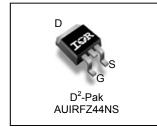


AUTOMOTIVE GRADE

HEXFET® Power MOSFET

Features


- Advanced Planar Technology
- Low On-Resistance
- Dynamic dV/dT and dI/dT capability
- 175°C Operating Temperature
- Fast Switching

Description

- Fully Avalanche Rated
- Repetitive Avalanche Allowed up to Timax
- Lead-Free, RoHS Compliant
- Automotive Qualified *

V _{DSS}	55V
R _{DS(on)} max.	17.5mΩ
I _D	49A

G	D	S
Gate	Drain	Source

G	D	S
Gate	Drain	Source

extremely low on-resistance per silicon area. Additional features of this design are a 175°C junction operating temperature, fast switching speed and improved repetitive avalanche rating . These features combine to make this design an extremely efficient and reliable device for use in Automotive applications and a wide variety of other applications

Specifically designed for Automotive applications, this HEXFET® Power MOSFET utilizes the latest processing techniques to achieve

Page part number	Packago Typo	Standard Pack		Orderable Part Number
Base part number	Package Type	Form	Quantity	Orderable Part Number
ALUDEZAANO	D ² Dole	Tube	50	AUIRFZ44NS
AUIRFZ44NS	D ² -Pak	Tape and Reel Left	800	AUIRFZ44NSTRL

Absolute Maximum Ratings

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only; and functional operation of the device at these or any other condition beyond those indicated in the specifications is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. The thermal resistance and power dissipation ratings are measured under board mounted and still air conditions. Ambient temperature (TA) is 25°C, unless otherwise specified.

Symbol	Parameter	Max.	Units
I _D @ T _C = 25°C	Continuous Drain Current, V _{GS} @ 10V	49	
I _D @ T _C = 100°C	Continuous Drain Current, V _{GS} @ 10V	35	Α
I _{DM}	Pulsed Drain Current ①	160	
P _D @T _A = 25°C	Maximum Power Dissipation	3.8	107
P _D @T _C = 25°C	Maximum Power Dissipation	94	W
	Linear Derating Factor	0.63	W/°C
V_{GS}	Gate-to-Source Voltage	± 20	V
E _{AS} (Thermally Limited)	Single Pulse Avalanche Energy (Thermally Limited) ©	150	
E _{AS (Tested)}	Single Pulse Avalanche Energy (Tested Limited) S	530	— mJ
I _{AR}	Avalanche Current ①	25	А
E _{AR}	Repetitive Avalanche Energy ①	9.4	mJ
dv/dt	Peak Diode Recovery ③	5.0	V/ns
$T_{\rm J}$	Operating Junction and	-55 to + 175	
T _{STG}	Storage Temperature Range		°C
	Soldering Temperature, for 10 seconds (1.6mm from case)	300	

Thermal Resistance

Symbol	Parameter	Тур.	Max.	Units
$R_{\theta JC}$	Junction-to-Case		1.5	°CAM
$R_{\theta JA}$	Junction-to-Ambient (PCB Mount), D ² Pak		40	°C/W

HEXFET® is a registered trademark of Infineon.

2017-10-25

^{*}Qualification standards can be found at www.infineon.com

Static @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
$V_{(BR)DSS}$	Drain-to-Source Breakdown Voltage	55			V	$V_{GS} = 0V, I_D = 250 \mu A$
$\Delta V_{(BR)DSS}/\Delta T_J$	Breakdown Voltage Temp. Coefficient		0.058		V/°C	Reference to 25°C, I _D = 1mA
$R_{DS(on)}$	Static Drain-to-Source On-Resistance			17.5	mΩ	V _{GS} = 10V, I _D = 25A ④
$V_{GS(th)}$	Gate Threshold Voltage	2.0		4.0	V	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$
gfs	Forward Trans conductance	19			S	$V_{DS} = 25V, I_{D} = 25A$
	Projecto Course Lealings Courset			25		$V_{DS} = 55V, V_{GS} = 0V$
I _{DSS}	Drain-to-Source Leakage Current			250	μA	$V_{DS} = 44V, V_{GS} = 0V, T_{J} = 150^{\circ}C$
I _{GSS}	Gate-to-Source Forward Leakage			100	- A	V _{GS} = 20V
	Gate-to-Source Reverse Leakage			-100	nA	V _{GS} = -20V

Dynamic Electrical Characteristics @ T_J = 25°C (unless otherwise specified)

-	<u> </u>	-	-		
Q_g	Total Gate Charge	 	63		I _D = 25A
Q_{gs}	Gate-to-Source Charge	 	14	nC	$V_{DS} = 44V$
Q_{gd}	Gate-to-Drain Charge	 	23		V _{GS} = 10V, See Fig. 6 and 13 ④
$t_{d(on)}$	Turn-On Delay Time	 12			$V_{DD} = 28V$
t _r	Rise Time	 60		no	I _D = 25A
$t_{d(off)}$	Turn-Off Delay Time	 44		ns	$R_G = 12\Omega$
t _f	Fall Time	 45			V _{GS} = 10V, See Fig. 10 ④
L _D	Internal Drain Inductance	 4.5			Between lead, 6mm (0.25in.)
Ls	Internal Source Inductance	 7.5			from package and center of die contact
C_{iss}	Input Capacitance	 1470			$V_{GS} = 0V$
C _{oss}	Output Capacitance	 360		pF	V _{DS} = 25V
C _{rss}	Reverse Transfer Capacitance	 88			f = 1.0MHz, See Fig. 5

Diode Characteristics

	Parameter	Min.	Тур.	Max.	Units	Conditions	
I _S	Continuous Source Current (Body Diode)			49	١.	MOSFET symbol showing the	
I _{SM}	Pulsed Source Current (Body Diode) ①			160		integral reverse p-n junction diode.	
V_{SD}	Diode Forward Voltage			1.3	٧	$T_J = 25^{\circ}C, I_S = 25A, V_{GS} = 0V $ ④	
t _{rr}	Reverse Recovery Time		63	95	ns	$T_J = 25^{\circ}C$, $I_F = 25A$	
Q_{rr}	Reverse Recovery Charge		170	260	nC	di/dt = 100A/µs ④	
t _{on}	Forward Turn-On Time	Intrins	Intrinsic turn-on time is negligible (turn-on is dominated by L _S +L _D)				

Notes:

- $\, \mathbb{O} \,$ Repetitive rating; pulse width limited by max. junction temperature. (See fig.11)
- \odot Limited by $T_{Jmax,}$ starting T_J = 25°C, L = 0.48mH, R_G = 25 Ω , I_{AS} = 25A, V_{GS} =10V. (See fig.12)
- $\exists \quad I_{SD} \leq 25A, \ di/dt \leq 230A/\mu s, \ V_{DD} \leq V_{(BR)DSS}, \ T_J \leq 175^{\circ}C.$
- 4 Pulse width $\leq 400 \mu s$; duty cycle $\leq 2\%$.
- ⑤ This is a typical value at device destruction and represents operation outside rated limits.
- © This is a calculated value limited to $T_J = 175^{\circ}C$.

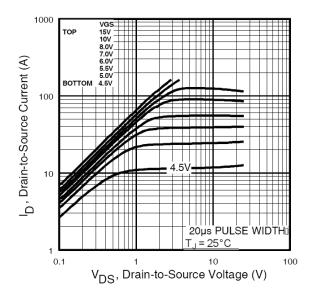


Fig. 1 Typical Output Characteristics

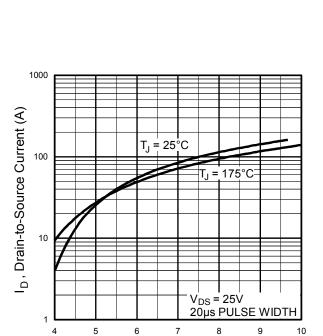


Fig. 3 Typical Transfer Characteristics

V_{GS} , Gate-to-Source Voltage (V)

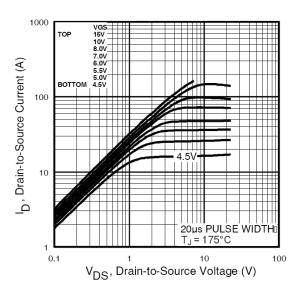


Fig. 2 Typical Output Characteristics

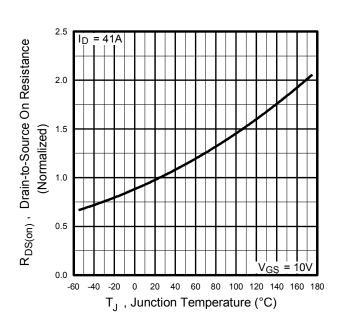


Fig. 4 Normalized On-Resistance vs. Temperature

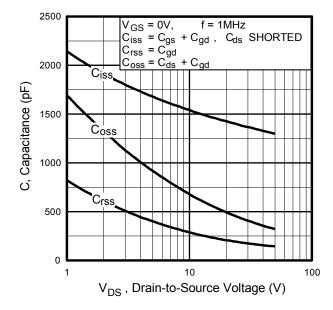


Fig 5. Typical Capacitance vs. Drain-to-Source Voltage

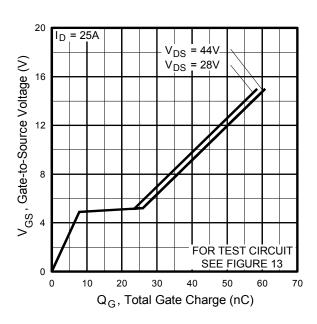
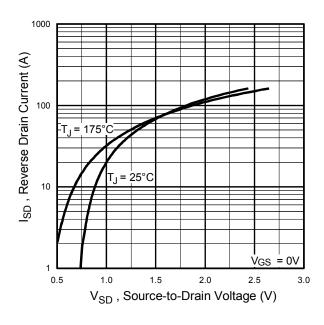



Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage

Fig. 7 Typical Source-to-Drain Diode Forward Voltage

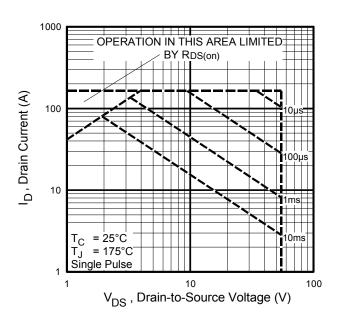
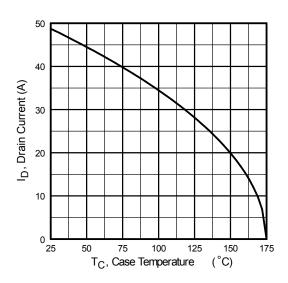



Fig 8. Maximum Safe Operating Area

2017-10-25

Fig 9. Maximum Drain Current vs. Case Temperature

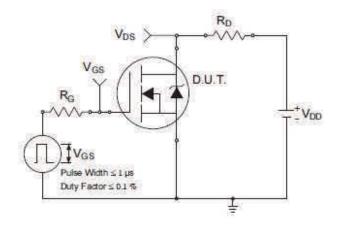


Fig 10a. Switching Time Test Circuit

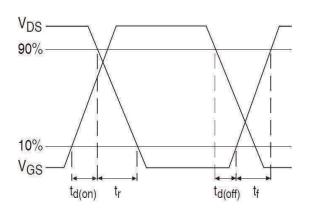


Fig 10b. Switching Time Waveforms

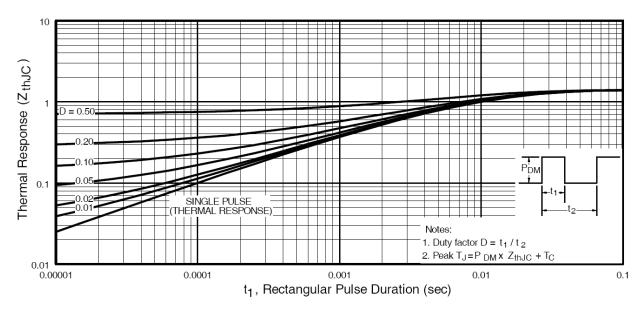


Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case

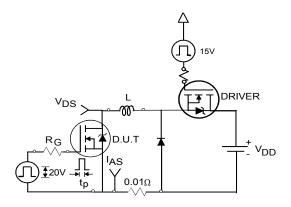


Fig 12a. Unclamped Inductive Test Circuit

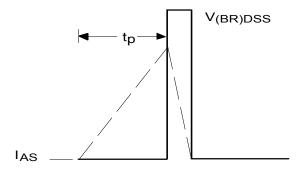


Fig 12b. Unclamped Inductive Waveforms

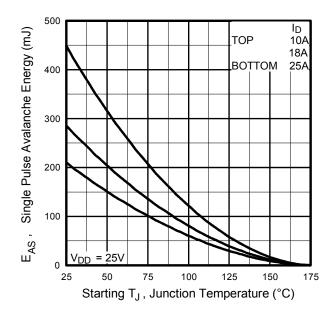


Fig 12c. Maximum Avalanche Energy vs. Drain Current

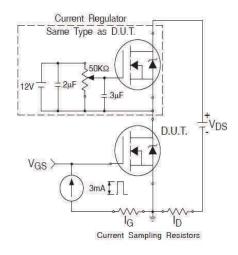


Fig 13a. Gate Charge Test Circuit

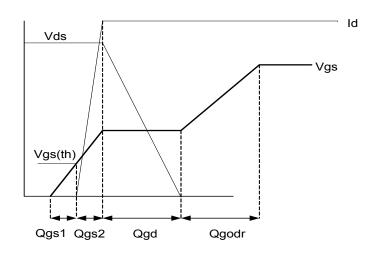


Fig 13b. Gate Charge Waveform

Peak Diode Recovery dv/dt Test Circuit

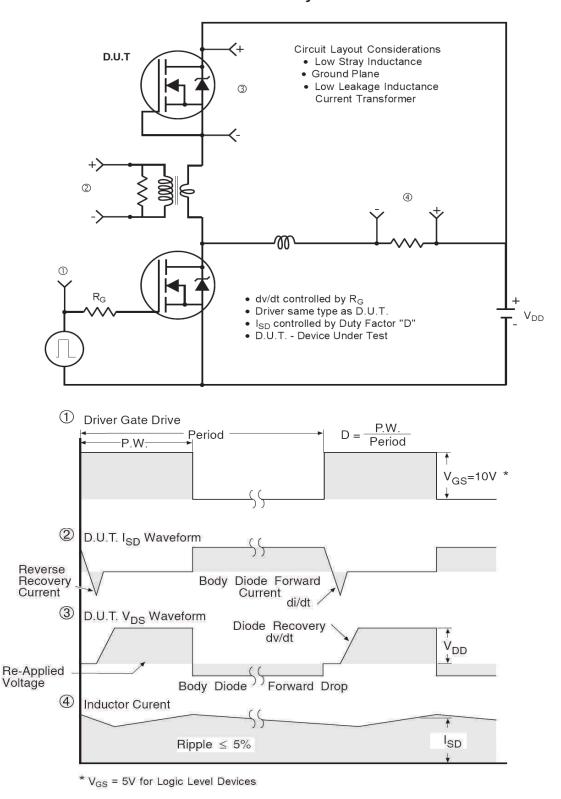
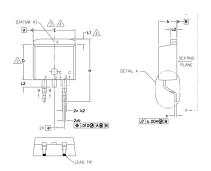
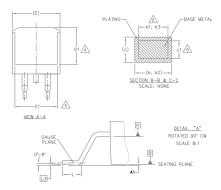




Fig 14. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs

D²-Pak (TO-263AB) Package Outline (Dimensions are shown in millimeters (inches))

v.	\circ	т	r	0	

- 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994
- 2. DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES].

AT THE OUTMOST EXTREMES OF THE PLASTIC BODY AT DATUM H.

4. THERMAL PAD CONTOUR OPTIONAL WITHIN DIMENSION E, L1, D1 & E1.

5. DIMENSION 61, 63 AND c1 APPLY TO BASE METAL ONLY.

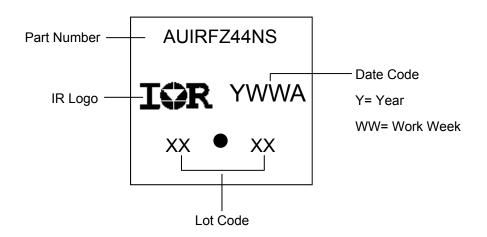
- 6. DATUM A & B TO BE DETERMINED AT DATUM PLANE H.
- 7. CONTROLLING DIMENSION: INCH.
- 8. OUTLINE CONFORMS TO JEDEC OUTLINE TO-263AB.

S Y M		N			
В	MILLIM	ETERS	INC	HES	O T E S
0 L	MIN.	MAX.	MIN.	MAX.	S
А	4.06	4.83	.160	.190	
A1	0.00	0.254	.000	.010	
Ь	0.51	0.99	.020	.039	
ь1	0.51	0.89	.020	.035	5
b2	1.14	1.78	.045	.070	
ь3	1.14	1.73	.045	.068	5
С	0.38	0.74	.015	.029	
с1	0.38	0.58	.015	.023	5
c2	1.14	1.65	.045	.065	
D	8.38	9.65	.330	.380	3
D1	6.86	_	.270	_	4
E	9.65	10.67	.380	.420	3,4
E1	6.22	_	.245	_	4
е	2.54	BSC	.100	BSC	
Н	14.61	15.88	.575	.625	
L	1.78	2.79	.070	.110	
L1	_	1.68	_	.066	4
L2	_	1.78	_	.070	
L3	0.25	BSC	.010	BSC	

LEAD ASSIGNMENTS

DIODES

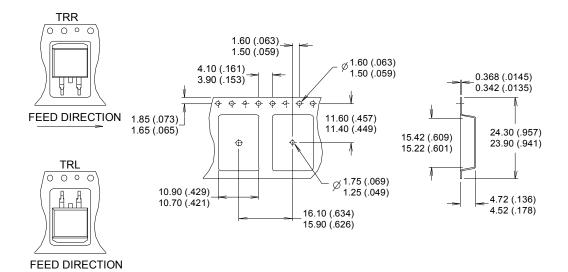
1.— ANODE (TWO DIE) / OPEN (ONE DIE) 2, 4.— CATHODE 3.— ANODE

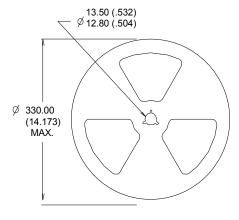

HEXFET

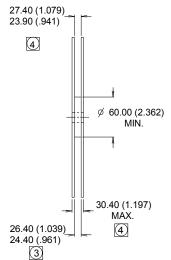
IGBTs, CoPACK

1.- GATE 2, 4.- DRAIN 3.- SOURCE

1.- GATE 2, 4.- COLLECTOR 3.- EMITTER


D²-Pak (TO-263AB) Part Marking Information




2017-10-25

D²Pak (TO-263AB) Tape & Reel Information (Dimensions are shown in millimeters (inches))

NOTES:

- 1. COMFORMS TO EIA-418.
- 2. CONTROLLING DIMENSION: MILLIMETER.
- 🗷 DIMENSION MEASURED @ HUB.
- INCLUDES FLANGE DISTORTION @ OUTER EDGE.

Qualification Information

			Automotive					
		(per AEC-Q101)						
Qualificat	tion Level	Comments: This part number(s) passed Automotive qualification. Infineor Industrial and Consumer qualification level is granted by extension of the high Automotive level.						
Moisture	Sensitivity Level	D²-Pak MSL1						
	Machine Model		Class M3 (+/- 400V) [†] AEC-Q101-002					
ESD	Human Body Model		Class H1B (+/- 1000V) [†] AEC-Q101-001					
	Charged Device Model	Class C5 (+/- 2000V) [†] AEC-Q101-005						
RoHS Co	RoHS Compliant Yes							

[†] Highest passing voltage.

Revision History

Date	Comments
10/27/2015	 Updated datasheet with corporate template Corrected ordering table on page 1.
10/25/2017	 Removed TO-262 Pak "AUIRFSL3207Z" this devices TO-262 Pak was never released and this part was erroneously added to the datasheet. –All pages Corrected typo error on part marking on page 8.

Published by Infineon Technologies AG 81726 München, Germany © Infineon Technologies AG 2015 All Rights Reserved.

IMPORTANT NOTICE

The information given in this document shall in <u>no event</u> be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie"). With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

For further information on the product, technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies office (www.infineon.com).

WARNINGS

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may <u>not</u> be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.