

1-Port USB3.1 Gen-2 ReDriver

Features

- → 5 & 10Gbps serial link with linear equalizer.
- → USB3.1 and USB3.0 Compatible
- → Full Compliancy to USB3.1 Super Speed Standard
- → Two 10Gbps differential signal pairs
- → Pin Adjustable Receiver Equalization
- → Pin Adjustable output linear swing
- → Pin Adjustable Flat Gain
- → 100Ω Differential CML I/O's
- → Automatic Receiver Detect
- → Auto "Slumber" mode for adaptive power management
- → Single Supply Voltage: 3.3V
- → Industrial Temperature Range: -40°C to 85°C
- → Totally Lead-Free & Fully RoHS Compliant (Notes 1 & 2)
- → Halogen and Antimony Free. "Green" Device (Note 3)
- → For automotive applications requiring specific change control (i.e. parts qualified to AEC-Q100/101/200, PPAP capable, and manufactured in IATF 16949 certified facilities), please contact us or your local Diodes representative.

https://www.diodes.com/quality/product-definitions/

Input Level detect to control loaid

Flat gain FGA

Flat gain FGB

Input Level detect to control logi

SW/FG/EQ

Control Logic

wer Managemei

Output buffer SWA

Foualis

EQB

→ Packaging:

Channel A

Channel B

◆ 30-pin, TQFN 2.5x4.5 mm (ZL30)

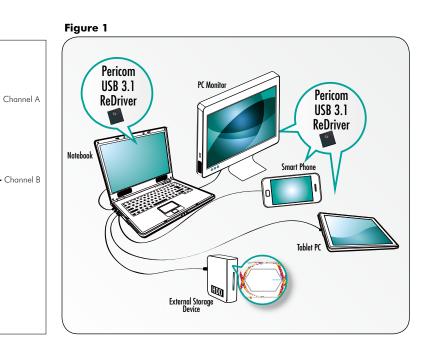
Equalize EQA

Output buffe

SWA/B

EQA/B

Block Diagram


Description

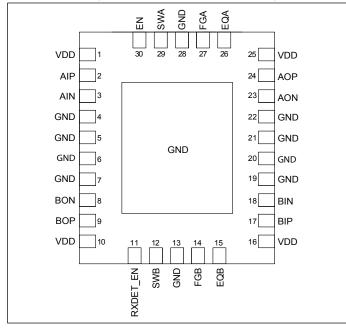
The PI3EQX1002B1 is a low power, high performance 10.0 Gbps 1-Port USB 3.1 linear ReDriver[™] designed specifically for the USB 3.1 protocol.

The device provides programmable equalization, linear swing and flat gain to optimize performance over a variety of physical mediums by reducing Inter-Symbol Interference. PI3EQX1002B1 supports two 100Ω Differential CML data I/O's between the Protocol ASIC to a switch fabric, over cable, or to extend the signals across other distant data pathways on the user's platform.

The integrated equalization circuitry provides flexibility with signal integrity of the signal before the ReDriver. Each channel operates fully independently. The channels' input signal level determines whether the output is active.

The PI3EQX1002B1 also includes an automatic receiver detect function. The receiver detection loop will be active again if the corresponding channel's signal detector is idle for longer than 7.3mS. The channel will then move to Unplug Mode if load not detected, or it will return to Low Power Mode (Slumber Mode) due to inactivity.

Notes:


- 1. No purposely added lead. Fully EU Directive 2002/95/EC (RoHS), 2011/65/EU (RoHS 2) & 2015/863/EU (RoHS 3) compliant.
- 2. See https://www.diodes.com/quality/lead-free/ for more information about Diodes Incorporated's definitions of Halogen- and Antimony-free, "Green" and Lead-free. 3. Halogen- and Antimony-free "Green" products are defined as those which contain <900ppm bromine, <900ppm chlorine (<1500ppm total Br + Cl) and <1000ppm antimony compounds.

ReDriver is a trademark of Diodes Incorporated. PI3EQX1002B1 Document Number DS40592 Rev 3-2

Pin Diagram (30-pin, TQFN 2.5x4.5mm) ZL30

Pin Description

Pin #	Pin Name	Туре	Description			
1, 10, 16, 25	VDD	Power	3.3V power supply, +/-0.3V			
27,	FGA	Innut	The DC flat gain selection. 4-level input pins. With internal 100K Ω pull-up resistor			
14	FGB	Input	and 200k Ω pull-down resistor.			
29,	SWA	Innut	The Output Swing selection. 4-level input pins. With internal 100K Ω pull-up resis-			
12	SWB	Input	tor and 200k Ω pull-down resistor.			
26,	EQA	Innut	The EQ selection. 4-level input pins. With internal 100K Ω pull-up resistor and			
15	EQB	Input	200k Ω pull-down resistor.			
2, 3	AIP, AIN	Input	CML input terminals. With selectable input termination between 50 Ω to VDD,			
17, 18	BIP, BIN	Input	67kΩ to VbiasRx or 67kΩ to GND.			
24, 23	AOP, AON	Outmut	CML output terminals. With selectable output termination between 50 Ω to VDD,			
9, 8	BOP, BON	Output	6kΩ to VDD, 6kΩ to VbiasTx or Hi-Z			
			Receiver detection Enable pin. With internal 300k Ω pull-up resistor.			
11	RXDET_EN	Input	"High" – Receiver detection is enabled.			
			"Low" – Receiver detection is disabled.			
			Channel Enable. With internal 300k Ω pull-up resistor.			
30	EN	Input	"High" – Channel is in normal operation.			
			"Low" – Channel is in power down mode.			
4, 5, 6, 7, 13, 19, 20, 21, 22, 28, Center Pad	GND	GND	Supply Ground			

Power Management

Notebooks, netbooks, and other power sensitive consumer devices require judicious use of power in order to maximize battery life. In order to minimize the power consumption of our devices, Diodes has added an additional adaptive power management feature. When a signal detector is idle for longer than 1.3ms, the corresponding channel will move to low power mode ONLY. (It means both channels will move to low power mode individually).

In the low power mode, the signal detector will still be monitoring the input channel. If a channel is in low power mode and the input signal is detected, the corresponding channel will wake-up immediately. If a channel is in low power mode and the signal detector is idle longer than 6ms, the receiver detection loop will be active again. If load is not detected, then the Channel will move to Device Unplug Mode and monitor the load continuously. If load is detected, it will return to Low Power Mode and receiver detection will be active again per 6ms.

Operating Modes

Mode	R _{IN}	R _{OUT}
PD	$67 \mathrm{k}\Omega$ to GND	HIZ
Unplug Mode	$67 \mathrm{k}\Omega$ to VbiasRx	6kΩ to VbiasTx
Deep Slumber Mode	50Ω to Vdd	6kΩ to VbiasTx
Slumber Mode	50Ω to Vdd	$6k\Omega$ to Vdd
Active Mode	50Ω to Vdd	50Ω to Vdd

A product Line of Diodes Incorporated

PI3EQX1002B1

Equalization Setting:

EQA/B are the selection pins for the equalization selection

	Equalizer setting (dB)			
EQA/B	@2.5GHz	@5GHz		
0 (Tie 1K Ω to GND)	6.7	12.4		
R (Tie 68KΩ to GND)	3.5	8.0		
F (Leave Open)	5.3	10.6		
1 (Tie 1K Ω to VDD)	8.4	14.6		

Flat Gain Setting:

FGA/B are the selection pins for the DC gain

	Flat Gain Settings
FGA/B	dB
0 (Tie 1K Ω to GND)	-1.6
R (Tie $68K\Omega$ to GND)	-0.5
F (Leave Open)	1.0
1 (Tie 1K Ω to VDD)	2.7

-1dB compression point linear Swing Setting:

SWA/B are the selection pins for the output linear swing setting

	Output Linear Swing Settings
SWA/B	mVppd
0 (Tie 1K Ω to GND)	800
R (Tie $68K\Omega$ to GND)	1200
F (Leave Open)	1000 (Default)
1 (Tie 1K Ω to VDD)	1100

Channel Enable Setting:

EN is the channel enable pin

	Channel Enable Setting
EN	Setting
0	Disabled
1	Enabled (Default)

Receiver Detection Setting:

RXDET_EN is the receiver detection pin

	Receiver Detection Setting
RXDET_EN	Setting
0	Disabled
1	Enabled (Default)

Maximum Ratings

(Above which useful life may be impaired. For user guidelines, not tested.) Note:

, , , , , , , , , , , , , , , , , , , ,	<u> </u>
Storage Temperature	65°C to +150°C
Supply Voltage to Ground Potential	-0.5V to +4.6V
DC SIG Voltage	$-0.5V$ to $V_{DD} + 0.5V$
Output Current	–25mA to +25mA
ESD, Human Body Model	-2kV to +2kV
Power Dissipation Continuous	

Stresses greater than those listed under MAXIMUM RAT-INGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

Control Pin Specifications (VDD = 3.3 ± 0.3 V TA = -40° C to 85° C)

Symbol	Parameter	Min.	Тур.	Max.	Units		
2-level control pins							
V _{IH}	DC input logic High	VDD*0.65			V		
V _{IL}	DC input logic Low			VDD*0.35	V		
I _{IH}	Input High current			25	uA		
I _{IL}	Input Low current	-25			uA		
4-level control	ol pins						
V _{IH}	DC input logic "High"	0.92*VDD	VDD		V		
V _{IF}	DC input logic "Float"	0.59*VDD	0.67*VDD	0.75*VDD	V		
V _{IR}	DC input logic "With Rext to GND"	0.25*VDD	0.33*VDD	0.41*VDD	V		
V _{IL}	DC input logic "Low"		GND	0.08*VDD	V		
I _{IH}	Input High current			50	uA		
I _{IL}	Input Low current	-50			uA		
Rext	External resistor connects to GND (±5%)	64.6	68	71.4	kΩ		

AC/DC Electrical Characteristics (VDD = 3.3 ± 0.3 V TA = -40° C to 85° C)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Units	
Power and Lat	Power and Latency						
V _{dd-3.3}	Supply voltage		3.0	3.3	3.6	V	
I _{active}	Active mode current consumption	EN=1 (VDD=3.3V, 10Gbps, compli- ance test pattern, SWx=F, RXDET_ EN=High)		130	167	mA	
I _{slumber}	Slumber mode current consumption	EN=1 (VDD=3.3V, no input signal lon- ger than T _{slumber} , RXDET_EN=High)		16	19		
I _{Deep} Slumber	Deep slumber mode current con- sumption	EN=1 (VDD=3.3V, no input signal longer than T _{DeepSlumber} , RXDET_ EN=High)		0.4	0.6	mA	
I _{unplug}	Unplug mode current consumption	EN=1, no output load is detected, RX- DET_EN=High		0.3	0.45		
I _{pd}	Power down mode current con- sumption	EN=0		10	50	μΑ	
t _{pd}	Latency	From input to output			2	ns	

AC/DC Electrical Characteristics Cont.

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Units
CML Receiver In	put (100 Ω differential)				.	1
Receiver Electrica	l Specification					
C _{rxparasitic}	The parasitic capacitor for RX				1.0	pF
R _{RX-DIFF-DC}	DC Differential Input Impedance		72		120	
R _{RX-SINGLE_DC}	DC single ended input impedance	DC impedance limits are need to guar- antee RxDet. Measured with respect to GND over a voltage of 500mV max	18		30	Ω
Z _{RX-HIZ} -DC-PD	DC input CM input impedance for V>0 during reset or power down	(Vcm=0 to 500mV)	25			kΩ
Cac_coupling	AC coupling capacitance		75		265	nF
V _{RX-CM-AC-P}	Common mode peak voltage	AC up to 5GHz			150	mVpeak
V _{RX-CM-DC-Ac-} tive-Idle-Delta-P	Common mode peak voltage Avguo(V _{TX-D+} + V _{TX-D-})/2-Avgu1(V _{TX-D+} + V _{TX-D-}])/2	Between U0 and U1. AC up to 5GHz			200	mVpeak
Transmitter Elect	rical Specification					
V _{TX-DIFF-PP}	Output differential p-p voltage swing	Differential Swing V _{TX-D+} -V _{TX-D-}			1.2	Vppd
R _{TX-DIFF-DC}	DC Differential TX Impedance		72		120	Ω
V _{TX-RCV-DET}	The amount of voltage change al- lowed during RxDet				600	mV
Cac_coupling	AC coupling capacitance		75		265	nF
T _{TX-EYE} (10Gbps)	Transmitter eye, Include all jitter	At the silicon pad. 10Gbps	0.646			UI
T _{TX-EYE} (5Gbps)	Transmitter eye, Include all jitter	At the silicon pad. 5Gbps	0.625			UI
T _{TX-DJ-} DD(10Gbps)	Transmitter deterministic jitter	At the silicon pad. 10Gbps			0.17	UI
T _{TX-DJ-DD(5Gbps)}	Transmitter deterministic jitter	At the silicon pad. 5Gbps			0.205	UI
C _{txparasitic}	The parasitic capacitor for TX				1.1	pF
R _{TX-DC-CM}	Common mode DC output Imped- ance		18		30	Ω
V _{TX-DC-CM}	The instantaneous allowed DC com- mon mode voltage at the connector side of the AC coupling capacitors	V _{TX-D+} +V _{TX-D-} /2	0		2.2	v
V _{TX-C}	Common-Mode Voltage	V _{TX-D+} +V _{TX-D-} /2	VDD- 2V		VDD	V
V _{TX-CM-AC-PP-} Active	Active mode TX AC common mode voltage	$V_{TX\text{-}D\text{+}}\text{+}V_{TX\text{-}D\text{-}}$ for both time and amplitude			100	mVpp
VTX-CM-DC- Active_Idle-Delta	Common mode delta voltage Avg _{uo} (V _{TEX-D+} + V _{TX-D-}])/2-Avg _{u1} (V _{TX-} _{D+} + V _{TX-D-}])/2	Between U0 to U1			200	mV- peak

AC/DC Electrical Characteristics Cont.

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Units
V _{TX-Idle-Diff-AC-} pp	Idle mode AC common mode delta voltage V _{TX-D+} -V _{TX-D-}	Between Tx+ and Tx- in idle mode. Use the HPF to remove DC components. =1/LPF. No AC and DC signals are ap- plied to Rx terminals .			10	mVppd
V _{TX-Idle-Diff-DC}	Idle mode DC common mode delta voltage V _{TX-D+} -V _{TX-D-}	Between Tx+ and Tx- in idle mode. Use the LPF to remove DC components. =1/HPF. No AC and DC signals are applied to Rx terminals.			10	mV
Channel Perform	ance					
Gp	Peaking gain (Compensation at 5GHz, relative to 100MHz, 100mV _p .	EQx=0 EQx=R EQx=F		12.4 8 10.6		dB
	_p sine wave input)	EQx=1		14.6		
		Variation around typical	-3		+3	dB
G _F	Flat gain (100MHz, EQx=F, SWx=F)	FQx=0 FQx=R FQx=F		-1.6 -0.5 1		dB
		FQx=1		2.7		
		Variation around typical	-3		+3	dB
V _{SW_100M}	-1dB compression point output swing (at 100MHz)	SWx=0 SWx=R SWx=F SWx=1		800 1200 1000 1100		mVppd
V _{SW_5G}	-1dB compression point output swing (at 5GHz)	SWx=0 SWx=R SWx=F SWx=1		750 950 850 900		mVppd
DDNEXT	Differential near-end crosstalk ⁽¹⁾	100MHz to 5GHz, RXDET_EN=1, Figure 2		-40		dB
\mathbf{V}	Input-referred noise	100MHz to 5GHz, FGx=1, EQx=R, SW=F, Figure 3		0.6		mVnor
V _{noise-input}	input-referred hoise	100MHz to 5GHz, FGx=1, EQx=1, SW=F, Figure 3		0.5		mV _{RMS}
V	Output-referred noise ⁽²⁾	100MHz to 5GHz, FGx=1, EQx=R, SW=F, Figure 3		0.8		
Vnoise-output		100MHz to 5GHz, FGx=1, EQx=1, SW=F, Figure 3		1		mV _{RMS}

AC/DC Electrical Characteristics Cont.

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Units
Signal and Frequ	ency Detectors				·	
V _{th_upm}	Unplug mode detector threshold	Threshold of LFPS when the input impedance of the redriver is 67kohm to VbiasRx only. Used in the unplug mode.	200		800	mVppd
V _{th_dsm}	Deep slumber mode detector threshold	LFPS signal threshold in Deep slumber mode	100		600	mVppd
V _{th_am}	Active mode detector threshold	Signal threshold in Active and slumber mode	45		175	mVppd
F _{th}	LFPS frequency detector	Detect the frequency of the input CLK pattern	100		400	MHz

Note:

1. Measured using a vector-network analyzer (VNA) with -15dbm power level applied to the adjacent input. The VNA detects the signal at the output of the victim channel. All other inputs and outputs are terminated with $50 \Omega.$

2. Guaranteed by design and characterization.

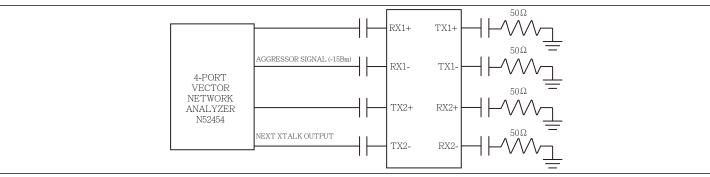


Figure 2. Channel-isolation test configuration

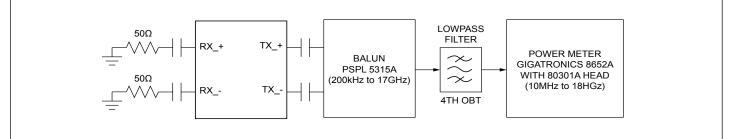


Figure 3. Noise test configuration

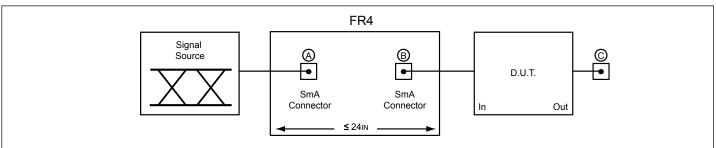
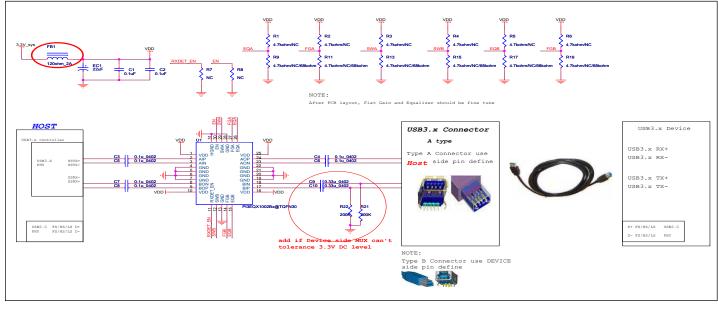



Figure 4. Test Condition Referenced in the Electrical Characteristic Table

Application Schematics

PCB Layout Guideline

To provide a clean power supply for Diodes high-speed device, few recommendations are listed below:

- Power (VDD) and ground (GND) pins should be connected to corresponding power planes of the printed circuit board directly without passing through any resistor.
- The thickness of the PCB dielectric layer should be minimized such that the VDD and GND planes create low inductance paths.
- One low-ESR 0.1uF decoupling capacitor should be mounted at each VDD pin or should supply bypassing for at most two VDD pins. Capacitors of smaller body size, i.e. 0402 package, is more preferable as the insertion loss is lower. The capacitor should be placed next to the VDD pin.
- One capacitor with capacitance in the range of 4.7uF to 10uF should be incorporated in the power supply decoupling design as • well. It can be either tantalum or an ultra-low ESR ceramic.
- A ferrite bead for isolating the power supply for Diodes high-speed device from the power supplies for other parts on the printed • circuit board should be implemented.
- More than 3 thermal ground vias must be required on the thermal pad. 25-mil or less pad size and 14-mil or less finished hole are recommended.

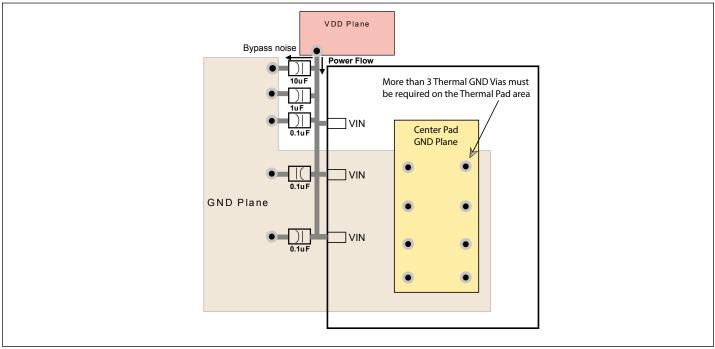
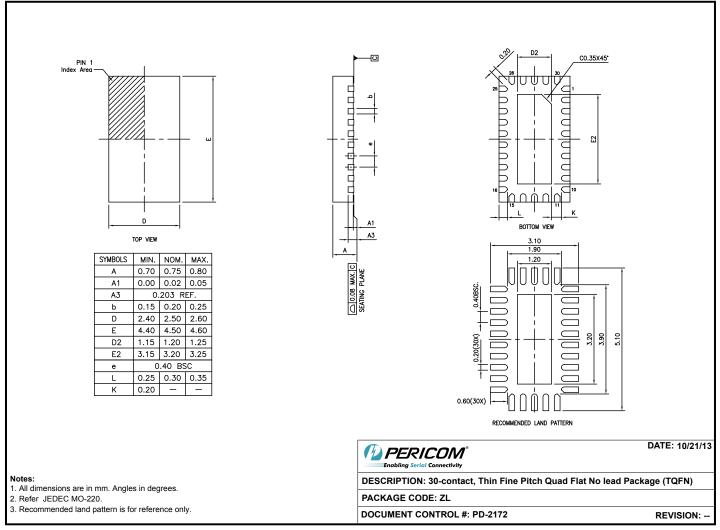


Figure 5. General Power and Ground Guideline

Part Marking

ZL Package



YY: Year WW: Workweek 1st X: Assembly Code 2nd X: Fab Code

Packaging Mechanical: 30-TQFN (ZL)

14-0006

For latest package info.

please check: http://www.diodes.com/design/support/packaging/pericom-packaging/packaging-mechanicals-and-thermal-characteristics/

Ordering Information

Ordering Number	Package Code	Package Description	
PI3EQX1002B1ZLEX ZL		30-contact, Thin Fine Pitch Quad Flat No lead Package (TQFN)	

Notes:

1. No purposely added lead. Fully EU Directive 2002/95/EC (RoHS), 2011/65/EU (RoHS 2) & 2015/863/EU (RoHS 3) compliant.

2. See https://www.diodes.com/quality/lead-free/ for more information about Diodes Incorporated's definitions of Halogen- and Antimony-free, "Green" and Lead-free. 3. Halogen- and Antimony-free "Green" products are defined as those which contain <900ppm bromine, <900ppm chlorine (<1500ppm total Br + Cl) and <1000ppm

antimony compounds.

4. E = Pb-free and Green

5. X suffix = Tape/Reel

IMPORTANT NOTICE

DIODES INCORPORATED MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARDS TO THIS DOCUMENT, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION).

Diodes Incorporated and its subsidiaries reserve the right to make modifications, enhancements, improvements, corrections or other changes without further notice to this document and any product described herein. Diodes Incorporated does not assume any liability arising out of the application or use of this document or any product described herein; neither does Diodes Incorporated convey any license under its patent or trademark rights, nor the rights of others. Any Customer or user of this document or products described herein in such applications shall assume all risks of such use and will agree to hold Diodes Incorporated and all the companies whose products are represented on Diodes Incorporated website, harmless against all damages.

Diodes Incorporated does not warrant or accept any liability whatsoever in respect of any products purchased through unauthorized sales channel.

Should Customers purchase or use Diodes Incorporated products for any unintended or unauthorized application, Customers shall indemnify and hold Diodes Incorporated and its representatives harmless against all claims, damages, expenses, and attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized application.

Products described herein may be covered by one or more United States, international or foreign patents pending. Product names and markings noted herein may also be covered by one or more United States, international or foreign trademarks.

This document is written in English but may be translated into multiple languages for reference. Only the English version of this document is the final and determinative format released by Diodes Incorporated.

LIFE SUPPORT

Diodes Incorporated products are specifically not authorized for use as critical components in life support devices or systems without the express written approval of the Chief Executive Officer of Diodes Incorporated. As used herein:

A. Life support devices or systems are devices or systems which:

1. are intended to implant into the body, or

2. support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in significant injury to the user.

B. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the

failure of the life support device or to affect its safety or effectiveness.

Customers represent that they have all necessary expertise in the safety and regulatory ramifications of their life support devices or systems, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of Diodes Incorporated products in such safety-critical, life support devices or systems, notwithstanding any devices- or systems-related information or support that may be provided by Diodes Incorporated. Further, Customers must fully indemnify Diodes Incorporated and its representatives against any damages arising out of the use of Diodes Incorporated products in such safety-critical, life support devices or systems.

Copyright © 2016, Diodes Incorporated

www.diodes.com