

MOSFET – Small Signal, N-Channel, Single

60 V, 340 mA, SC-70

2N7002W, 2V7002W

Features

- ESD Protected
- Low R_{DS(on)}
- Small Footprint Surface Mount Package
- 2V Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q101 Qualified and PPAP Capable
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

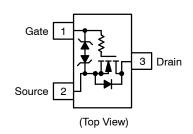
Applications

- · Low Side Load Switch
- Level Shift Circuits
- DC-DC Converter
- Portable Applications i.e. DSC, PDA, Cell Phone, etc.

MAXIMUM RATINGS (T_J = 25°C unless otherwise stated)

Rating	Symbol	Value	Unit
Drain-to-Source Voltage	V_{DSS}	60	V
Gate-to-Source Voltage	V_{GS}	±20	V
	Ι _D	310 220	mA
t < 5 s		340 240	
Power Dissipation (Note 1) Steady State t < 5 s	P _D	280 330	mW
Pulsed Drain Current (t _p = 10 μs)	I _{DM}	1.4	Α
Operating Junction and Storage Temperature Range	T _J , T _{STG}	–55 to +150	ç
Source Current (Body Diode)	I _S	250	mA
Lead Temperature for Soldering Purposes (1/8" from case for 10 s)	T_L	260	°C
Gate-Source ESD Rating (HBM, Method 3015)	ESD	2000	V

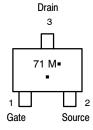
Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.


THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Junction-to-Ambient - Steady State (Note 1)	$R_{\theta JA}$	450	°C/W
Junction-to-Ambient - t ≤ 5 s (Note 1)	$R_{\theta JA}$	375	

Surface-mounted on FR4 board using 1 in sq pad size (Cu area = 1.127 in sq [1 oz] including traces)

V _{(BR)DSS}	R _{DS(on)} MAX	I _D MAX (Note 1)
60 V	1.6 Ω @ 10 V	340 mA
	2.5 Ω @ 4.5 V	


SIMPLIFIED SCHEMATIC

SC-70/SOT-323 CASE 419 STYLE 8

MARKING DIAGRAM & PIN ASSIGNMENT

71 = Device Code

M = Date Code

= Pb-Free Package

(Note: Microdot may be in either location)

ORDERING INFORMATION

Device	Package	Shipping [†]
2N7002WT1G	SC-70 (Pb-Free)	3000/Tape & Reel
2V7002WT1G	SC-70 (Pb-Free)	3000/Tape & Reel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

2N7002W, 2V7002W

ELECTRICAL CHARACTERISTICS ($T_J = 25^{\circ}C$ unless otherwise specified)

Parameter	Symbol	Test (Condition	Min	Тур	Max	Units
OFF CHARACTERISTICS	•			•			
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	V _{GS} = 0 V, I _D = 250 μA		60	-	-	V
Drain-to-Source Breakdown Voltage Temperature Coefficient	V _{(BR)DSS} /T _J			-	71	-	mV/°C
Zero Gate Voltage Drain Current	I _{DSS}	V _{GS} = 0 V,	T _J = 25°C	-	-	1.0	μΑ
		V _{DS} = 60 V	T _J = 150°C	-	-	15	μΑ
		V _{GS} = 0 V,	T _J = 25°C	-	-	100	пA
		V _{DS} = 50 V	T _J = 150°C	-	-	10	μΑ
Gate-to-Source Leakage Current	I _{GSS}	$V_{DS} = 0 V, V_{GS}$	= ±20 V	-	-	±10	μΑ
		V _{DS} = 0 V, V _{GS}	= ±10 V	-	-	450	nA
		V _{DS} = 0 V, V _{GS}	= ±5.0 V	-	-	150	nA
ON CHARACTERISTICS (Note 2)				•	•		
Gate Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}, I_D =$: 250 μA	1.0	-	2.5	V
Negative Threshold Temperature Coefficient	V _{GS(TH)} /T _J			-	4.0	-	mV/°C
Drain-to-Source On Resistance	R _{DS(on)}	V_{GS} = 10 V, I_D = 500 mA V_{GS} = 4.5 V, I_D = 200 mA		-	1.19	1.6	Ω
				-	1.33	2.5	
Forward Transconductance	9FS	V _{DS} = 5 V, I _D = 200 mA		-	530	-	mS
CHARGES AND CAPACITANCES							
Input Capacitance	C _{ISS}	V _{GS} = 0 V, f = 1 MHz,		_	24.5	-	pF
Output Capacitance	C _{OSS}	V _{DS} = 20 V		_	4.2	-	
Reverse Transfer Capacitance	C _{RSS}			-	2.2	-	
Total Gate Charge	Q _{G(TOT)}	V _{GS} = 4.5 V, V _D	_{OS} = 10 V;	-	0.7	-	nC
Threshold Gate Charge	Q _{G(TH)}	I _D = 200 mA		-	0.1	-	
Gate-to-Source Charge	Q_{GS}			_	0.3	-	
Gate-to-Drain Charge	Q_{GD}	1		_	0.1	-	
SWITCHING CHARACTERISTICS, V _{GS}	= V (Note 3)						
Turn-On Delay Time	t _{d(ON)}	V _{GS} = 10 V, V _{DI}	_D = 25 V,	-	12.2	-	ns
Rise Time	t _r	$I_D = 500$ mA, $R_G = 25$ Ω		_	9.0	-	
Turn-Off Delay Time	t _{d(OFF)}			_	55.8	-	1
Fall Time	t _f			_	29	_	
DRAIN-SOURCE DIODE CHARACTER	ISTICS						
Forward Diode Voltage	V _{SD}	V _{GS} = 0 V,	T _J = 25°C	-	0.8	1.2	V
		$I_{S} = 200 \text{ mA}$ $T_{J} = 85^{\circ}\text{C}$		-	0.7	-	1

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

2. Pulse Test: pulse width ≤ 300 μs, duty cycle ≤ 2%

3. Switching characteristics are independent of operating junction temperatures

2N7002W, 2V7002W

TYPICAL CHARACTERISTICS

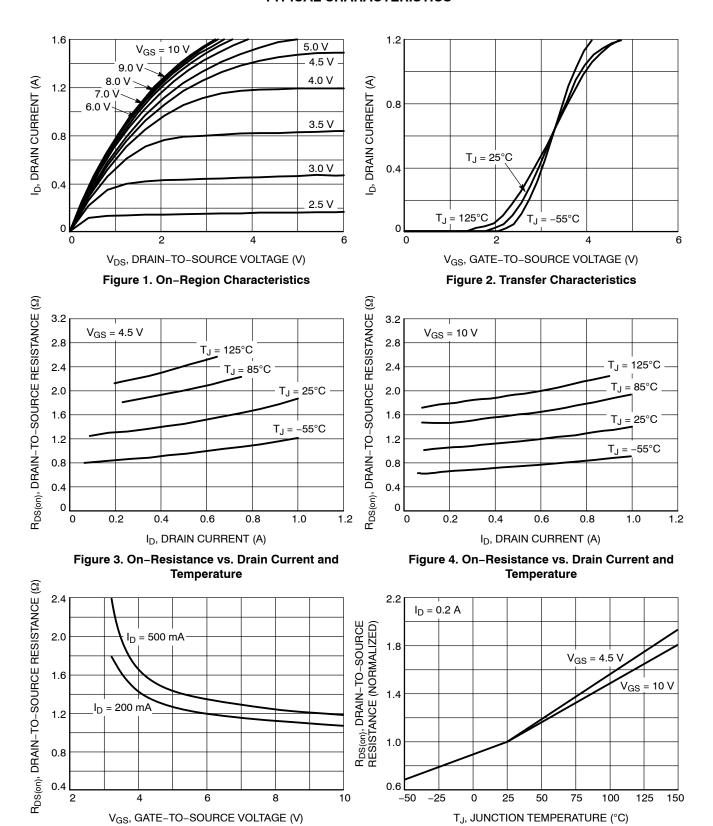


Figure 6. On-Resistance Variation with

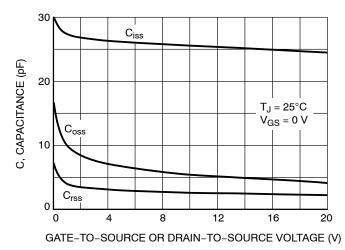

Temperature

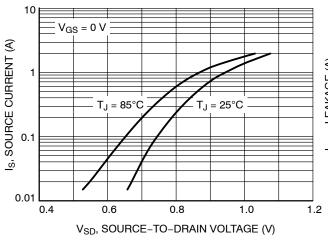
Figure 5. On-Resistance vs. Gate-to-Source

Voltage

2N7002W, 2V7002W

TYPICAL CHARACTERISTICS

T_J = 25°C


T_D = 0.2 A

I_D = 0.2 A

Qg, TOTAL GATE CHARGE (nC)

Figure 7. Capacitance Variation

Figure 8. Gate-to-Source and Drain-to-Source Voltage vs. Total Charge

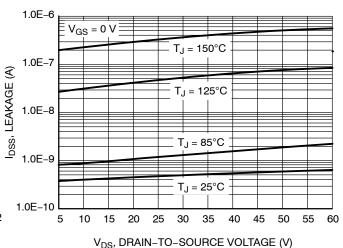
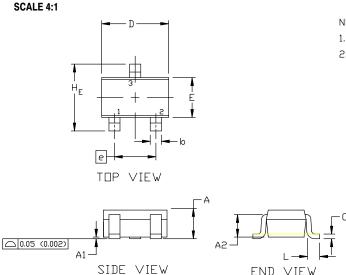


Figure 9. Diode Forward Voltage vs. Current

Figure 10. Drain-to-Source Leakage Current vs. Voltage

SC-70 (SOT-323) **CASE 419** ISSUE R


END VIEW

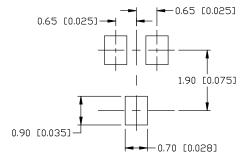
DATE 11 OCT 2022

NOTES:

- 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1982.
- 2. CONTROLLING DIMENSION: INCH

	MILLIMETERS				INCHES	
DIM	MIN.	N□M.	MAX.	MIN.	N□M.	MAX.
Α	0.80	0.90	1.00	0.032	0.035	0.040
A1	0.00	0.05	0.10	0.000	0.002	0.004
A2	0.70 REF			0.028 BSC		
b	0.30	0.35	0.40	0.012	0.014	0.016
С	0.10	0.18	0.25	0.004	0.007	0.010
D	1.80	2.00	2.20	0.071	0.080	0.087
E	1.15	1.24	1.35	0.045	0.049	0.053
е	1.20	1.30	1.40	0.047	0.051	0.055
e1		0.65 BSC		0.026 BSC		
L	0.20	0.38	0.56	0.008	0.015	0.022
HE	2.00	2.10	2.40	0.079	0.083	0.095

GENERIC MARKING DIAGRAM



= Specific Device Code XX

Μ = Date Code

= Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "■", may or may not be present. Some products may not follow the Generic Marking.

For additional information on our Pb-Free strategy and soldering details, please download the ID Semiconductor Soldering and Mounting Techniques Reference Manual, SDLDERRM/D.

SOLDERING FOOTPRINT

STYLE 1: CANCELLED	STYLE 2: PIN 1. ANODE 2. N.C. 3. CATHODE	STYLE 3: PIN 1. BASE 2. EMITTER 3. COLLECTOR	STYLE 4: PIN 1. CATHODE 2. CATHODE 3. ANODE	STYLE 5: PIN 1. ANODE 2. ANODE 3. CATHODE	
STYLE 6: PIN 1. EMITTER	STYLE 7: PIN 1. BASE	STYLE 8: PIN 1. GATE	STYLE 9: PIN 1. ANODE	STYLE 10: PIN 1. CATHODE	STYLE 11: PIN 1. CATHODE
2. BASE	2. EMITTER	2. SOURCE	2. CATHODE	2. ANODE	2. CATHODE
COLLECTOR	COLLECTOR	3. DRAIN	CATHODE-ANODE	3. ANODE-CATHODE	CATHODE

DOCUMENT NUMBER:	98ASB42819B	Electronic versions are uncontrolled except when accessed directly from the Document Repository Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	SC-70 (SOT-323)		PAGE 1 OF 1	

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. **onsemi** does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems. or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales