

Minimizes driver requirements while delivering superior color stability over

temperature and current

LUXEON H50-2

Technical Datasheet DSI10

LUXEON H50-2 High Voltage LED

Introduction

LUXEON® H50-2 delivers superior efficacy, color performance and reliability in a high voltage architecture that minimizes driver requirements making it an ideal solution for space constrained and cost sensitive retrofit bulbs and luminaires. With exceptional color stability over temperature and current, LUXEON H50-2 simplifies design while providing superior quality of light.

This document contains the performance data and technical information needed to design and develop LUXEON H50-2 based solutions. LUXEON H50-2,

- Enables design of small socket and cost sensitive luminaires with simple, efficient and small size driver.
- Is binned at 85°C and 40 mA with 3 and 5 SDCM color binning. 50V 2 watt LED flexibly supports I I 0V and 220V solutions.
- Exceeds ENERGY STAR® lumen maintenance requirements.
- Delivers real-world in application performance and reliability.

philips LUMILEDS

Table of Contents

General Information	3
Product Nomenclature	3
Average Lumen Maintenance Characteristics	3
Product Selection Guide for LUXEON H50-2	3
Optical Characteristics for LUXEON H50-2	4
Electrical Characteristics for LUXEON H50-2	4
Absolute Maximum Ratings	5
JEDEC Moisture Sensitivity	5
Reflow Soldering Characteristics	6
Mechanical Dimensions	7
Solder Pad Design	8
Relative Spectral Distribution vs. Wavelength Characteristics	9
Light Output Characteristics	
Typical Forward Current Characteristics	
Typical Radiation Pattern	
Emitter Pocket Tape Packaging	
Emitter Reel Packaging	
Product Binning and Labeling	
LUXEON H50-2 Color Bin Structure	
Forward Voltage Bins	

General Information

Product Nomenclature

LUXEON H50-2 is tested and binned at 40 mA, with current pulse duration of 20 ms. All characteristic charts where the thermal pad is kept at constant temperature (85°C typically) are measured with current pulse duration of 20 ms. Under these conditions, junction temperature and thermal pad temperature are the same.

The part number designation is explained as follows: L X A C - A B C D

Where:

A — I for current design of H50-2 B — 8 for 80 CRI C, D — 27 for 2700K, 30 for 3000K

Therefore 80 CRI products tested and binned at 2700K will have the part numbering scheme: L X A C - I 8 2 7

Average Lumen Maintenance Characteristics

Lumen maintenance for solid state lighting devices (LEDs) is typically defined in terms of the percentage of initial light output remaining after a specified period of time. Philips Lumileds projects that LUXEON H50-2 products will deliver, on average, 70% lumen maintenance (L70) \geq 36,000 hours at a drive current of 40 mA. This projection is based on constant current operation with the Ts temperature maintained \leq 105°C. This performance is based on independent test data, extrapolation according to IESNA TM-21-11 of Philips Lumileds historical data from tests run on similar material systems, and internal LUXEON reliability testing. Observation of design limits included in this data sheet is required in order to achieve this projected lumen maintenance.

Environmental Compliance

Philips Lumileds is committed to providing environmentally friendly products to the solid-state lighting market. LUXEON H50-2 is compliant to the European Union directives on the restriction of hazardous substances in electronic equipment, namely the RoHS and REACH directives. Philips Lumileds will not intentionally add the following restricted material to the LUXEON H50-2: lead, mercury, cadmium, hexavalent chromium, polybrominated biphenyls (PBB) or polybrominated diphenyl ethers (PBDE).

Product Selection Guide for LUXEON H50-2 Thermal Pad Temperature = 85°C, Test Current = 40 mA

lable I.								
 Nominal CCT	Part Number	Minimum CRI	Minimum Luminous Flux (Im)	Typical Luminous Flux (Im)	Typical Efficacy (Im/W)			
 2700K	LXAC-1827	80	150	165	83			
3000K	LXAC-1830	80	160	175	88			

Notes for Table 1:

1. Philips Lumileds maintains a tolerance of \pm 6.5% on luminous flux and \pm 2 on CRI measurements.

Optical Characteristics for LUXEON H50-2

Thermal Pad Temperature = 85° C, Test Current = 40 mA

			Table 2.		
				Typical Total	Typical Viewing
	Co	lor Temperat	ure	Included	Angle ^[2]
Nominal		ССТ		Angle $[1] \theta_{90V}$	20 ½
ССТ	Min.	Тур.	Max.	(degrees)	(degrees)
2700K	2580K	2725K	2870K	135	110
3000K	2870K	3045K	3220K	135	110

Note for Table 2:

1. Total angle at which 90% of total luminous flux is captured.

2. Viewing angle is the off axis angle from lamp centerline where the luminous intensity is $\frac{1}{2}$ of the peak value.

Electrical Characteristics for LUXEON H50-2 Thermal Pad Temperature = 85°C, Test Current = 40 mA

			Table 3.		
Nominal CCT	Forward Voltage V _f ^[1] (V)			Typical Temperature Coefficient of	Typical Thermal Resistance Junction to Thermal Pad
	Min.	Тур.	Max.	Forward Voltage ^[2] (mV/°C) $\Delta V_{_{\rm F}} / \Delta T_{_{\rm J}}$	(°C/W) Rθ _{J-C}
2700K, 3000K	48.5	50.0	52.0	-30.0	3

Note for Table 3:

1. Philips Lumileds maintains a tolerance of \pm 0.5% on forward voltage measurements.

2. Measured between $25^{\circ}C \leq T_{I} \leq 125^{\circ}C$ at I_{f} = 40 mA.

Absolute Maximum Ratings

Table 4.						
Maximum Performance						
45						
45						
65						
< 1000V Human Body Model (HBM)						
Class 2 JESD22-A114-B						
< 400V Machine Model (MM)						
Class 2 JESD22-A115-B						
125°C						
-40°C - 118°C						
-40°C - 135°C						
JEDEC 020c 260°C						
3						
121°C at 2 ATM						
100% Relative Humidity for 96 Hours Maximum						
LUXEON H LEDs are not designed to be driven in reverse bias						

Notes for Table 4:

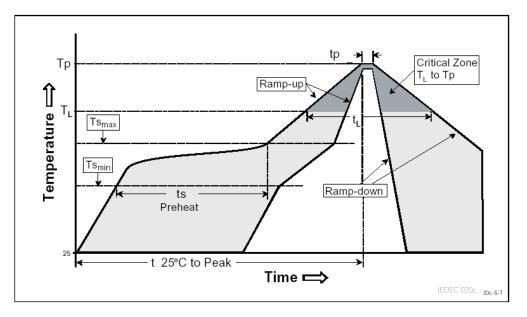
1. Proper current derating must be observed to maintain junction temperature below the maximum.

2. For AC operation with a minimum of 50Hz.

JEDEC Moisture Sensitivity

	Table 5.							
Soak Requirements								
Level	Floor Life		Standa	ard				
	Time	Conditions	Time	Conditions				
1	unlimited	\leq 30°C /	l 68h	85°C / 85%				
		85% RH	+ 5 / - 0	RH				

Reflow Soldering Characteristics



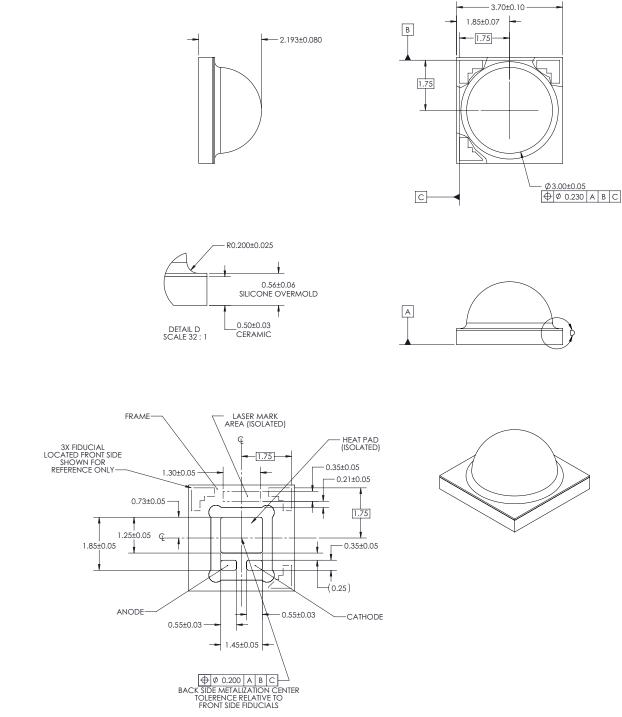
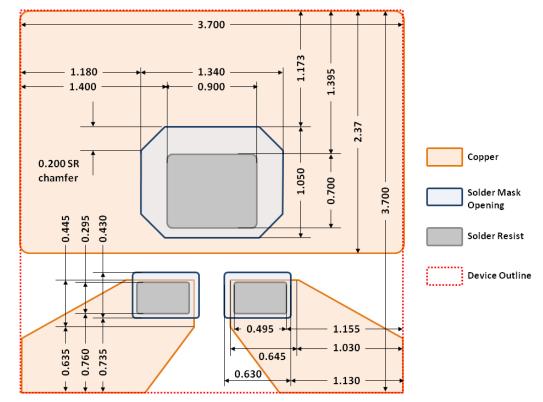

Figure 1. Temperature profile for Table 6.

Table 6.		
Profile Feature	Lead Free Assembly	
Average Ramp-Up Rate $(Ts_{max} to T_p)$	3°C / second max	
Preheat Temperature Min (Ts _{min})	150°C	
Preheat Temperature Max (Ts _{max})	200°C	
Preheat Time (ts _{min} to ts _{max})	60 - 180 seconds	
Time Maintained Above Temperature $T_{\scriptscriptstyle L}$	217°C	
Time Maintained Above Time (t_1)	60 - 150 seconds	
Peak / Classification Temperature (T_p)	260°C	
Time Within 5°C of Actual Peak Temperature (t_p)	20 - 40 seconds	
Ramp-Down Rate	6°C / second max	
Time 25°C to Peak Temperature	8 minutes max	

Note for Table 6:

- All temperatures refer to the application Printed Circuit Board (PCB), measured on the surface adjacent to the package body.


Mechanical Dimensions

Notes for Figure 2:

- Do not handle the device by the lens. Excessive force on the lens may damage the lens itself or the interior of the device.
- Drawings not to scale.
- All dimensions are in millimeters.
- The thermal pad is electrically isolated from the anode and cathode contact pads.

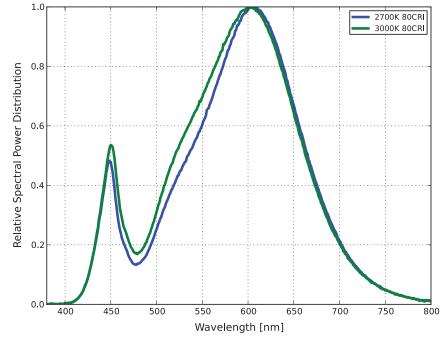

Solder Pad Design

Figure 3. Solder pad layout.

Note for Figure 3:

- The photograph shows the recommended LUXEON H50-2 layout on Printed Circuit Board (PCB).
- For more information on assembly and layout, please refer to application brief 110 (AB110).
- The .dwg files are available at www.philipslumileds.com and www.philipslumileds.cn.com.

Relative Spectral Distribution vs. Wavelength Characteristics

Relative Spectra at Test Current, Thermal Pad Temperature = 85°C

Light Output Characteristics

Relative Light Output vs. Thermal Pad Temperature Test Current = 40 mA

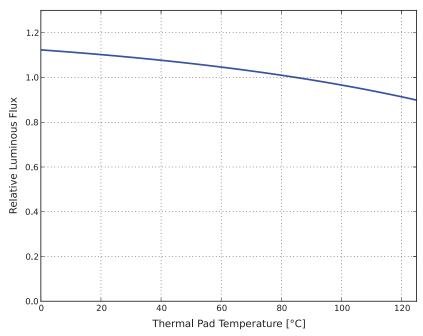


Figure 5. Relative light output vs. thermal pad temperature, LXAC-1827 and LXAC-1830.

Relative Light Output vs. Forward Current Thermal Pad Temperature = 85°C

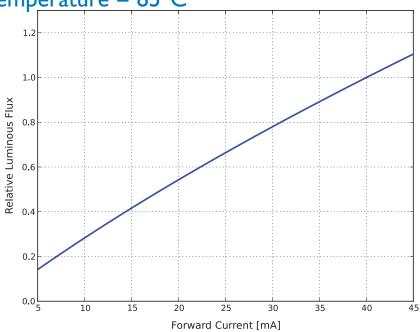


Figure 6. Typical relative luminous flux vs. forward current, LXAC-1827 and LXAC-1830.

Typical Forward Current Characteristics

Thermal Pad Temperature = 85°C

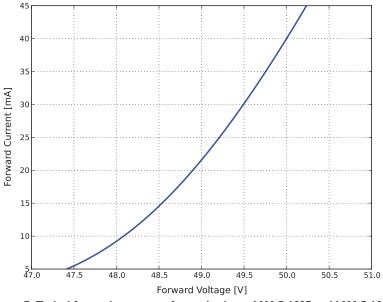
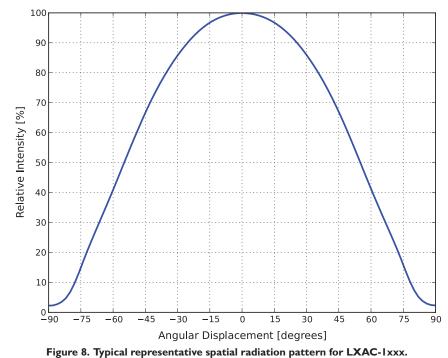



Figure 7. Typical forward current vs. forward voltage, LXAC-1827 and LXAC-1830.

Typical Radiation Pattern

Typical Spatial Radiation Pattern

Typical Polar Radiation Pattern

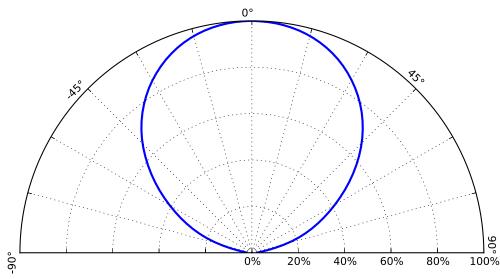


Figure 9. Typical representative polar radiation pattern for LXAC-I xxx.

Emitter Pocket Tape Packaging

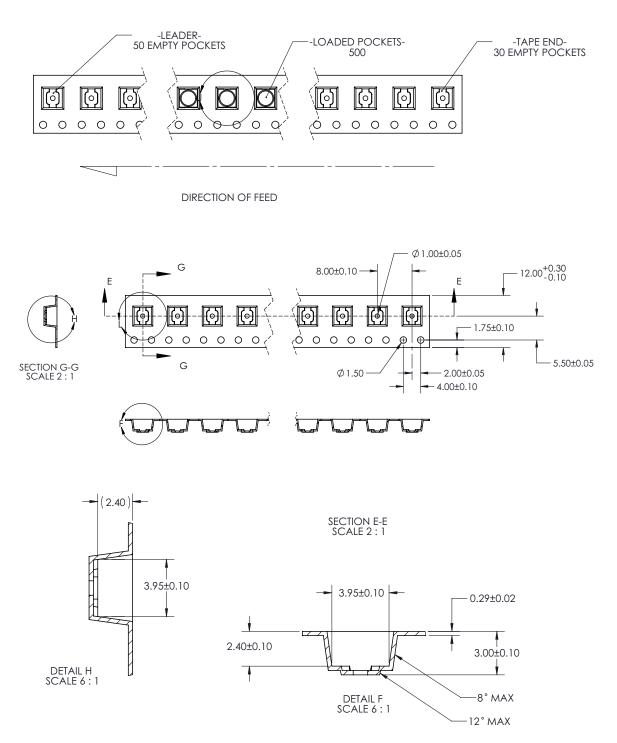


Figure 10. Emitter pocket tape packaging.

Emitter Reel Packaging

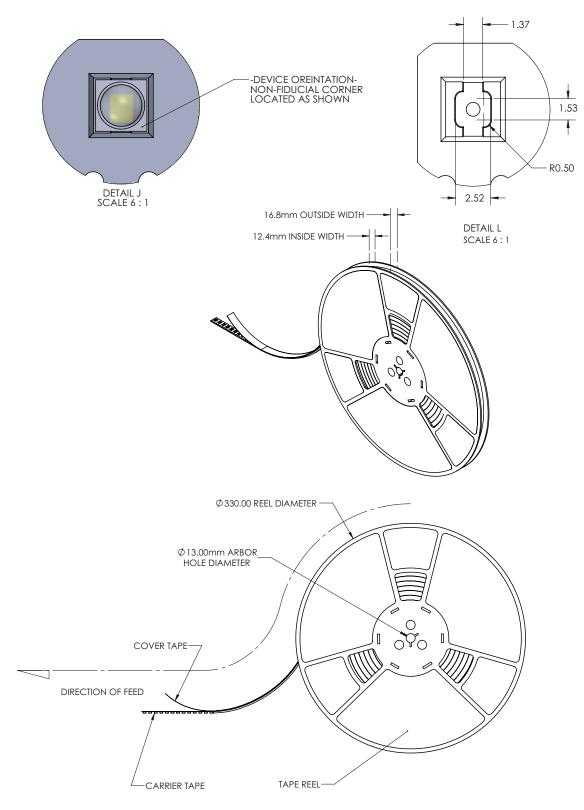


Figure 11. Emitter reel packaging.

Product Binning and Labeling

Purpose of Product Binning

In the manufacturing of semiconductor products, there are variations in performance around the average values given in the technical data sheets. For this reason, Philips Lumileds bins the LED components for luminous flux, color and forward voltage (V_{t}) .

Decoding Product Bin Labeling

LUXEON H50-2 emitters are labeled using a four digit alphanumeric code (CAT code) depicting the bin values for emitters packaged on a single reel. All emitters packaged within a reel are of the same 3-variable bin combination. Using these codes, it is possible to determine optimum mixing and matching of products for consistency in a given application.

Reels of 2700K, 3000K emitters are labeled with a four digit alphanumeric CAT code following the format below.

ABCD

A = Flux bin (C, D, etc.) B and C = Color bin (73, 7A, 7B etc.) D = V, bin (E, F, G, etc.)

Luminous Flux Bins

Table 7 lists the standard photometric luminous flux bins for LUXEON H50-2 emitters (tested and binned at 40 mA and $T_j = 85^{\circ}$ C). Although several bins are outlined, product availability in a particular bin varies by production run and by product performance. Not all bins are available in all colors.

	Table 7.							
	Flux Bins - All Colors							
	Minimum Photometric Flux	Maximum Photometric Flux						
Bin Code	(lm)	(lm)						
С	20	30						
D	30	140						
E	40	150						
F	150	160						
G	160	170						
Н	170	180						
J	180	190						
К	190	200						
L	200	210						
М	210	220						
Ν	220	230						
Р	230	240						
Q	240	250						

LUXEON H50-2 Color Bin Structure

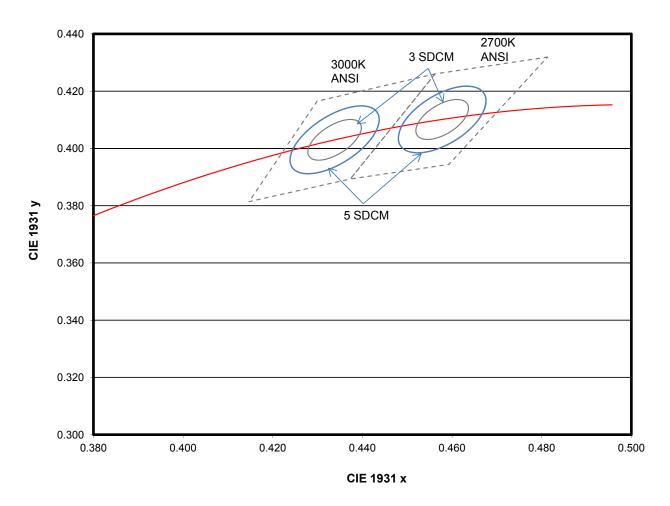
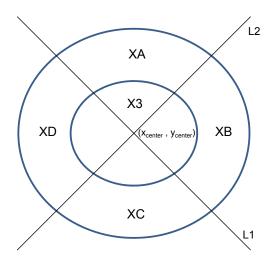



Figure 12. LUXEON H50-2 color bin structure for 2700K and 3000K.

ССТ	Line	Slope	Offset
2700K	L1	76.75590551	-34.72875354
2700K	L2	0.587963912	0.140930121
3000K	L1	22.58256881	-9.393318349
3000K	L2	0.611804077	0.137599392

ССТ	X in Color Bin Code
2700K	8
3000K	7

Table 8. 3 MacAdam Ellipse

Based on: ANSI C78.376-2001 and ANSI C78.377-2008								
 Elliptical angle*								
ANSI Bins	X _{center}	y _{center}	Major axis, a	Minor axis, b	(deg)			
2700K	0.4578	0.4101	0.0081	0.0042	53.70°			
3000K	0.4338	0.4030	0.00834	0.00408	53.22°			

Table 9. 5 MacAdam Ellipse

Based on: ANSI C78.376-2001 and ANSI C78.377-2008								
 ANSI Bins	X _{center}	γ _{center}	Major axis, a	Minor axis, b	Elliptical angle [*] (deg)			
 2700K	0.4578	0.4101	0.01350	0.00700	53.70°			
3000K	0.4338	0.4030	0.01390	0.00680	53.22°			

Note for Tables 8 and 9:

- Philips Lumileds maintains a tester tolerance of +/-0.005 on x,y color coordinates.

Forward Voltage Bins

Table 10 lists minimum and maximum V_f bin values per emitter. Although several bins are outlined, product availability in a particular bin varies by production run and by product performance.

Table 10. V _r Bins		
Bin Code	(V)	(V)
E	48.5	49
F	49	49.5
G	49.5	50
Н	50	50.5
J	50.5	51
К	51	51.5
L	51.5	52

Company Information

Philips Lumileds is a leading provider of LEDs for everyday lighting applications. The company's records for light output, efficacy and thermal management are direct results of the ongoing commitment to advancing solid-state lighting technology and enabling lighting solutions that are more environmentally friendly, help reduce CO_2 emissions and reduce the need for power plant expansion. Philips Lumileds LUXEON[®] LEDs are enabling never before possible applications in outdoor lighting, shop lighting, home lighting, consumer electronics, and automotive lighting.

Philips Lumileds is a fully integrated supplier, producing core LED material in all three base colors, (Red, Green, Blue) and white. Philips Lumileds has R&D centers in San Jose, California and in the Netherlands, and production capabilities in San Jose, Singapore and Penang, Malaysia. Founded in 1999, Philips Lumileds is the high flux LED technology leader and is dedicated to bridging the gap between solid-state technology and the lighting world. More information about the company's LUXEON LED products and solid-state lighting technologies can be found at www.philipslumileds.com.

www.philipslumileds.com www.philipslumileds.cn.com www.futurelightingsolutions.com

For technical assistance or the location of your nearest sales office contact any of the following:

North America: I 888 589 3662 americas@futurelightingsolutions.com

Europe: 00 800 443 88 873 europe@futurelightingsolutions.com

Asia Pacific: 800 5864 5337 asia@futurelightingsolutions.com

Japan: 800 5864 5337 japan@futurelightingsolutions.com

©2011 Philips Lumileds Lighting Company.All rights reserved. Product specifications are subject to change without notice. LUXEON is a registered trademark of the Philips Lumileds Lighting Company in the United States and other countries.

