
Product Specification

10Gbps 850nm VCSEL, LC and SC TOSA Package

HFE6x92-761

PRODUCT FEATURES

- High performance VCSEL
- Low electrical parasitic TO package with flexible interface
- Data rates from DC to 12.5Gbps
- Complete isolation between the VCSEL, Monitor Photodiode and Case
- Mechanically compatible with all 10Gbps MSAs

The HFE6x92-761 uses a high-performance Vertical Cavity Surface Emitting Laser (VCSEL) designed to meet performance requirements for 10Gbps data communication over multimode optical fiber. Applications include Ethernet, Fibre Channel and ATM protocols. The optical assembly is designed to inter-face either 50 m or 62.5 m multimode fiber and ensure launch conditioning requirements compatibility with enhanced bandwidth fiber as specified by TIA 455-203.

The HFE6x92-761 incorporates a power monitoring photodiode that can be used for temperature compensation, average power control, and for compliance with Class 1 eye safety limits.

PRODUCT SELECTION

Part Number	Description
HFE6192-761	Differentially Driven, attenuated, LC TOSA, with 50Ω flex
HFE6392-761	Differentially Driven, attenuated, SC TOSA, with 50Ω flex

I. Absolute Maximum Ratings

Parameter	Rating		
Storage Temperature	-40 to +85°C		
Case Operating Temperature	0* to +85°C		
Lead Solder Temperature	260°C, 10 sec.		
Reverse Power Supply Voltage	5V		
Max continuous forward current	12mA		
ESD Exposure (Human Body Model)	150V ¹		

LASER NOTICE NO.50 DATED 26 JULY 2001

Advanced Optical Components 600 Millennium Drive, Allen, TX 75013

LASER RADIATION AVOID EXPOSURE TO BEAM CLASS 1M LASER PRODUCT

Notice

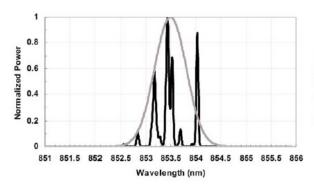
Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operations section for extended periods of time may affect reliability.

Notice

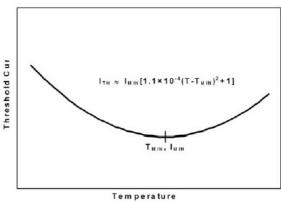
The inherent design of this component causes it to be sensitive to electrostatic discharge (ESD). To prevent ESD-induced damage and/or degradation to equipment, take normal ESD precautions when handling this product

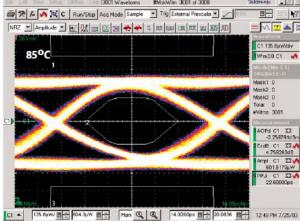
II. Electro-Optical Characteristics ($T_A = 25C$, unless otherwise stated)

VCSEL Parameters	Test Condition	Symbol	Min.	Тур.	Max.	Units	Notes
Fiber coupled optical power	$I_F = 6.5 \text{mA peak}$	P _{OC}	400	600		μW	
Coupling Efficiency	ipling Efficiency 50/125μm fiber		70			%	1
Threshold Current	reshold Current $I_F = 6.5 \text{mA}$			1	2	mA	
Threshold Current Temperature		ΔI_{TH}			1	mA	2
Variation							
Slope Efficiency	$T_A=0$ to 70 °C	η	0.06	0.075	0.2	mW/mA	3
Slope Efficiency Temperature Variation	P _{OC} =0.6mW	Δη/ΔΤ		-0.4		%/°C	
Peak Wavelength	$T_A=0$ to 70 °C	$\lambda_{ m P}$	840		860	nm	
λ_{P} Temperature Variation	$I_F=6.5\text{mA}$	$\Delta \lambda_{\rm P} / \Delta T$		0.06		nm/°C	
RMS Spectral Bandwidth	T _A =0 to 70°C	Δλ			0.4	nm	
Laser Forward Voltage	$I_F=6.5\text{mA}$	$V_{\rm F}$	1.6	1.8	2.2	V	
Laser Reverse Voltage	$I_F=6.5\text{mA}$	V_R	5	10		V	
Rise/Fall Time	$I_R = 10 \mu A$	T _R			40	ps	4
	•	T_{F}			40		
Relative Intensity Noise	Bias above threshold 20%-80%	RIN ₁₂			-130	dB/Hz	5
Series Resistance	$I_F=6.5\text{mA}$	R	41	60	75	Ohms	
Series Resistance Temperature Variation	$I_F=6.5$ mA	ΔR/ΔΤ		-0.2		%/°C	
Total Capacitance	$I_F=6.5\text{mA}$	C_{T}			0.5	pF	6
Encircled Flux Diameter	$I_F=6.5\text{mA}$	EF					7
Photodiode Parameters	Test Condition	Symbol	Min.	Typ.	Max.	Units	Notes
Monitor Current	P_{OC} =0.6mW, VR=3V	I_{PD}	50	150	300	μΑ	
Monitor Current Temperature	P _{OC} =0.6mW	$\Delta I_{PD}/\Delta T$		0.0		%/°C	
Variation	$T_A=0$ to 70 °C						
Tracking Ratio Variation (Open	P_{OB} =-2.5dBm	ΔTR	-0.5		+0.5	dB	
Bore)	$T_A=0$ to $70^{\circ}C$						
Dark Current $P_{OC}=0$ mW, $V_R=3$ V		I_{DARK}			20	nA	
PD Reverse Voltage	$P_{OC}=0$ mW, $I_R=10$ uA	BVR_{PD}	30	115		V	8
PD Capacitance	$V_R = 0V$, Freq=1MHz	C_{PD}		75	100	pF	
	$V_R = 3V$, Freq=1MHz			40	55		


Notes:

- 1. PO_PCT is defined as the ratio of the coupled power into a 50/125 micron fiber to the total power output from the optical front end as measured on a large area detector.
- 2. Operation outside of the specified range may result in the threshold current exceeding the maximums defined in the electro-optical characteristics table. DITH is the maximum deviation from the 25°C value.
- 3. Slope efficiency is defined as $\Delta PO/\Delta IF$ at a total power output of 0.6mW. Slope efficiency is intentionally lowered to the value shown by attenuation.
- 4. Rise and fall times are sensitive to drive electronics. Rise and fall times are measured 20%-80% using a 1GHz square wave AC coupled to the VCSEL using a bias-T.


 The DC current is adjusted to achieve a minimum OMA of -4dBm. Corrections are made for finite detector bandwidth.
- 5. RIN12 is measured using the OMA technique with 12dB return.
- 6. Total capacitance is measured with the VCSEL forward biased using a Network analyzer at 1GHz.
- 7. Encircled flux is measured per TIA-455-203.
- 8. To prevent VCSEL damage, short the VCSEL anode and cathode during BVR testing

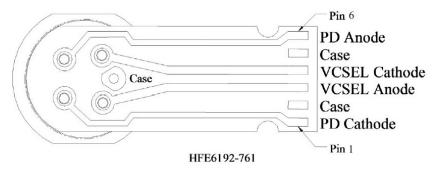

III. Typical Performance Curves

RMS Spectral Width is defined and measured using TIA-455-127

Threshold Current vs. Temperature: Threshold current varies parabolically with temperature; thus it can be nearly constant for a limited temperature range.

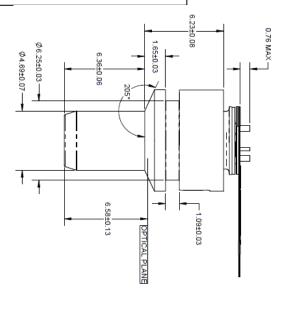
IV. Environmental Specifications

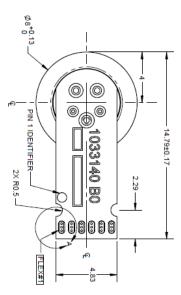
Parameter	Symbol	Min	Тур	Max	Units	Ref.
Case Operating Temperature	T_{op}	0		85	°C	
Storage Temperature	T_{sto}	-40		85	°C	

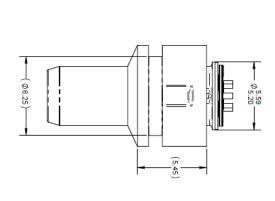

V. Regulatory Compliance

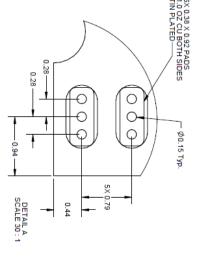
Feature	Agency	Standard	Certificate Number
Laser Eye Safety	FDA/CDRH	CDRH 21 CFR 1040 and Laser Notice 50	9521487

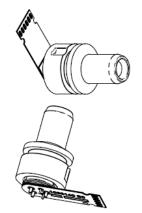
Copies of the referenced certificates are available at Finisar Corporation upon request.


VI. Mechanical Specifications


PIN	Description
1	PDK
2	GND
3	LDA
4	LDK
5	GND
6	PDA




LC TOSA All dimensions in mm 0.13 MAX RELIEF BOTH SIDES Ø5.08+0.02 5.94-0.05 0.76 MAX -Ø6.6+0.02 0.66 ± 0.03 PIN 1 IDENTIFIER 6.28 ± 0.02 14.09±0.17 -02.92 ± 0.02 4.04^{+0.05} -0.02 1.27 ± 0.03 OPTICAL PLANE 0.14 THICK FLEX CIRCUIT -2X R0.5 FLEX#1 6X 0.38 X 0.92 PADS 1.0 OZ CU BOTH SIDES TIN PLATED—— Ф 5.59 5.20 0.28-6.43±0.07 94 Ø0.15 Typ. 5X 0.79 DETAIL A SCALE 20 : 1


SC TOSA All dimensions in mm

VII. Revision History

Revision	Date	Description
B00	8/14/2014	Changed to Finisar format
B01	12/3/2014	• Changed limits for Vf and SE (Vf max reduced to 2.2V and SE min raised to 0.06)

VIII. For More Information

Finisar Corporation 1389 Moffett Park Drive Sunnyvale, CA 94089-1133 Tel. 1-408-548-1000 Fax 1-408-541-6138 sales@finisar.com www.finisar.com