# **OP950 Series**

# **Electronics**

#### Features:

- Epoxy package
- Linear response vs. irradiance
- Fast switching time
- Choice of wide or extra wide receiving angle
- Side-looker package
- Small package style ideal for space-limited applications



#### **Description:**

Each **OP950**, **OP954** and **OP955** device consists of a PIN silicon photodiode molded in an epoxy package that allows spectral response from visible to infrared light wavelengths. The side-looking package is designed for easy PCBoard mounting and space-limited applications.

The **OP950** has a 95° wide receiving angle that provides relatively even reception over a large area and is mechanically and spectrally matched to OPTEK's GaAs and GaAiAs series of infrared emitting diodes.

The **OP954** has a 128° very wide receiving angle that provides relatively even reception over a large area.

The **OP955** has a 95° wide receiving angle with a recessed lens, which allows an acceptance half-angle of 45° when measured from the optical axis to the half power point.

Both **OP954** and **OP955** components are 100% production tested, using infrared light for close correlation with OPTEK's GaAs and GaAlAs emitters.

Please refer to Application Bulletins 208 and 210 for additional design information and reliability (degradation) data.

#### **Applications:**

- Non-contact reflective object sensor
- Assembly line automation
- Machine automation
- Machine safety
- End of travel sensor
- Door sensor

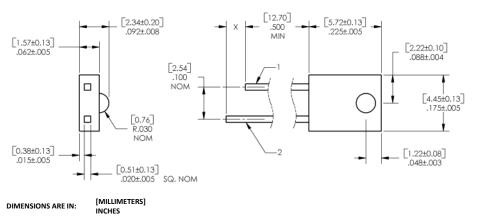
| Ordering Information |             |      |      |  |  |  |  |
|----------------------|-------------|------|------|--|--|--|--|
| Part Number          | Lead Length |      |      |  |  |  |  |
| OP950                |             | 95°  |      |  |  |  |  |
| OP954                | Photodiode  | 128° | .50" |  |  |  |  |
| OP955                |             | 95°  |      |  |  |  |  |



Rev C 04/2023 Page 1

## **OP950 Series**

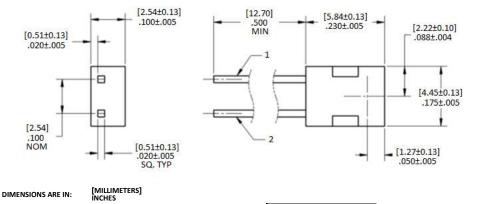



OP950

2

OP954

2


#### **OP950** Sidelooker Lens



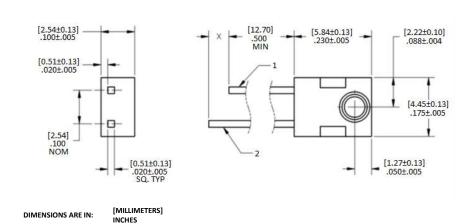
Pin# 1 Anode

# Diode 2 Cathode

#### **OP954** Sidelooker Lens



| Pin# | Diode   |  |  |
|------|---------|--|--|
| 1    | Anode   |  |  |
| 2    | Cathode |  |  |


#### **OP954 - CONTAINS POLYSULFONE**

To avoid stress cracking, we suggest using ND Industries' **Vibra-Tite** for thread-locking. **Vibra-Tite** evaporates fast without causing structural failure in OPTEK'S molded plastics.

# **OP950 Series**



#### OP955 Sidelooker Recessed Lens





| Pin # | Diode   |  |  |
|-------|---------|--|--|
| 1     | Anode   |  |  |
| 2     | Cathode |  |  |

#### **OP955 - CONTAINS POLYSULFONE**

To avoid stress cracking, we suggest using ND Industries' **Vibra-Tite** for thread-locking. **Vibra-Tite** evaporates fast without causing structural failure in OPTEK'S molded plastics.

## **OP950 Series**



# **Electrical Specifications**

#### Absolute Maximum Ratings (T<sub>A</sub> = 25 °C unless otherwise noted)

| Reverse Breakdown Voltage                                                                    | 60 V                  |
|----------------------------------------------------------------------------------------------|-----------------------|
| Storage & Operating Temperature Range                                                        | -40° C to +100 °C     |
| Lead Soldering Temperature [1/16 inch (1.6 mm) from the case for 5 sec. with soldering iron] | 260 °C <sup>(1)</sup> |
| Power Dissipation                                                                            | 100 mW <sup>(2)</sup> |

#### **Electrical Characteristics** (T<sub>A</sub> = 25 °C unless otherwise noted)

| SYMBOL            | PARAMETER                                | MIN      | TYP | MAX     | UNITS | TEST CONDITIONS                                                 |
|-------------------|------------------------------------------|----------|-----|---------|-------|-----------------------------------------------------------------|
| Ιι                | Reverse Light Current OP950, OP955 OP954 | 8<br>3.5 |     | 18<br>8 | μΑ    | $V_R = 5 \text{ V, } E_E = 1 \text{ mW/cm}^{2(3)}$              |
| I <sub>D</sub>    | Reverse Dark Current                     | -        | 1   | 60      | nA    | $V_R = 30 \text{ V}, E_E = 0^{(4)}$                             |
| V <sub>(BR)</sub> | Reverse Breakdown Voltage                | 60       | -   | -       | V     | Ι <sub>R</sub> = 100 μΑ                                         |
| V <sub>F</sub>    | Forward Voltage                          | -        | -   | 1.2     | V     | I <sub>F</sub> = 1 mA                                           |
| C <sub>T</sub>    | Total Capacitance                        | -        | 4   | -       | pF    | V <sub>R</sub> = 20 V, E <sub>E</sub> = 0, f = 1.0 MHz          |
| t <sub>r</sub>    | Rise Time                                | -        | 5   | -       | 20    | V = 20 V ) = 950 nm B = 50 O                                    |
| t <sub>f</sub>    | Fall Time                                | -        | 5   | -       | ns    | $V_R = 20 \text{ V}, \lambda = 850 \text{ nm}, R_L = 50 \Omega$ |

#### Notes:

- (1) RMA flux is recommended. Duration can be extended to 10 seconds maximum when flow soldering. A maximum of 20 grams force may be applied to leads when soldering.
- (2) Derate linearly 1.67 mW/°C above 25 °C.
- (3) The light source is an unfiltered GaAs LED with a peak emission wavelength of 935 nm and a radiometric intensity level which varies less than 10% over the entire lens surface of the photodiode being tested.
- (4) Calculate the typical dark current in nA using the formula  $I_D = 10^{(0.042T_A-1.5)}$  where  $T_A$  is ambient temperature in °C.

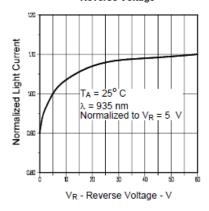
# **OP950 Series**



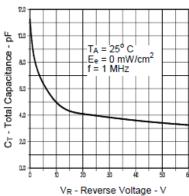
### **Performance**

#### **OP950 Series**

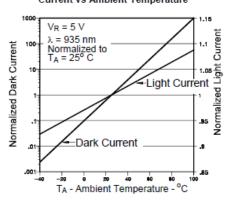



Coupling Characteristics OP950 and OP240

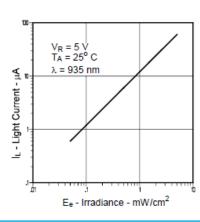
WR = 5 V
IF = 20 MA


OR OF THE PROPERTY OF THE PROPE

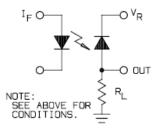
Distance Between Lens Tips - inches


Normalized Light Current vs Reverse Voltage

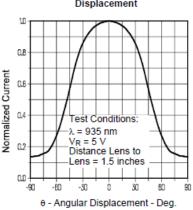








Normalized Light and Dark Current vs Ambient Temperature




Light Current vs. Irradiance



Switching Time Test Circuit



Light Current vs. Angular Displacement



General Note

TT Electronics reserves the right to make changes in product specification without notice or liability. All information is subject to TT Electronics' own data and is considered accurate at time of going to print.