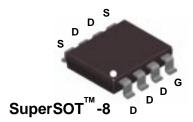
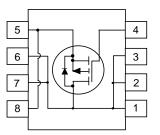
March 1999

FAIRCHILD SEMICONDUCTOR

FDR838P P-Channel 2.5V Specified PowerTrench[™] MOSFET

General Description


These P-Channel 2.5V specified MOSFETs are produced using Fairchild Semiconductor's advanced PowerTrench process that has been especially tailored to minimize the on-state resistance and yet maintain low gate charge for superior switching performance.


Applications

- Load switch
- Motor driving
- Power Management

Features

- Low gate charge (30nC typical).
- Fast switching speed.
- High performance trench technology for extremely low R_{DS(ON)}.
- Small footprint (38% smaller than a standard SO-8); low profile package (1 mm thick); power handling capability similar to SO-8.

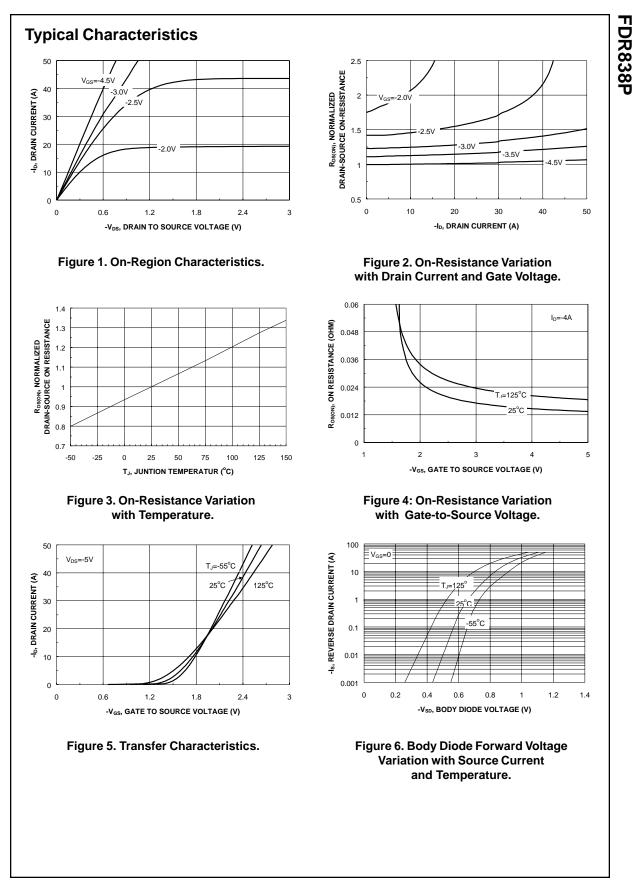
Absolute Maximum Ratings T_A = 25°C unless otherwise noted

Symbol	Parameter		Ratings	Units
V _{DSS}	Drain-Source Voltage		-20	V
/ _{GSS}	Gate-Source Voltage		<u>+</u> 8	V
D	Drain Current - Continuous	(Note 1a)	-8	А
	- Pulsed		-50	
P _D	Power Dissipation for Single Operation	(Note 1a)	1.8	W
		(Note 1b)	1.0	
		(Note 1c)	0.9	
Г _J , Т _{stg}	Operating and Storage Junction Temperature Range		-55 to +150	∘C

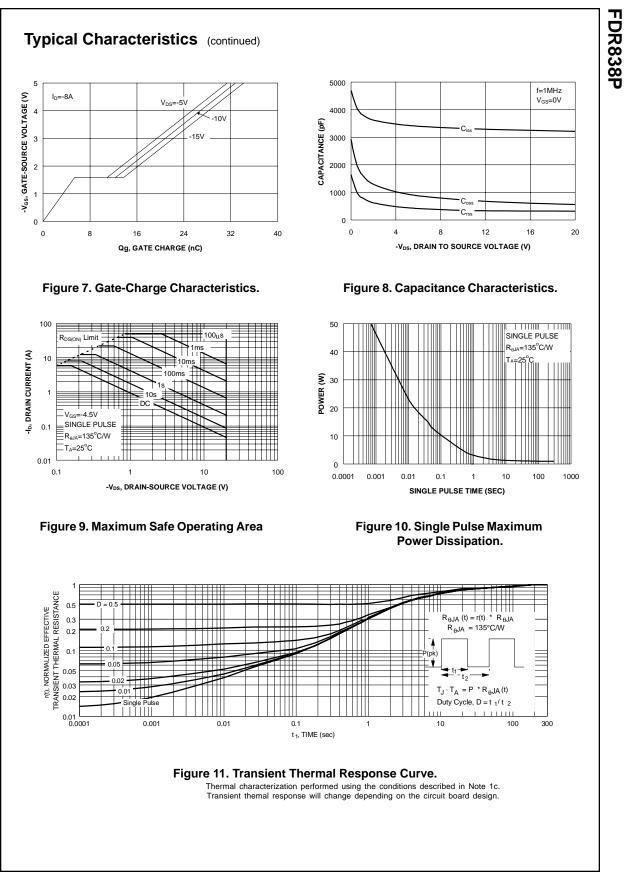
Thermal Characteristics

R _{θJA}	Thermal Resistance, Junction-to-Ambient	(Note 1a)	70	°C/W
$R_{\theta^{JC}}$	Thermal Resistance, Junction-to-Case	(Note 1)	20	°C/W

Package Outlines and Ordering Information


Device Marking	Device	Reel Size	Tape Width	Quantity
.838P	FDR838P	13"	12mm	3000 units

©1999 Fairchild Semiconductor Corporation


Electrical Characteristics $T_A = 25^{\circ}C$ unless otherwise noted Symbol Min Max Units Parameter **Test Conditions** Typ **Off Characteristics** Drain-Source Breakdown Voltage $V_{GS} = 0 \text{ V}, I_D = -250 \mu \text{A}$ V -20 **BV**_{DSS} I_D = -250 μ A, Referenced to 25°C mV/∘C Breakdown Voltage Temperature -18 Coefficient ΔT_J $V_{\text{DS}} = -16 \text{ V}, \text{ } V_{\text{GS}} = 0 \text{ V}$ Zero Gate Voltage Drain Current -1 μΑ IDSS Gate-Body Leakage Current, Forward $V_{\text{GS}}=8~\text{V},~V_{\text{DS}}=0~\text{V}$ 100 nA I_{GSSF} $V_{GS} = -8 V, V_{DS} = 0 V$ Gate-Body Leakage Current, Reverse -100 nA I_{GSSR} On Characteristics (Note 2) Gate Threshold Voltage -0.4 -0.85 -1.5 V $V_{DS} = V_{GS}$, $I_D = -250 \ \mu A$ V_{GS(th)} I_{D} = -250 μ A, Referenced to 25°C mV/∘C AVGS(th) Gate Threshold Voltage 3 **Temperature Coefficient** ΔT_J $V_{GS} = -4.5 \text{ V}, I_{D} = -8 \text{ A}$ $R_{\text{DS(on)}}$ Static Drain-Source 0.014 0.017 Ω **On-Resistance** $V_{GS} = -4.5V, I_D = -8 A, T_J = 125 \circ C$ 0.020 0.026 $V_{GS} = -2.5 \text{ V}, I_D = -7.0 \text{ A}$ 0.020 0.024 **On-State Drain Current** $V_{GS} = -4.5 V, V_{DS} = -5 V$ -50 А I_{D(on)} **g**_{FS} Forward Transconductance $V_{\text{DS}} = \textbf{-5} \ V, \ I_{\text{D}} = \textbf{-8} \ A$ 28 S **Dynamic Characteristics** Input Capacitance $V_{DS} = -10 V, V_{GS} = 0 V,$ 3300 pF Ciss f = 1.0 MHz **Output Capacitance** C_{oss} 730 pF pF Crss **Reverse Transfer Capacitance** 350 Switching Characteristics (Note 2) $V_{DD} = -10 V$, $I_{D} = -1 A$, Turn-On Delay Time 14 25 ns t_{d(on)} V_{GS} = -4.5 V, R_{GEN} = 6 Ω Turn-On Rise Time 20 32 ns tr Turn-Off Delay Time 150 110 t_{d(off)} ns Turn-Off Fall Time 60 90 tf ns $V_{DS} = -10 V$, $I_{D} = -8 A$, Qq **Total Gate Charge** 30 45 nC $V_{GS} = -4.5 V$ Gate-Source Charge 5 nC Q_{gs} Gate-Drain Charge 9 nC Q_{qd} **Drain-Source Diode Characteristics and Maximum Ratings** Maximum Continuous Drain-Source Diode Forward Current -1.5 A ls Drain-Source Diode Forward Voltage $V_{GS} = 0 V$, $I_S = -1.5 A$ (Note 2) -0.7 -1.2 V V_{SD} 1. ReJA is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the solder mounting surface of the drain Pins. $R_{\theta JC}$ is guaranteed by design while $R_{\theta CA}$ is determined by the user's board design. a) 70° C/W when mounted on a ЛЦ b) 125° C/W when mounted on c) 135° C/W when mounted on 1.0 in² pad of 2 oz. copper. a 0.026 in² pad of 2oz. copper. a minimum pad.

Scale 1 : 1 on letter size paper 2. Pulse Test: Pulse Width \leq 300 $\mu s,$ Duty Cycle \leq 2.0%

FDR838P

FDR838P, Rev. C

FDR838P, Rev. C

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACExTM CoolFETTM CROSSVOLTTM E²CMOSTM FACTTM FACT Quiet SeriesTM FAST[®] FAST[®] FASTrTM GTOTM HiSeCTM ISOPLANAR™ MICROWIRE™ POP™ PowerTrench® QFET™ QS™ Quiet Series™ SuperSOT™-3 SuperSOT™-6 SuperSOT™-8 SyncFET™ TinyLogic™ UHC™ VCX™

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.