MOSFET – Dual, N-Channel, Small Signal, SOT-963, 1.0 mm x 1.0 mm

20 V, 220 mA

Features

- Dual N-Channel MOSFET
- Offers a Low $R_{DS(ON)}$ Solution in the Ultra Small 1.0 x 1.0 mm Package
- 1.5 V Gate Voltage Rating
- Ultra Thin Profile (< 0.5 mm) Allows It to Fit Easily into Extremely Thin Environments such as Portable Electronics
- This is a Pb–Free Device

Applications

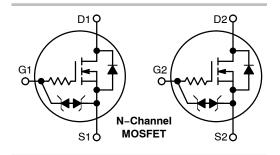
- General Purpose Interfacing Switch
- Optimized for Power Management in Ultra Portable Equipment
- Analog Switch

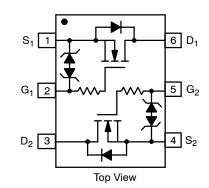
MAXIMUM RATINGS (T_J = 25° C unless otherwise specified)

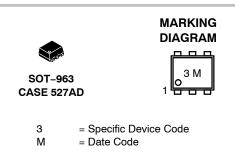
Para	meter		Symbol	Value	Unit
Drain-to-Source Voltag	le	V _{DSS}		20	V
Gate-to-Source Voltag	е	V _{GS}		±8	V
Continuous Drain	Steady	$T_A = 25^{\circ}C$		220	
Current (Note 1)	State	$T_A = 85^{\circ}C$	I _D	160	mA
	t ≤ 5 s	$T_A = 25^{\circ}C$		280	
Power Dissipation	Steady State T _A = 25°C		125		
(Note 1)		State T _A = 25°C	PD		mW
	t ≤ 5 s			200	
Pulsed Drain Current		t _p = 10 μs	I _{DM} 800		mA
Operating Junction and	Storage Tem	perature	0,		°C
			T _{STG}	150	
Source Current (Body D	Diode) (Note 2	<u>2)</u>	IS	200	mA
Lead Temperature for S (1/8" from case for 1		ooses	Τ _L	260	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. Surface-mounted on FR4 board using the minimum recommended pad size, 1 oz Cu.


2. Pulse Test: pulse width \leq 300 μ s, duty cycle \leq 2%


ON Semiconductor®


www.onsemi.com

V _{(BR)DSS}	R _{DS(ON)} MAX	I _D Max
	1.5 Ω @ 4.5 V	
20 V	2.0 Ω @ 2.5 V	0.22 A
	3.0 Ω @ 1.8 V	
	4.5 Ω @ 1.5 V	

PINOUT: SOT-963

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 2 of this data sheet.

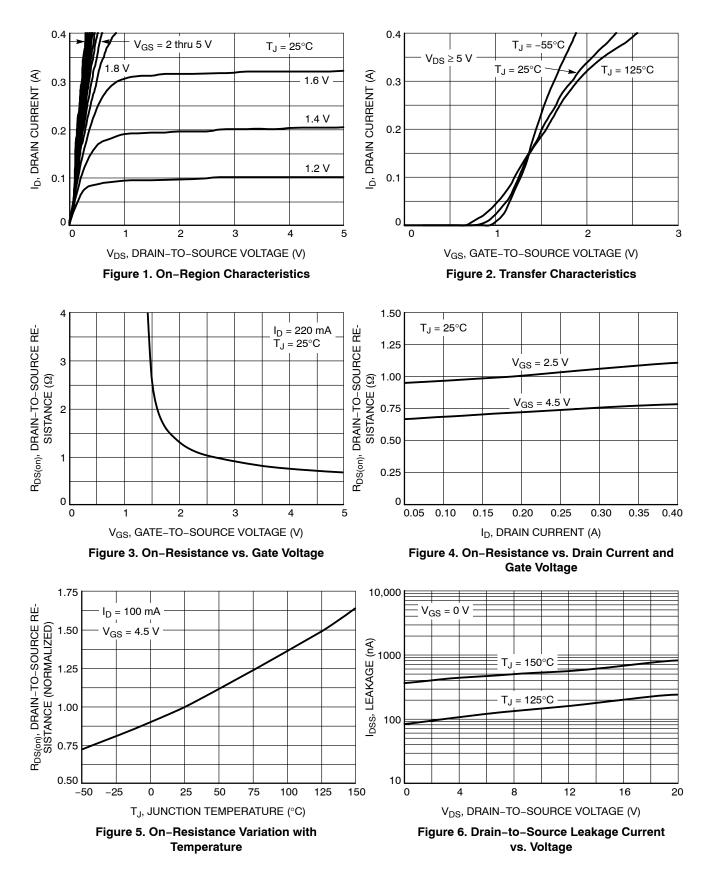
THERMAL RESISTANCE RATINGS

Parameter	Symbol	Мах	Unit
Junction-to-Ambient – Steady State (Note 3)	R _{θJA}	1000	°C/W
Junction-to-Ambient – t = 5 s (Note 3)	ΓιθJΑ	600	0/11

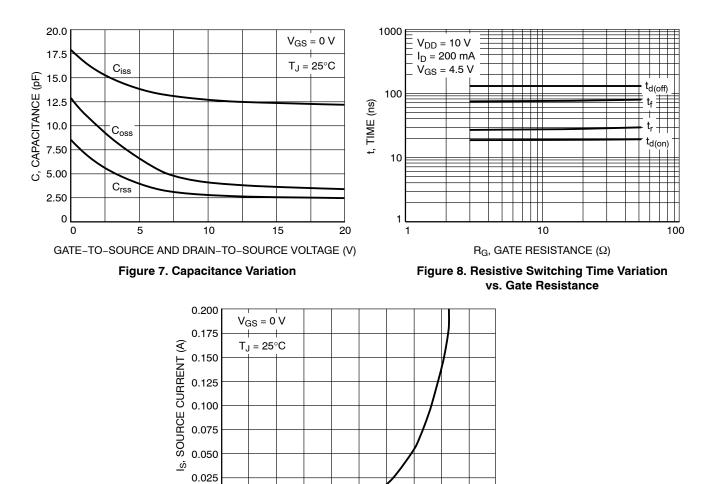
3. Surface-mounted on FR4 board using the minimum recommended pad size, 1 oz Cu.

ELECTRICAL CHARACTERISTICS ($T_J = 25^{\circ}C$ unless otherwise specified)

Parameter	Symbol	Test Condition		Min	Тур	Max	Unit
OFF CHARACTERISTICS	•	-		•	•		
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	$V_{GS}~=~0$ V, $I_{D}=250~\mu A$		20			V
Zero Gate Voltage Drain Current			$T_J = 25^{\circ}C$			50	nA
	I _{DSS}	V_{GS} = 0 V, V_{DS} = 5 V	$T_J = 85^{\circ}C$			200	<u> </u>
		V_{GS} = 0 V, V_{DS} = 16 V	$T_J = 25^{\circ}C$			100	nA
Gate-to-Source Leakage Current	I _{GSS}	V_{DS} = 0 V, V_{GS} =	±5.0 V			±100	nA
ON CHARACTERISTICS (Note 4)							
Gate Threshold Voltage	V _{GS(TH)}	V_{GS} = V_{DS} , I_D = 250 μ A		0.4		1.0	V
Drain-to-Source On Resistance		$V_{GS} = 4.5 \text{ V}, \text{ I}_{\text{D}} = 100 \text{ mA}$			0.75	1.5	Ω
		$V_{GS} = 2.5 \text{ V}, \text{ I}_{D} = 50 \text{ mA}$			1.0	2.0	
	R _{DS(ON)}	V_{GS} = 1.8 V, I _D = 20 mA			1.4	3.0	
		V_{GS} = 1.5 V, I _D = 10 mA			1.8	4.5	
		V _{GS} = 1.2 V, I _D = 1.0 mA			2.8		
Forward Transconductance	9 FS	V _{DS} = 5.0 V, I _D = 1	25 mA		0.48		S
Source-Drain Diode Voltage	V _{SD}	V _{GS} = 0 V, I _S = 1	0 mA		0.6	1.0	V
CAPACITANCES							
Input Capacitance	C _{ISS}	f = 1.0 MHz, V _{GS} = 0 V V _{DS} = 15 V			12.5		
Output Capacitance	C _{OSS}				3.6		pF
Reverse Transfer Capacitance	C _{RSS}				2.6		
SWITCHING CHARACTERISTICS, V_{GS} =	4.5 V (Note 4)						
Turn-On Delay Time	t _{d(ON)}				16.5		
Rise Time	t _r	V_{GS} = 4.5 V, V_{DD} = 10 V, I_{D} = 200 mA, R_{G} = 2.0 Ω			25.5]
Turn-Off Delay Time	t _{d(OFF)}				142		ns
Fall Time	t _f				80		


4. Switching characteristics are independent of operating junction temperatures.

ORDERING INFORMATION


Device	Package	Shipping [†]
NTUD3170NZT5G	SOT-963 (Pb-Free)	8000 / Tape & Reel

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

TYPICAL CHARACTERISTICS

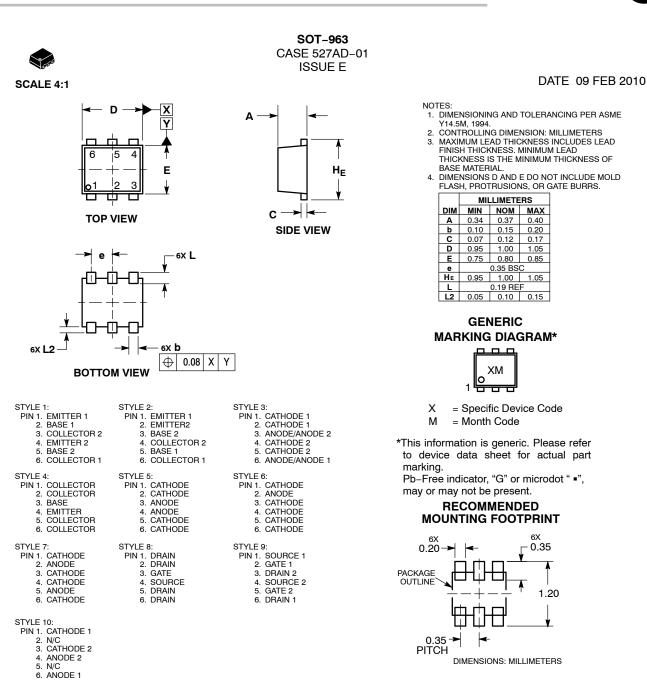
TYPICAL CHARACTERISTICS

0.6

0.8

1

0.4


V_{SD}, SOURCE-TO-DRAIN VOLTAGE (V) Figure 9. Diode Forward Voltage vs. Current

0

0

0.2

	6D Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.				
DESCRIPTION: SOT-963, 1X1, 0.35P		PAGE 1 OF 1			
ON Semiconductor and ()) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding					
rks	s of Semiconductor Components Indus	T-963, 1X1, 0.35P			

rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or indental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification. Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs,

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

Technical Library: www.onsemi.com/design/resources/technical-documentation onsemi Website: www.onsemi.com ONLINE SUPPORT: <u>www.onsemi.com/support</u> For additional information, please contact your local Sales Representative at www.onsemi.com/support/sales