<u>Linear Regulator</u> - Dual Output, Low Dropout

250 mA

The NCP5504/NCV5504 are dual output low dropout linear regulators with $\pm 2.0\%$ accuracy over the operating temperature range. They feature a fixed output voltage of 3.3 V (contact factory for other fixed output voltage options) and an adjustable output that ranges from 1.25 V to 5.0 V. It is available in a 5 pin DPAK Pb–Free package.

The NCP5504/NCV5504 employs an architecture that offers low noise without a bypass capacitor for the fixed output. This device along with a ripple rejection of 75 dB and a dropout of 250 mV @ 250 mA, suits post–regulation and power sensitive battery–operated applications.

Features

- One Fixed and One Adjustable Output Pin
- 250 mA Each Output
- Adjustable Output Voltage from 1.25 V to 5.0 V
- Low Dropout Voltage of 250 mV typical at 250 mA
- Low Quiescent Current of 370 μA typical
- Ripple Rejection of 75 dB
- Temperature Range of NCP5504 –25°C to +85°C
 Temperature Range of NCV5504 –40°C to +125°C
- Low Noise Without Bypass Capacitor; 90 μVrms
- Line Regulation < 15 mV
- Load Regulation; V_{out1} < 15 mV, V_{out2} < 10 mV
- Accuracy of ±2% Overtemperature Range
- Thermal Protection and Current Limit
- Short Circuit Protection
- NCV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable
- These are Pb-Free Devices

Typical Applications

- Audio Visual Equipment
- Battery Powered Consumer Products
- Instrumentation
- Computing and Networking Applications
- Automotive Electronics

ON Semiconductor®

http://onsemi.com

DPAK-5 DT SUFFIX CASE 175AA

MARKING DIAGRAM

- Pin 1. Adjust for Vout
 - 2. Vout2
 - 3. GND
 - 4. V_{in}
 - 5. V_{out1}

A = Assembly Location

= Wafer Lot Y = Year

WW = Work Week

G = Pb-Free Package

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 9 of this data sheet.

PIN FUNCTION DESCRIPTION

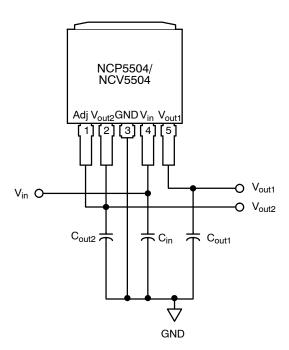
Pin No.	Pin Name	Description
1	Adjust for V _{out2}	This pin is connected to the resistor divider on the output. For a 1.25 V output, connect directly to the V_{out2} pin.
2	V _{out2}	Adjustable Regulated Output Voltage.
3	GND	Power Supply Ground
4	V _{in}	Positive Power Supply Input Voltage.
5	V _{out1}	Fixed Regulated Output Voltage. See selector guide for options.

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Input Voltage	V _{in}	18	V
Operating Input Voltage for Power Considerations	V _{in}	9.0	V
Output Pin Voltage	V _{out}	-0.3 to V _{in} +0.3	V
Adjust Pin Voltage	V _{adj}	-0.3 to V _{in} +0.3	V
Maximum Junction Temperature NCP5504 NCV5504	TJ	125 150	°C
Operating Ambient Temperature NCP5504 NCV5504	T _A	−25°C to +85°C −40°C to +125°C	°C
Package Thermal Resistance Thermal Resistance, Junction-to-Air Thermal Resistance, Junction-to-Case	R _{θЈА} R _{θЈС}	100 8	°C/W
Storage Temperature Range	T _{stg}	-55 to +150	°C
Electrostatic Discharge Sensitivity Human Body Model (HBM) Machine Model (MM) Charge Device Model (CDM)	ESD	2000 200 2000	V
Latchup Performance (JESD78) Positive Negative	I _{Latchup}	100 100	mA

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

NCP5504 ELECTRICAL CHARACTERISTICS


(V_{in} = V_{out} + 1.0 V, where V_{out} is the larger of V_{out1} or V_{out2} , T_A = 25°C, unless otherwise noted)

Characteristic		Symbol	Min	Тур	Max	Unit
Output Voltage NCP5504 ($T_A = -25$ °C to 85°C), $I_O = 250$ mA		V _{out}				V
,,,	V_{out1} V_{out2}		–2% –2%	3.30 1.25	+2% +2%	
Adjustable Pin Current		I _{adj}	-	50	100	nA
Line Regulation (V_{out} + 1.0 V < V_{in} < 7.0 V), I_O = 250 mA		Reg _{line}	-	5	15	mV
Load Regulation (1.0 mA < I _O < 250 mA) for V _{out1} Load Regulation (1.0 mA < I _O < 250 mA) for V _{out2}		Reg _{load}	-	10 5	15 10	mV mV
Dropout Voltage (I _O = 250 mA)		V_{DO}	=	250	400	mV
Ripple Rejection Ratio (I _O = 250 mA)	120 Hz 1 kHz	RR	- -	75 60	- -	dB
Quiescent Current (I _{O1} , I _{O2} = 0 mA)		Ιq	-	370	450	μΑ
Fixed Output Noise Voltage (10 Hz – 100 kHz V_{out} = 3.3 V, I_O = 100 mA, C_O = 1.0 μF)		V _n	-	90	=	μVrms
Ground Current (I _{O1} , I _{O2} = 250 mA)		I _{gnd}	-	10	20	mA
Thermal Shutdown (Guaranteed by design)		T _{Jmax}	150	165	-	°C
Current Limit on V _{out1} and V _{out2}		I _{lim}	350	450	-	mA

NCV5504 ELECTRICAL CHARACTERISTICS

 $(V_{in} = V_{out} + 1.0 \text{ V}, \text{ where } V_{out} \text{ is the larger of } V_{out1} \text{ or } V_{out2}, -40^{\circ}C \leq T_{J} \leq 150^{\circ}C, -40^{\circ}C \leq T_{A} \leq 125^{\circ}C, \text{ unless otherwise noted})$

Characteristic		Symbol	Min	Тур	Max	Unit
Output Voltage NCV5504, I _O = 250 mA		V _{out}				V
, 0	V _{out1} V _{out2}		-2% -2%	3.30 1.25	+2% +2%	
Adjustable Pin Current		I _{adj}	-	50	100	nA
Line Regulation (V_{out} + 1.0 V < V_{in} < 7.0 V), I_O = 250 mA		Reg _{line}	-	5	15	mV
Load Regulation (1.0 mA < I_O < 250 mA) for V_{out1} Load Regulation (1.0 mA < I_O < 250 mA) for V_{out2}		Reg _{load}	-	10 5	15 10	mV mV
Dropout Voltage (I _O = 250 mA)		V_{DO}	=	250	400	mV
Ripple Rejection Ratio (I _O = 250 mA)	120 Hz 1 kHz	RR	- -	75 60	- -	dB
Quiescent Current (I _{O1} , I _{O2} = 0 mA)		Ιq	-	370	450	μΑ
Fixed Output Noise Voltage (10 Hz – 100 kHz V_{out} = 3.3 V, I_O = 100 mA, C_O = 1.0 μF)		V _n	-	90	-	μVrms
Ground Current (I _{O1} , I _{O2} = 250 mA)		I _{gnd}	-	10	20	mA
Thermal Shutdown (Guaranteed by design)		T _{Jmax}	150	165	-	°C
Current Limit on V _{out1} and V _{out2}		I _{lim}	320	450	-	mA

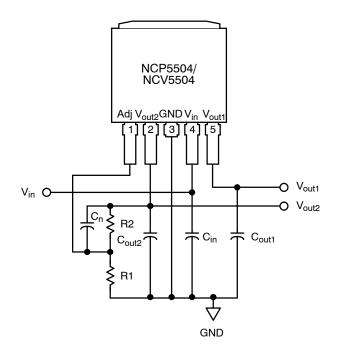


Figure 1. Application Schematic, Fixed Output Version. V_{out1} = 3.3 V, V_{out2} = 1.25 V

Figure 2. Application Schematic, Adjustable Version. V_{out1} = 3.3 V, V_{out2} = 1.25 V to 5.0 V, Where V_{out2} = 1.25 V * (1+R2/R1)

NOTE: Please note that in order to maintain high accuracy on the adjustable output (V_{out2}), use R1 values < 30 k Ω in the resistor divider. The recommended capacitor type and values are as follows:

 C_{in} (Tantalum or Aluminum Electrolytic) = 4.7 μF to 100 μF

 C_{out1} , C_{out2} = Low ESR, 1.0 μ F to 22 μ F

 $C_n = 200 \text{ pF to } 1.0 \text{ nF.}$

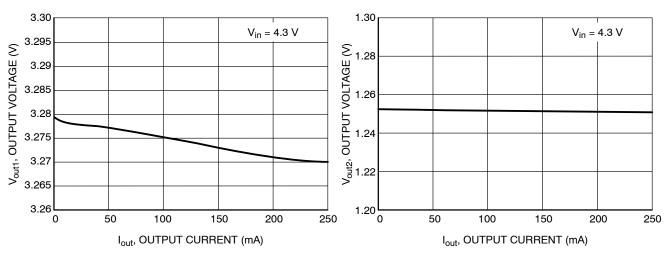


Figure 3. Output Voltage vs. Output Load Current for V_{out1}

Figure 4. Output Voltage vs. Output Load Current for V_{out2}

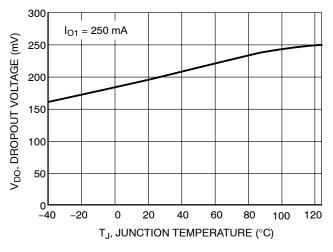


Figure 5. Dropout Voltage vs. Temperature for Vout1

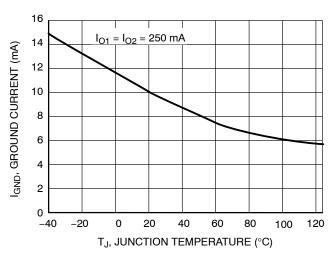


Figure 6. Ground Current vs. Temperature

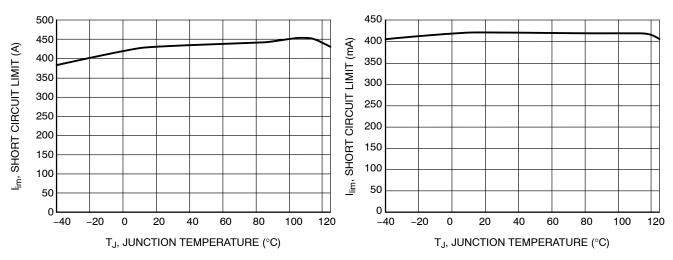


Figure 7. Short Circuit Current Limit vs. Temperature for V_{out1}

Figure 8. Short Circuit Current Limit vs. Temperature for V_{out2}

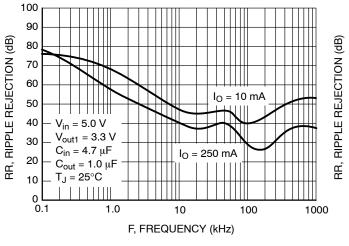


Figure 9. Ripple Rejection vs. Frequency for

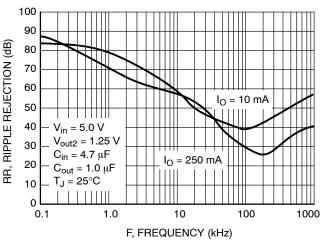
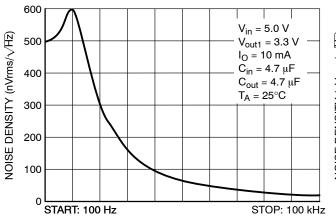



Figure 10. Ripple Rejection vs. Frequency for V_{out2}

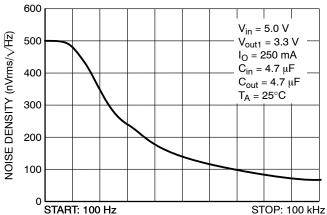
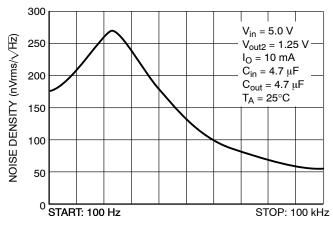



Figure 11. Noise Density vs. Frequency

Figure 12. Noise Density vs. Frequency

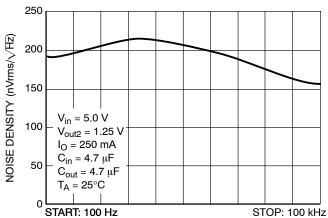
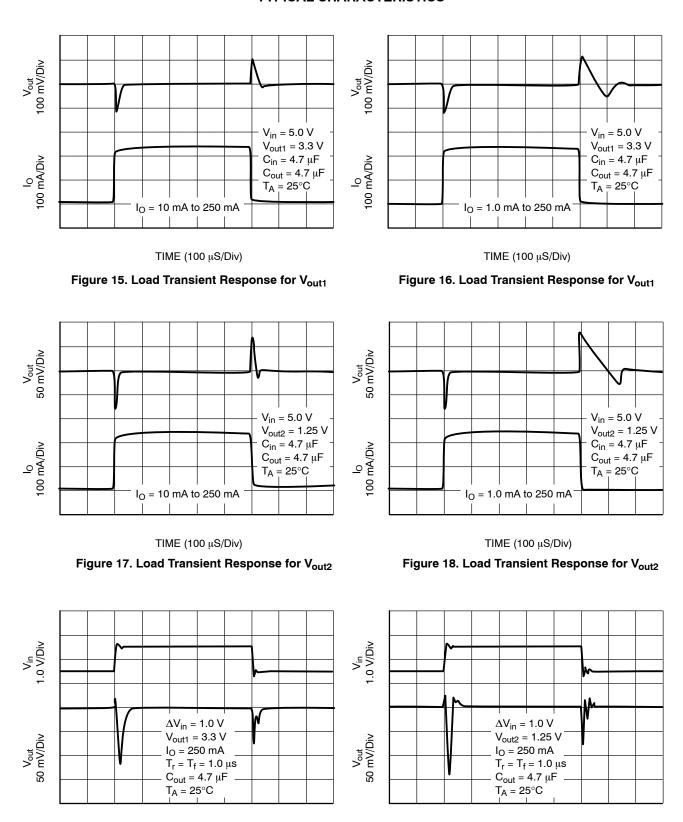



Figure 14. Noise Density vs. Frequency

 $\label{eq:time_spin} \text{TIME (40 μS/Div)}$ Figure 19. Line Transient Response for $\textbf{V}_{\textbf{out1}}$

TIME (40 μ S/Div) Figure 20. Line Transient Response for V_{out2}

APPLICATION INFORMATION

Introduction

The NCP5504/NCV5504 are high performance dual output, 250 mA linear regulators suitable for post regulation and power sensitive battery-operated applications. They feature ±2.0% accuracy over the operating temperature range. With one fixed output voltage at 3.3 V, and one adjustable output voltage ranging from 1.25 V to 5.0 V, the dropout voltage is 250 mV typical. Additional features, such as an architecture that allows for low noise on the fixed output without a bypass capacitor, provides for an attractive LDO solution for audio visual equipment, instrumentation, computing and networking applications, and automotive electronics. It is thermally robust and is offered in a 5 pin DPAK Pb-Free package.

Capacitor Selection

The recommended input capacitor types are tantalum and aluminum electrolytic ranging from 4.7 μ F to 100 μ F. It is especially required if the power source is located more than a few inches from the NCP5504/NCV5504. This capacitor

will reduce device sensitivity and enhance the output transient response time. The PCB layout is very important and in order to obtain the optimal solution, the V_{in} and GND traces should be sufficiently wide to minimize noise and unstable operation.

For the adjustable output pin, C_n ranges from 200 pF and 1.0 nF.

The output capacitor range is between 1.0 μF and 22 μF . For PCB layout considerations, place the capacitor close to the output pin and keep the leads short.

Adjustable Output Operation

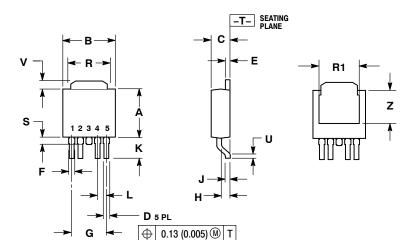
The application circuit for the adjustable output version is shown in Figure 2. V_{out2} is calculated based on the following equation:

$$V_{out2} = 1.25 \text{ V} * \left(1 + \frac{R2}{R1}\right)$$

In order to maintain high accuracy on the adjustable output, R1 values should be $< 30 \text{ k}\Omega$.

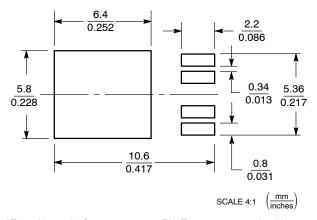
ORDERING INFORMATION

Device	Package	Shipping [†]
NCP5504DTRKG	DPAK (Pb-Free)	2500 / Tape and Reel
NCV5504DTRKG*	DPAK (Pb-Free)	2500 / Tape and Reel

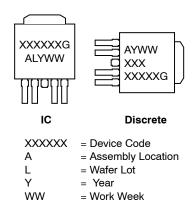

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

^{*}NCV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable

DPAK-5, CENTER LEAD CROP CASE 175AA **ISSUE B**


DATE 15 MAY 2014

- NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
- 2. CONTROLLING DIMENSION: INCH.


	INCHES		MILLIM	ETERS
DIM	MIN	MAX	MIN	MAX
Α	0.235	0.245	5.97	6.22
В	0.250	0.265	6.35	6.73
С	0.086	0.094	2.19	2.38
D	0.020	0.028	0.51	0.71
E	0.018	0.023	0.46	0.58
F	0.024	0.032	0.61	0.81
G	0.180	BSC	4.56 BSC	
Н	0.034	0.040	0.87	1.01
J	0.018	0.023	0.46	0.58
K	0.102	0.114	2.60	2.89
L	0.045 BSC		1.14 BSC	
R	0.170	0.190	4.32	4.83
R1	0.185	0.210	4.70	5.33
S	0.025	0.040	0.63	1.01
U	0.020		0.51	
٧	0.035	0.050	0.89	1.27
Z	0.155	0.170	3.93	4.32

RECOMMENDED SOLDERING FOOTPRINT*

^{*}For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

GENERIC MARKING DIAGRAMS*

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " ■", may or may not be present.

= Pb-Free Package

DOCUMENT NUMBER:	98AON12855D	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.			
DESCRIPTION:	DPAK-5 CENTER LEAD CROP		PAGE 1 OF 1		

ON Semiconductor and (III) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at www.onsemi.com/support/sales