

Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at www.onsemi.com

Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore (_), the underscore (_) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild guestions@onsemi.com.

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officer

June 1999 Revised December 2013

74VCX245

Low Voltage Bidirectional Transceiver with 3.6V Tolerant Inputs and Outputs

General Description

The VCX245 contains eight non-inverting bidirectional buffers with 3-STATE outputs and is intended for bus oriented applications. The T/\overline{R} input determines the direction of data flow. The \overline{OE} input disables both the A and B ports by placing them in a high impedance state.

The 74VCX245 is designed for low voltage (1.4V to 3.6V) $\rm V_{CC}$ applications with I/O compatibility up to 3.6V.

The 74VCX245 is fabricated with an advanced CMOS technology to achieve high-speed operation while maintaining low CMOS power dissipation.

Features

- 1.4V to 3.6V V_{CC} supply operation
- 3.6V tolerant inputs and outputs
- Power-off high impedance inputs and outputs
- Supports Live Insertion and Withdrawal (Note 1)
- t_Pr

3.5 ns max for 3.0V to 3.6V $V_{\rm CC}$

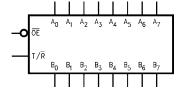
- Static Drive (I_{OH}/I_{OL}) ±24 mA @ 3.0V V_{CC}
- Uses proprietary noise/EMI reduction circuitry
- Latchup performance exceeds 300 mA
- ESD performance:

Human body model > 2000V Machine model > 200V

■ Leadless DQFN Pb-Free package

Note 1: To ensure the high impedance state during power up and power down, \overline{OE}_n should be tied to V_{CC} through a pull up resistor. The minimum value of the resistor is determined by the current sourcing capability of the driver.

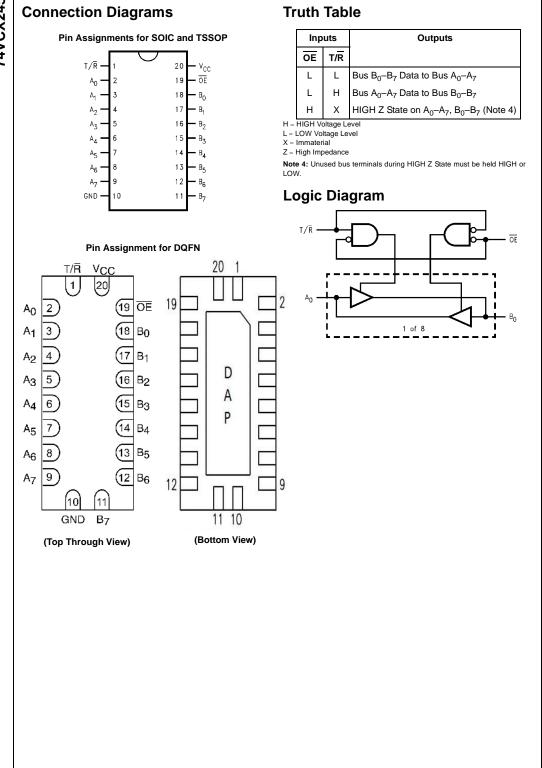
Ordering Code:


Order Number	Package Number	Package Description
74VCX245WM (Note 2)	M20B	20-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300" Wide
74VCX245BQX (Note 3)	MLP020B	Pb-Free 20-Terminal Depopulated Quad Very-Thin Flat Pack No Leads (DQFN), JEDEC MO-241, 2.5 x 4.5mm
74VCX245MTC (Note 2)	MTC20	20-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide

Pb-Free package per JEDEC J-STD-020B.

Note 2: Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.

Note 3: DQFN package available in Tape and Reel only,


Logic Symbol

Pin Descriptions

Description
Output Enable Input (Active LOW)
Transmit/Receive Input
Side A Inputs or 3-STATE Outputs
Side B Inputs or 3-STATE Outputs
No Connect

Note: DAP (Die Attach Pad)

Absolute Maximum Ratings(Note 5)

 $\label{eq:supply Voltage VCC} Supply Voltage (V_{CC}) & -0.5V to +4.6V \\ DC Input Voltage (V_I) & -0.5V to +4.6V \\ \end{array}$

DC Output Voltage (V_O)

Outputs 3-STATE -0.5V to +4.6V Outputs Active (Note 6) -0.5V to $V_{CC} + 0.5$ V

DC Input Diode Current (I_{IK}) V_I < 0V

DC Output Diode Current (I_{OK})

 $V_{O} < 0V$ -50 mA $V_{O} > V_{CC}$ +50 mA

DC Output Source/Sink Current

 (I_{OH}/I_{OL}) ±50 mA DC V_{CC} or Ground Current ±100 mA

Storage Temperature (T_{STG}) $-65^{\circ}C$ to $+150^{\circ}C$

Recommended Operating Conditions (Note 7)

Power Supply

-50 mA

 $\begin{array}{cc} \text{Operating} & \text{1.4V to 3.6V} \\ \text{Input Voltage} & -0.3V \text{ to 3.6V} \end{array}$

Output Voltage (V_O)

Output in Active States $\rm OV~to~V_{CC}$ Output in 3-STATE $\rm OV~to~3.6V$

Output Current in I_{OH}/I_{OL}

 $V_{CC} = 3.0V \text{ to } 3.6V \\ \pm 24 \text{ mA}$

 V_{CC} = 2.3V to 2.7V \pm 18 mA V_{CC} = 1.65V to 2.3V \pm 6 mA

 V_{CC} = 1.4V to 1.6V ± 2 mA Free Air Operating Temperature (T_A) -40° C to $+85^{\circ}$ C

Minimum Input Edge Rate ($\Delta t/\Delta V$)

 $V_{IN} = 0.8V \text{ to } 2.0V, V_{CC} = 3.0V$ 10 ns/V

Note 5: The Absolute Maximum Ratings are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the Absolute Maximum Ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Note 6: IO Absolute Maximum Rating must be observed.

Note 7: Floating or unused inputs must be held HIGH or LOW.

DC Electrical Characteristics

Symbol	Parameter	Conditions	V _{CC}	Min	Max	Units
			(V)			
V_{IH}	HIGH Level Input Voltage		2.7 to 3.6	2.0		
			2.3 to 2.7	1.6		V
			1.65 to 2.3	0.65 × V _{CC}		•
			1.4 to 1.6	$0.65 \times V_{CC}$		
V _{IL}	LOW Level Input Voltage		2.7 to 3.6		0.8	
			2.3 to 2.7		0.7	.,
			1.65 to 2.3		0.35 × V _{CC}	V
			1.4 to 1.6		$0.35 \times V_{CC}$	
V _{OH}	HIGH Level Output Voltage	I _{OH} = -100 μA	2.7 to 3.6	V _{CC} - 0.2		
		I _{OH} = -12 mA	2.7	2.2		
		I _{OH} = -18 mA	3.0	2.4		
		I _{OH} = -24 mA	3.0	2.2		
		$I_{OH} = -100 \mu A$	2.3 to 2.7	V _{CC} - 0.2		,
		I _{OH} = -6 mA	2.3	2.0		V
		I _{OH} = -12 mA	2.3	1.8		V
		I _{OH} = -18 mA	2.3	1.7		
		I _{OH} = -100 μA	1.65 to 2.3	V _{CC} - 0.2		,
		I _{OH} = -6 mA	1.65	1.25		
		$I_{OH} = -100 \mu A$	1.4 to 1.6	V _{CC} - 0.2		,
		I _{OH} = -2 mA	1.4	1.05		

DC Electrical Characteristics (Continued)

Symbol	Parameter	Conditions	V _{CC}	Min	Max	Units
	1000	1 100 1	(V)		2.2	
V _{OL}	LOW Level Output Voltage	$I_{OL} = 100 \mu A$	2.7 to 3.6		0.2	
		I _{OL} = 12 mA	2.7		0.4	
		I _{OL} = 18 mA	3.0		0.4	
		I _{OL} = 24 mA	3.0		0.55	
		I _{OL} = 100 μA	2.3 to 2.7		0.2	
		I _{OL} = 12 mA	2.3		0.4	V
		I _{OL} = 18 mA	2.3		0.6	
		I _{OL} = 100 μA	1.65 to 2.3		0.2	
		I _{OL} = 6 mA	1.65		0.3	
		I _{OL} = 100 μA	1.4 to 1.6		0.2	
		I _{OL} = 2 mA	1.4		0.35	
I	Input Leakage Current	$0 \le V_I \le 3.6V$	1.4 to 3.6		±5.0	μΑ
l _{OZ}	3-STATE Output Leakage	$0 \le V_O \le 3.6V$	1 140 2 0		140	^
		$V_I = V_{IH}$ or V_{IL}	1.4 to 3.6		±10	μА
l _{OFF} I	Power-OFF Leakage Current	$0 \leq (V_I, V_O) \leq 3.6V$	0		10	μА
I _{CC}	Quiescent Supply Current	V _I = V _{CC} or GND	1.4 to 3.6		20	^
		$V_{CC} \le (V_I, V_O) \le 3.6V \text{ (Note 8)}$	1.4 to 3.6		±20	μА
Δl _{CC}	Increase in I _{CC} per Input	V _{IH} = V _{CC} -0.6V	2.7 to 3.6		750	μА

Note 8: Outputs disabled or 3-STATE only.

AC Electrical Characteristics (Note 9)

Symbol	Parameter	Conditions	V _{cc}	$T_A = -40^\circ$	C to +85°C	Units	Figure
- Cymbol	T drumeter	Conditions	(V)	Min	Max	Oillio	Number
t _{PHL} , t _{PLH}	Propagation Delay	$C_L = 30 \text{ pF}, R_L = 500\Omega$	3.3 ± 0.3	0.6	3.5		
	A_n to B_n or B_n to A_n		2.5 ± 0.2	8.0	4.2		Figures 1, 2
			1.8 ± 0.15	1.5	8.4	ns	, -
		$C_L = 15 \text{ pF}, R_L = 2k\Omega$	1.5 ± 0.1	1.0	16.8		Figures 5, 6
t _{PZL} , t _{PZH}	Output Enable Time	$C_L = 30 \text{ pF}, R_L = 500\Omega$	3.3 ± 0.3	0.6	4.5		
			2.5 ± 0.2	8.0	5.6		Figures 1, 3, 4
			1.8 ± 0.15	1.5	9.8	ns	., 0, .
		$C_L = 15 \text{ pF}, R_L = 2k\Omega$	1.5 ± 0.1	1.0	19.6		Figures 5, 7, 8
t _{PLZ} , t _{PHZ}	Output Disable Time	$C_L = 30 \text{ pF}, R_L = 500\Omega$	3.3 ± 0.3	0.6	3.6		
			2.5 ± 0.2	8.0	4.0		Figures 1, 3, 4
			1.8 ± 0.15	1.5	7.2	ns	., -, .
		$C_L = 15 \text{ pF}, R_L = 2k\Omega$	1.5 ± 0.1	1.0	14.4		Figures 5, 7, 8
t _{OSHL}	Output to Output Skew	$C_L = 30 \text{ pF}, R_L = 500\Omega$	3.3 ± 0.3		0.5		
t _{OSLH}	(Note 10)		2.5 ± 0.2		0.5	ns	
			1.8 ± 0.15		0.75		
		$C_L = 15 \text{ pF}, R_L = 2k\Omega$	1.5 ± 0.1		1.5		

Note 9: For $C_L = 50_p F$, add approximately 300 ps to the AC maximum specification.

Note 10: Skew is defined as the absolute value of the difference between the actual propagation delay for any two separate outputs of the same device. The specification applies to any outputs switching in the same direction, either HIGH-to-LOW (t_{OSHL}) or LOW-to-HIGH (t_{OSLH}).

Dynamic Switching Characteristics

Symbol	Parameter	Conditions	V _{CC} (V)	T _A = 25°C	Units
V _{OLP}	Quiet Output Dynamic Peak V _{OL}	$C_L = 30 \text{ pF}, V_{IH} = V_{CC}, V_{IL} = 0V$	1.8	0.3	
			2.5	0.7	V
			3.3	1.0	
V _{OLV}	Quiet Output Dynamic Valley V _{OL}	$C_L = 30 \text{ pF}, V_{IH} = V_{CC}, V_{IL} = 0V$	1.8	-0.3	
			2.5	-0.7	V
			3.3	-1.0	
V _{OHV}	Quiet Output Dynamic Valley V _{OH}	$C_L = 30 \text{ pF}, V_{IH} = V_{CC}, V_{IL} = 0V$	1.8	1.3	
			2.5	1.7	V
			3.3	2.0	

Capacitance

Symbol	Parameter	Conditions	T _A = +25°C Typical	Units
C _{IN}	Input Capacitance	V _I = 0V or V _{CC} , V _{CC} = 1.8V, 2.5V or 3.3V	6.0	pF
C _{I/O}	Input/Output Capacitance	$V_{I} = 0V \text{ or } V_{CC}, V_{CC} = 1.8V, 2.5V \text{ or } 3.3V$	7.0	pF
C _{PD}	Power Dissipation Capacitance	V_I = 0V or V_{CC} , f = 10 MHz, V_{CC} = 1.8V, 2.5V or 3.3V	20.0	pF

AC Loading and Waveforms (V $_{CC}$ 3.3V \pm 0.3V to 1.8V \pm 0.15V)

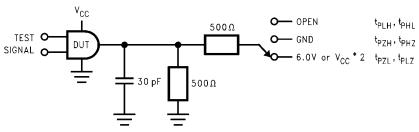


FIGURE 1. AC Test Circuit

TEST	SWITCH
t _{PLH} , t _{PHL}	Open
t _{PZL} , t _{PLZ}	6V at $V_{CC} = 3.3V \pm 0.3V$;
	V_{CC} x 2 at V_{CC} = 2.5V ± 0.2V; 1.8V ± 0.15V
t _{PZH} , t _{PHZ}	GND

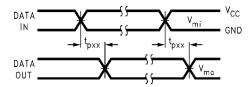


FIGURE 2. Waveform for Inverting and Non-Inverting Functions

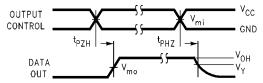


FIGURE 3. 3-STATE Output High Enable and Disable Times for Low Voltage Logic

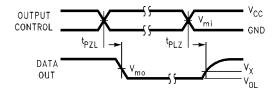
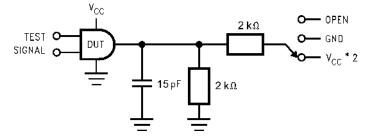



FIGURE 4. 3-STATE Output Low Enable and Disable Times for Low Voltage Logic

Symbol	V _{cc}				
Cymbol	3.3V ± 0.3V	2.5V ± 0.2V	1.8V ± 0.15V		
V _{mi}	1.5V	V _{CC} /2	V _{CC} /2		
V _{mo}	1.5V	V _{CC} /2	V _{CC} /2		
V _X	V _{OL} + 0.3V	V _{OL} + 0.15V	V _{OL} + 0.15V		
V _Y	V _{OH} – 0.3V	V _{OH} – 0.15V	V _{OH} – 0.15V		

AC Loading and Waveforms (V $_{\text{CC}}$ 1.5 \pm 0.1V)

ь ьсн		
t _{PZL}	, t _{PL}	.Z

TEST	SWITCH
$t_{\text{PLH}},t_{\text{PHL}}$	Open
t_{PZL},t_{PLZ}	V_{CC} x 2 at V_{CC} = 1.5V \pm 0.1V
t _{PZH} , t _{PHZ}	GND

FIGURE 5. AC Test Circuit

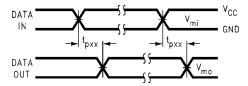


FIGURE 6. Waveform for Inverting and Non-Inverting Functions

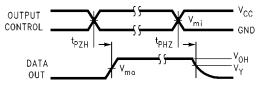


FIGURE 7. 3-STATE Output High Enable and Disable Times for Low Voltage Logic

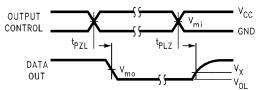
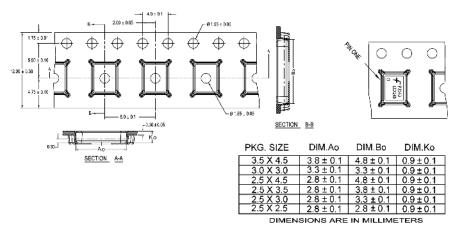


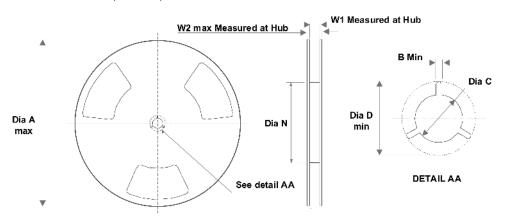
FIGURE 8. 3-STATE Output Low Enable and Disable Times for Low Voltage Logic

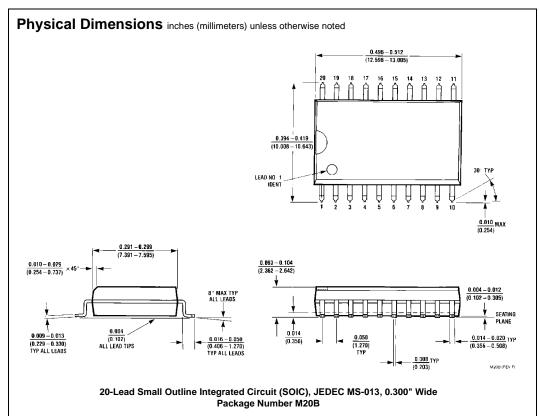

Symbol	v _{cc}
Cymbol	1.5V ± 0.1V
V_{mi}	V _{CC} /2
V_{mo}	V _{CC} /2
V_X	V _{OL} + 0.1V
V_{Y}	V _{OH} – 0.1V

Tape and Reel Specification

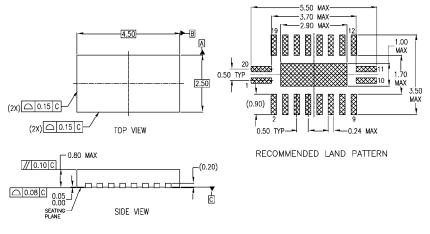
Tape Format for DQFN

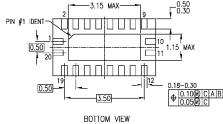
Package	Tape	Number	Cavity	Cover Tape	
Designator	Section	Cavities	Status	Status	
	Leader (Start End)	125 (typ)	Empty	Sealed	
BQX	Carrier	3000	Filled	Sealed	
	Trailer (Hub End)	75 (typ)	Empty	Sealed	


TAPE DIMENSIONS inches (millimeters)


NOTES: unless otherwise specified

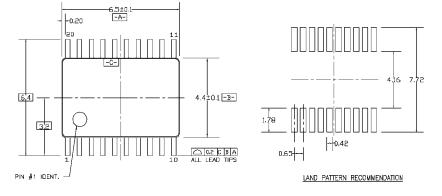
- 1. Cummulative pitch for feeding holes and cavities (chip pockets) not to exceed 0.008[0.20] over 10 pitch span.
- Smallest allowable bending radius.
- 3. Thru hole inside cavity is centered within cavity.
- Tolerance is ±0.002[0.05] for these dimensions on all 12mm tapes.
 Ao and Bo measured on a plane 0.120[0.30] above the bottom of the pocket.
- 6. Ko measured from a plane on the inside bottom of the pocket to the top surface of the carrier.
- Pocket position relative to sprocket hole measured as true position of pocket. Not pocket hole.
 Controlling dimension is millimeter. Diemension in inches rounded.

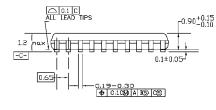

REEL DIMENSIONS inches (millimeters)

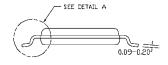


Tape Size	Α	В	С	D	N	W1	W2
12 mm	13.0	0.059	0.512	0.795	2.165	0.488	0.724
	(330.0)	(1.50)	(13.00)	(20.20)	(55.00)	(12.4)	(18.4)

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)


NOTES:


- A. CONFORMS TO JEDEC REGISTRATION MO-241, VARIATION AC
- B. DIMENSIONS ARE IN MILLIMETERS.
- C. DIMENSIONS AND TOLERANCES PER ASME Y14.5M, 1994


MLP020BrevA

Pb-Free 20-Terminal Depopulated Quad Very-Thin Flat Pack No Leads (DQFN), JEDEC MO-241, 2.5 x 4.5mm Package Number MLP020B

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

12.00*

R0.09min

GAGE PLANE

DIMENSIONS ARE IN MILLIMETERS

NOTES:

- A. CONFORMS TO JEDEC REGISTRATION MD-153, VARIATION AC, REF NOTE 6, DATE 7/93.
- B. DIMENSIONS ARE IN MILLIMETERS.
- C. DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLDS FLASH, AND THE BAR EXTRUSIONS.
- D. DIMENSIONS AND TOLERANCES PER ANSI Y14.5M. 1982.

DETAIL A

-0.6±0.:

R0.09min

MTC20REVD1

20-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide Package Number MTC20

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com

ON Semiconductor and in are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor and see no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and h

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800-282-9855 Toll Free USA/Canada
Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81–3–5817–1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative