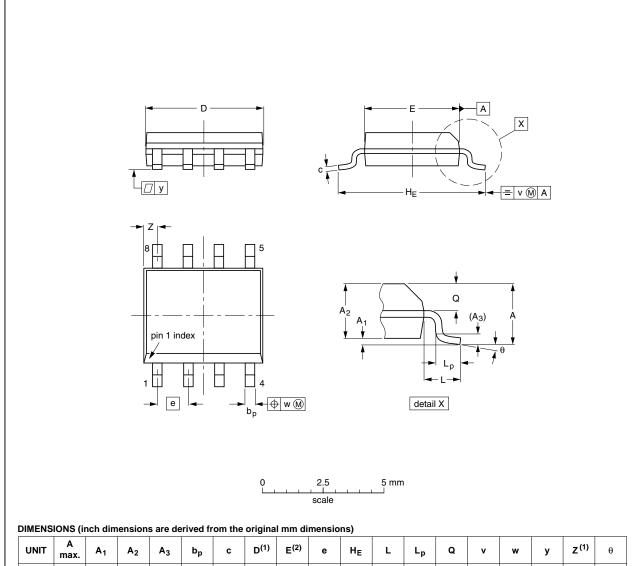
Fig 18. Temperature coefficient of drain-source on-state resistance; N-channel

$$k = \frac{R_{DSon} \operatorname{at} T_{j}}{R_{DSon} \operatorname{at} 25^{\circ} C}$$

Typical R_{DSon} at:

(1) $I_D = -1 A$; $V_{GS} = -10 V$.

(2) $I_D = -0.5 \text{ A}$; $V_{GS} = -4.5 \text{ V}$.


Fig 19. Temperature coefficient of drain-source on-state resistance; P-channel

Complementary intermediate level FET

7. Package outline

SO8: plastic small outline package; 8 leads; body width 3.9 mm

SOT96-1

	UNIT	A max.	A ₁	A ₂	A ₃	bp	С	D ⁽¹⁾	E ⁽²⁾	е	HE	L	Lp	Q	v	w	у	Z ⁽¹⁾	θ
	mm	1.75	0.25 0.10	1.45 1.25	0.25	0.49 0.36	0.25 0.19	5.0 4.8	4.0 3.8	1.27	6.2 5.8	1.05	1.0 0.4	0.7 0.6	0.25	0.25	0.1	0.7 0.3	8°
i	nches	0.069	0.010 0.004	0.057 0.049	0.01		0.0100 0.0075	0.20 0.19	0.16 0.15	0.05	0.244 0.228	0.041	0.039 0.016	0.028 0.024	0.01	0.01	0.004	0.028 0.012	0°

Notes

- 1. Plastic or metal protrusions of 0.15 mm (0.006 inch) maximum per side are not included.
- 2. Plastic or metal protrusions of 0.25 mm (0.01 inch) maximum per side are not included.

JEDEC	JEITA		PROJECTION	ISSUE DATE	
	V =		TROOLOTION	ISSUE DATE	
MS-012				99-12-27 03-02-18	
	MS-012	MS-012	MS-012	MS-012	

Fig 20. Package outline SOT96-1 (SO8)

PHC21025

Complementary intermediate level FET

8. Revision history

Table 7. Revision history

Document ID	Release date	Data sheet status	Change notice	Supersedes
PHC21025 v.4	20110317	Product data sheet	-	PHC21025 v.3
Modifications:	 Various chang 	es to content.		
PHC21025 v.3	20101217	Product data sheet	-	PHC21025 v.2

Complementary intermediate level FET

9. Legal information

9.1 Data sheet status

Document status [1] [2]	Product status [3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

- [1] Please consult the most recently issued document before initiating or completing a design.
- [2] The term 'short data sheet' is explained in section "Definitions".
- [3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nexperia.com.

9.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. Nexperia does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local Nexperia sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between Nexperia and its customer, unless Nexperia and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the Nexperia product is deemed to offer functions and qualities beyond those described in the Product data sheet.

9.3 Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, Nexperia does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

In no event shall Nexperia be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, Nexperia's aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the *Terms and conditions of commercial sale* of Nexperia.

Right to make changes — Nexperia reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — Nexperia products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of a Nexperia product can reasonably be expected to result in personal injury, death or severe property or environmental damage. Nexperia accepts no liability for inclusion and/or use of Nexperia products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Quick reference data — The Quick reference data is an extract of the product data given in the Limiting values and Characteristics sections of this document, and as such is not complete, exhaustive or legally binding.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. Nexperia makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using Nexperia products, and Nexperia accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the Nexperia product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

Nexperia does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using Nexperia products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). Nexperia does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale — Nexperia products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nexperia.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective

PHC21025

Complementary intermediate level FET

agreement shall apply. Nexperia hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of Nexperia products by customer.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from national authorities.

Non-automotive qualified products — Unless this data sheet expressly states that this specific Nexperia product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. Nexperia accepts no liability for inclusion and/or use of non-automotive qualified products in automotive equipment or applications.

In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without Nexperia's warranty of the

product for such automotive applications, use and specifications, and (b) whenever customer uses the product for automotive applications beyond Nexperia's specifications such use shall be solely at customer's own risk, and (c) customer fully indemnifies Nexperia for any liability, damages or failed product claims resulting from customer design and use of the product for automotive applications beyond Nexperia's standard warranty and Nexperia's product specifications.

9.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

10. Contact information

For more information, please visit: http://www.nexperia.com

For sales office addresses, please send an email to: salesaddresses@nexperia.com

Complementary intermediate level FET

11. Contents

1	Product profile
1.1	General description
1.2	Features and benefits1
1.3	Applications1
1.4	Quick reference data1
2	Pinning information
3	Ordering information
4	Limiting values
5	Thermal characteristics5
6	Characteristics6
7	Package outline
8	Revision history13
9	Legal information14
9.1	Data sheet status
9.2	Definitions14
9.3	Disclaimers
9.4	Trademarks15
10	Contact information 15