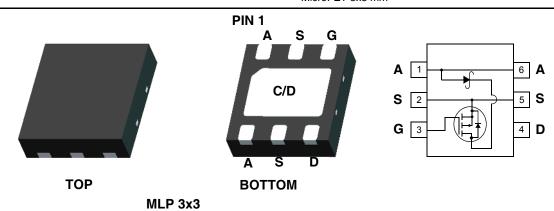


FDFM2P110

Integrated P-Channel PowerTrench® MOSFET and Schottky Diode

General Description

FDFM2P110 combines the exceptional performance of Fairchild's PowerTrench MOSFET technology with a very low forward voltage drop Schottky barrier rectifier in a MicroFET package.


This device is designed specifically as a single package solution for Buck Boost. It features a fast switching, low gate charge MOSFET with very low on-state resistance.

Applications

■ Buck Boost

Features

- -3.5 A, -20 V $R_{DS(ON)}$ = 140m Ω @ V_{GS} = -4.5 V
 - $R_{DS(ON)} = 200 \text{m}\Omega @ V_{GS} = -2.5 \text{ V}$
- Low Profile 0.8 mm maximun in the new package MicroFET 3x3 mm

Absolute Maximum Ratings T_A = 25°C unless otherwise noted

Symbol	Parameter		Ratings	Units
V _{DSS}	Drain-Source Voltage		-20	V
V _{GSS}	Gate-Source Voltage		±12	V
	Drain Current -Continuous	(Note 1a)	-3.5	Α
'D	-Pulsed		-10	_ ^
V_{RRM}	Schottky Repetitive Peak Reverse voltage		20	V
I _O	Schottky Average Forward Current	(Note 1a)	2	Α
В	Power dissipation (Steady State)	(Note 1a)	2	W
P_{D}	(Note 1		0.8	VV
T _J , T _{STG}	Operating and Storage Junction Temperature Range		-55 to +150	°C

Thermal Characteristics

$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient	(Note 1a)	60	°C/W
$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient	(Note 1b)	145	°C/W

Package Marking and Ordering Information

Device Marking	Device	Reel Size	Tape Width	Quantity
2P110	FDFM2P110	7inch	12mm	3000 units

Electrical Characteristics T_A = 25°C unless otherwise noted

Symbol	Parameter	Test Conditions	Min	Тур	Max	Units
Off Chara	acteristics					
B _{VDSS}	Drain-Source Breakdown Voltage	$I_D = -250 \mu A, V_{GS} = 0 V$	-20	-	-	V
$\frac{\Delta BV_{DSS}}{\Delta T_J}$	Breakdown Voltage Temperature Coefficient	I _D = -250μA, Referenced to 25°C	-	-11	-	mV/°C
I _{DSS}	Zero Gate Voltage Drain Current	$V_{GS} = 0V, V_{DS} = -16V$	-	-	-1	μА
I _{GSS}	Gate-Body Leakage,	$V_{GS} = \pm 12V, V_{DS} = 0V$	-	-	±100	nA

On Characteristics (Note 2)

V _{GS(TH)}	Gate Threshold Voltage	$V_{DS} = V_{GS}, I_{D} = -250 \mu A$	-0.6	-1.0	-1.5	V
$\frac{\Delta V_{GS(TH)}}{\Delta T_J}$	Gate Threshold Voltage Temperature Coefficient	I _D = -250μA, Referenced to 25°C	-	3	-	mV/°C
	Static Drain-Source On-Resistance	$I_D = -3.5A, V_{GS} = -4.5V$	-	101	140	
R _{DS(ON)}		$I_D = -3.0A, V_{GS} = -2.5V$	-	145	200	- mΩ
DS(ON)		$I_D = -3.5A$, $V_{GS} = -4.5V$, $T_J = 125$ °C	-	136	202	
I _{D(ON)}	On-State Drain Current	$V_{GS} = -2.5V, V_{DS} = -5V$	-10	-	-	Α
g _{FS}	Forward Transconductance	$I_D = -3.5A, V_{DS} = -5V$	-	6	-	S

Dynamic Characteristics

C _{ISS}	Input Capacitance	V 10V V 0V	-	280	-	pF
C _{OSS}	Output Capacitance	V _{DS} = -10V, V _{GS} = 0V, f = 1MHz	-	65	-	pF
C _{RSS}	Reverse Transfer Capacitance	1 – 1111.12	-	35	-	pF
R_{G}	Gate Resistance	f = 1MHz	-	7	-	Ω

Switching Characteristics (Note 2)

t _{d(ON)}	Turn-On Delay Time		-	8	16	ns
t _r	Turn-On Rise Time	V _{DD} = -10V, I _D = -1A	-	12	22	ns
t _{d(OFF)}	Turn-Off Delay Time	$V_{GS} = -4.5V, R_{GEN} = 16\Omega$	-	11	20	ns
t _f	Turn-Off Fall Time		-	3.2	6.4	ns
Q_g	Total Gate Charge	V 10V I 0.5A	-	3	4	nC
Q_{gs}	Gate-Source Charge	$V_{DS} = -10V, I_{D} = -3.5A,$ $V_{GS} = -4.5V$	-	0.7	-	nC
Q_{gd}	Gate-Drain Charge	VGS = 4.5 V	-	1	-	nC

Drain-Source Diode Characteristics and Maximum Ratings

Is	Maximum Continuous Drain-Source Diode Forward Current		-	=	-2	Α
V_{SD}	Drain-Source Diode Forward Voltage V _{GS} = 0V, I _S = -2 A (Note 2)		-	-0.9	-1.2	V
t _{rr}	Diode Reverse Recovery Time	-I _E = -3.5A, dI _E /dt=100A/μs	-	13	-	ns
Q _{rr}	Diode Reverse Recovery Charge	-1 _F = -3.5A, di _F /di=100A/μS	-	3	-	nC

Schottky Diode Characteristic

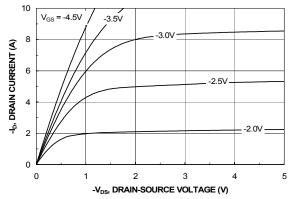
V_R	Reverse Voltage	I _R = 1mA		20	-	-	V	
1_	Reverse Leakage	V 5V	T _J	$T_J = 25^{\circ}C$			100	μΑ
^I R	neverse Leakage	$V_R = 5V$	$T_J = 100^{\circ}C$		_	10	mA	
V _F	Forward Voltage	I _F = 1A	$T_J = 25^{\circ}C$	-	0.32	0.39	V	

Electrical Characteristics T_A = 25°C unless otherwise noted

Notes:

1. $R_{\theta JA}$ is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the solder mounting surface of the drain pins. $R_{\theta CA}$ is guaranteed by design while $R_{\theta CA}$ is determined by the user's board design.

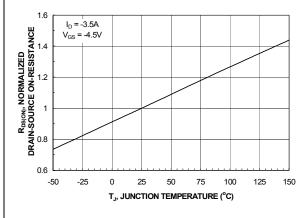
a) 60°C/W when mounted on a 1in² pad of 2 oz copper



b) 145°C/W whe mounted on a minimum pad of 2 oz copper

Scale 1: 1 on letter size paper

2. Pulse Test: Pulse Width < 300 μ s, Duty Cycle < 2.0%


Typical Characteristics

PAGE STANK AND THE STANK AND T

Figure 1. On-Region Characteristics

Figure 2. On-Resistance Variation with Drain Current and Gate Voltage

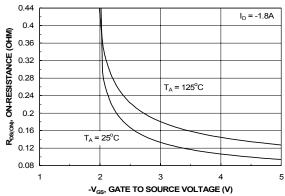
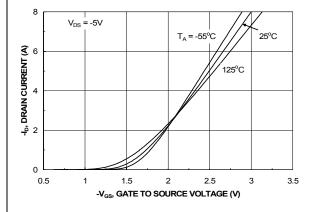



Figure 3. On-Resistance Variation with Temperature

Figure 4. On-Resistance Variation with Gate-to-Source Voltage

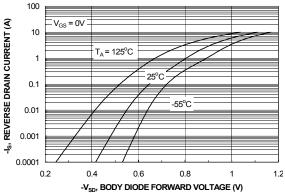
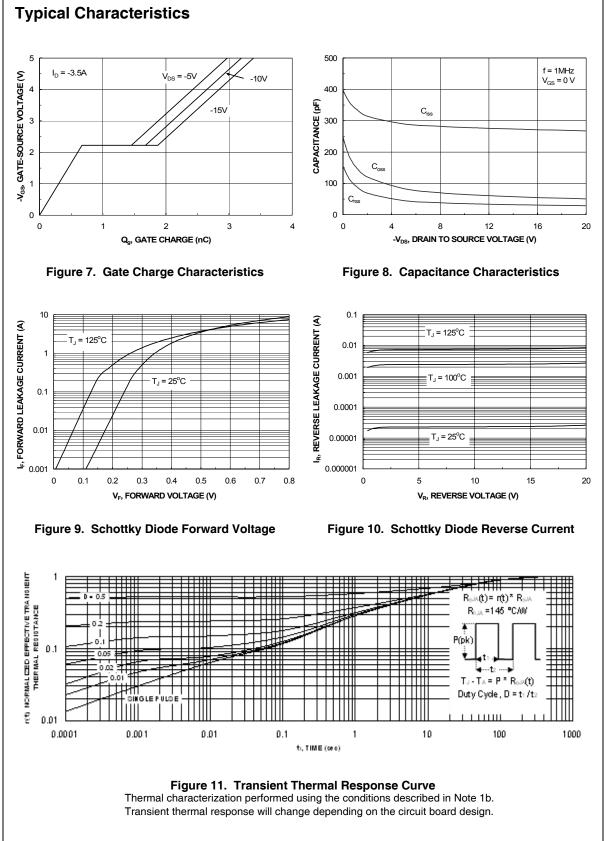
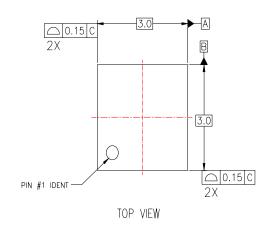
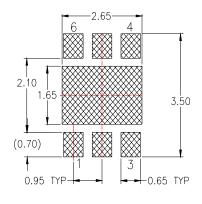
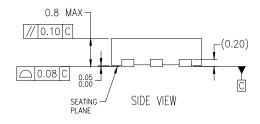
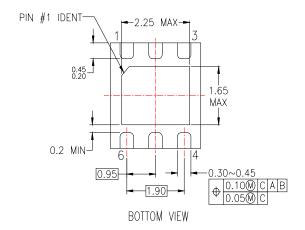
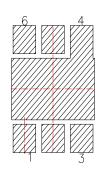





Figure 5. Transfer Characteristics


Figure 6. Body Diode Forward Voltage Variation with Source Current and Temperature





RECOMMENDED COPPER TRACE

NOTES:

- A. CONFORMS TO JEDEC REGISTRATION MO-229, VARIATION WEEA, DATED 11/2001
- B. DIMENSIONS ARE IN MILLIMETERS.
- C. DIMENSIONS AND TOLERANCES PER ASME Y14.5M, 1994

MLP06GrevA

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

DACMANITM

CDMITM

ACEX™	FACTIM	I-LO™	PACMAN'M	SPM™
ActiveArray™	FACT Quiet Series™	ImpliedDisconnect™	РОР™	Stealth™
Bottomless™	FAST [®]	IntelliMAX™	Power247™	SuperFET™
Build it Now™	FASTr™	ISOPLANAR™	PowerEdge™	SuperSOT™-3
CoolFET™	FPS™	LittleFET™	PowerSaver™	SuperSOT™-6
CROSSVOLT™	FRFET™	MICROCOUPLER™	PowerTrench [®]	SuperSOT™-8
DOME™	GlobalOptoisolator™	MicroFET™	QFET [®]	SyncFET™
EcoSPARK™	GTO™	MicroPak™	QS™	TinyLogic [®]
E ² CMOS™	HiSeC™	MICROWIRE™	QT Optoelectronics™	TINYOPTO™
EnSigna™	I ² C™	MSX™	Quiet Series™	TruTranslation™
		MSXPro™	RapidConfigure™	UHC™ _
Across the board.	Around the world.™	OCX™	RapidConnect™	UltraFET [®]
The Power Franc	hise [®]	OCXPro™	μSerDes™	UniFET™
Programmable Ad	ctive Droop™	OPTOLOGIC [®]	SILENT SWITCHER®	VCX™
		OPTOPLANAR™	SMART START™	Wire™

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.

Rev. I16