
#### Typical Applications

High Dynamic Range Infrastructure:

- GSM, GPRS & EDGE
- CDMA & W-CDMA
- Cable Modem Termination Systems

# MIXERS - HIGH IP3 - SMT 6

#### **Functional Diagram**



# HMC400MS8 / 400MS8E

## HIGH IP3 GaAs MMIC MIXER, 1.7 - 2.2 GHz

#### Features

Input IP3: +35 dBm Conversion Loss: 8.8 dB No External Components Ultra Small MSOP Package: 14.8mm<sup>2</sup> Included in the HMC-DK003 Designer's Kit

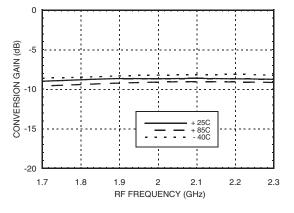
#### **General Description**

The HMC400MS8(E) is a high dynamic range passive MMIC mixers in plastic surface mount 8 lead Mini Small Outline Packages (MSOP) covering 1.7 to 2.2 GHz. Excellent input IP3 performance of +36 dBm for down conversion and +29 dBm for up conversion is provided for 2.5G & 3G GSM/CDMA based UMTS or PCS applications at an LO drive of +17 dBm. With a 1 dB compression of +21 dBm, the RF port will accept a wide range of input signal levels. Conversion loss is 8.5dB typical and LO isolations are maintained at 22 to 33 dB. This miniature single-ended monolithic GaAs FET mixer does not require any external components or bias. The 50 to 300 MHz IF frequency response will satisfy many UMTS/PCS transmit or receive frequency plans configured for low side LO. The HMC400MS8(E) input IP3 performance coupled with its high P1dB rivals traditional active FET mixers while offering a much smaller 14.8mm<sup>2</sup> standard IC footprint and no DC bias.

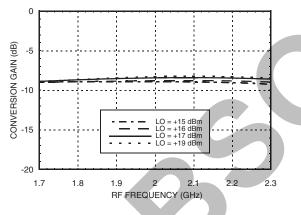
#### Electrical Specifications, $T_A = +25^{\circ}$ C, LO = +17 dBm, IF = 200 MHz\*

v02.0705

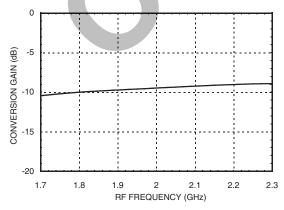
| Parameter                      | Min.       | Тур.       | Max.       | Min. | Тур.       | Max. | Min. | Тур.       | Max. | Units |
|--------------------------------|------------|------------|------------|------|------------|------|------|------------|------|-------|
| Frequency Range, RF            | 1.7 - 1.8  |            | 1.8 - 2.0  |      | 2.0 - 2.2  |      | GHz  |            |      |       |
| Frequency Range, LO            | 1.4 - 1.75 |            | 1.5 - 1.95 |      | 1.7 - 2.15 |      | GHz  |            |      |       |
| Frequency Range, IF            | DC - 300   |            | DC - 300   |      | DC - 300   |      | MHz  |            |      |       |
| Conversion Loss                |            | 9          | 11         |      | 8.8        | 10.5 |      | 8.8        | 10.5 | dB    |
| Noise Figure (SSB)             |            | 9          | 11         |      | 8.8        | 10.5 |      | 8.8        | 10.5 | dB    |
| LO to RF Isolation             | 29         | 33         |            | 24   | 30         |      | 20   | 25         |      | dB    |
| LO to IF Isolation             | 16         | 20         |            | 17   | 22         |      | 19   | 25         |      | dB    |
| IP3 (Input)                    | 30         | 34         |            | 32   | 36         |      | 28   | 32         |      | dBm   |
| 1 dB Gain Compression (Input)  | 18         | 21         |            | 18   | 21         |      | 18   | 22         |      | dBm   |
| LO Input Drive Level (Typical) |            | +16 to +18 |            |      | +16 to +18 |      |      | +16 to +18 |      | dBm   |


\*Unless otherwise noted, all measurements performed as a downconverter, with low side LO & IF = 200 MHz.

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

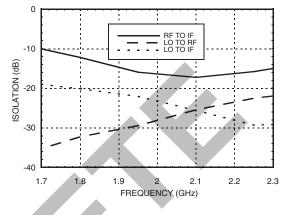




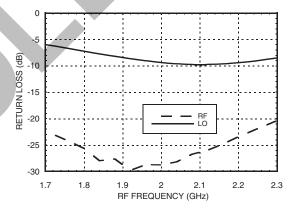


Conversion Gain vs. Temperature @ LO = +17 dBm



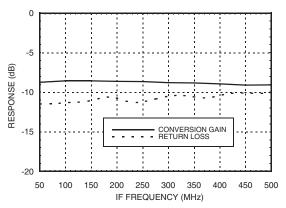
Conversion Gain vs. LO Drive




Upconverter Performance Conversion Gain @ LO = +17 dBm




## HIGH IP3 GaAs MMIC MIXER, 1.7 - 2.2 GHz



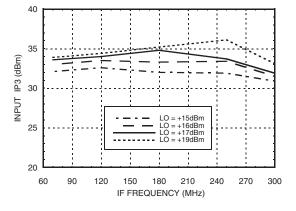



Return Loss @ LO = +17 dBm

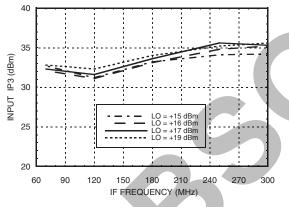


If Bandwidth @ LO = +17 dBm

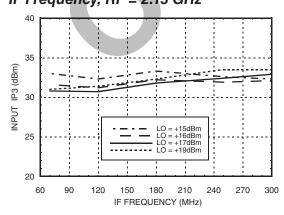



\*Unless otherwise noted, all measurements performed as a downconverter, with low side LO & IF = 200 MHz.

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

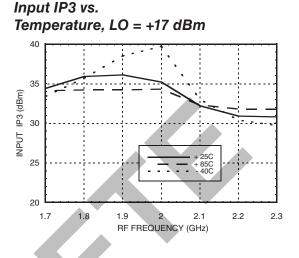




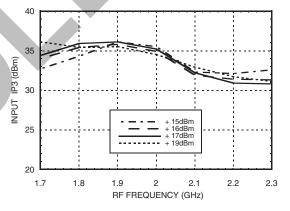


Input IP3 vs. IF Frequency, RF = 1.75 GHz



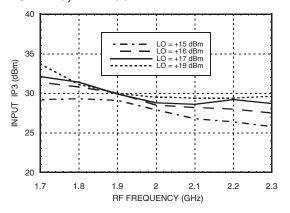
Input IP3 vs. IF Frequency, RF = 1.95 GHz




Input IP3 vs. IF Frequency, RF = 2.15 GHz







## HIGH IP3 GaAs MMIC MIXER, 1.7 - 2.2 GHz

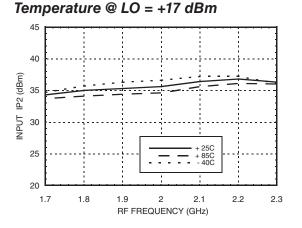


Input IP3 vs. LO Drive

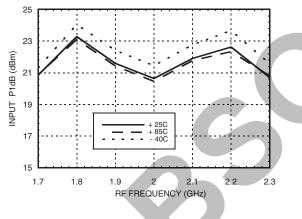


Upconverter IP3 vs. LO Drive, IF = 200 MHz




\*Unless otherwise noted, all measurements performed as a downconverter, with low side LO & IF = 200 MHz.

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

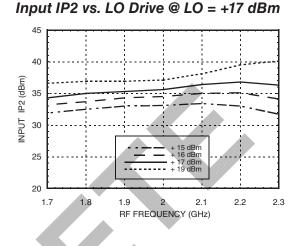





Input IP2 vs.



Input P1dB vs. Temperature @ LO = +17 dBm




#### Harmonics of LO

|                                                                       |    | nLO Spur @ RF Port |    |    |
|-----------------------------------------------------------------------|----|--------------------|----|----|
| LO Freq (GHz)                                                         | 1  | 2                  | 3  | 4  |
| 1.4                                                                   | 42 | 26                 | 56 | 46 |
| 1.55                                                                  | 33 | 25                 | 56 | 53 |
| 1.7                                                                   | 29 | 29                 | 49 | 50 |
| 1.85                                                                  | 26 | 31                 | 44 | 53 |
| <b>2</b> 24 36 44 48                                                  |    |                    |    |    |
| 2.15                                                                  | 21 | 38                 | 43 | 49 |
| LO = +17 dBm<br>All values are in dBc below input LO level @ RF port. |    |                    |    |    |

# HMC400MS8 / 400MS8E

## HIGH IP3 GaAs MMIC MIXER, 1.7 - 2.2 GHz



## **MxN Spurious Outputs**

|                           |    |     | nLO |    |    |  |
|---------------------------|----|-----|-----|----|----|--|
| mRF                       | 0  | 1   | 2   | 3  | 4  |  |
| 0                         | xx | -11 | 7   | 4  | 8  |  |
| 1                         | 9  | 0   | 24  | 31 | 27 |  |
| 2                         | 71 | 70  | 49  | 58 | 64 |  |
| <b>3</b> 79 80 80 79 77   |    |     |     |    |    |  |
| 4                         | 77 | 80  | 80  | 79 | 80 |  |
| RF Freq = 2 GHz @ -10 dBm |    |     |     |    |    |  |

LO Freq = 1.8 GHz @ +17 dBm

All values in dBc relative to the IF output power.

#### Absolute Maximum Ratings

| RF/IF Input           | +27 dBm        |
|-----------------------|----------------|
| LO Drive              | +27 dBm        |
| Storage Temperature   | -65 to +150 °C |
| Operating Temperature | -40 to +85 °C  |
| IF DC Current         | ±40 mA         |



ELECTROSTATIC SENSITIVE DEVICE OBSERVE HANDLING PRECAUTIONS

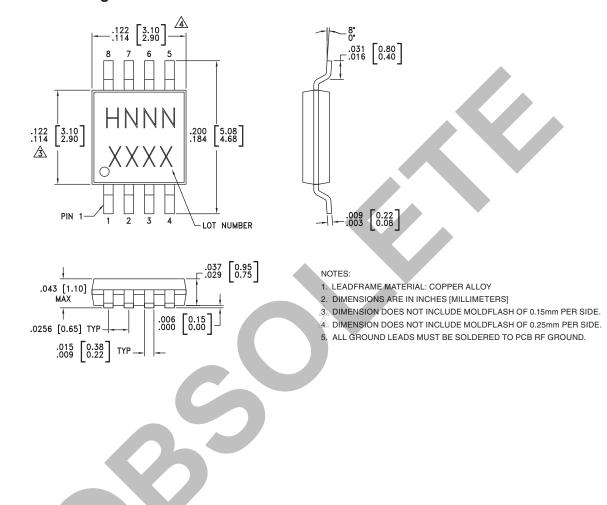
\*Unless otherwise noted, all measurements performed as a downconverter, with low side LO & IF = 200 MHz.

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.



# HMC400MS8 / 400MS8E




9

MIXERS - HIGH IP3 - SMT

v02.0705

## HIGH IP3 GaAs MMIC MIXER, 1.7 - 2.2 GHz

**Outline Drawing** 



#### **Package Information**

| Part Number | Package Body Material                              | Lead Finish   | MSL Rating          | Package Marking <sup>[3]</sup> |
|-------------|----------------------------------------------------|---------------|---------------------|--------------------------------|
| HMC400MS8   | Low Stress Injection Molded Plastic                | Sn/Pb Solder  | MSL1 <sup>[1]</sup> | H400<br>XXXX                   |
| HMC400MS8E  | RoHS-compliant Low Stress Injection Molded Plastic | 100% matte Sn | MSL1 <sup>[2]</sup> | H400<br>XXXX                   |

[1] Max peak reflow temperature of 235  $^\circ\text{C}$ 

[2] Max peak reflow temperature of 260 °C

[3] 4-Digit lot number XXXX



# HMC400MS8 / 400MS8E

## HIGH IP3 GaAs MMIC MIXER, 1.7 - 2.2 GHz

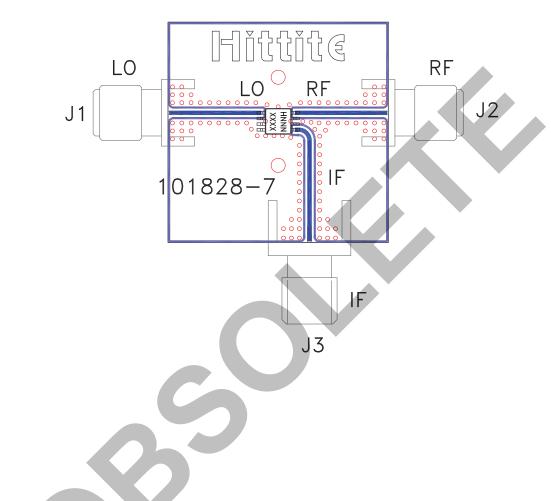


#### **Pin Descriptions**

| Pin Number | Function | Description                                                                                                                                                                                                                                                                                                            | Interface Schematic |
|------------|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|
| 1          | LO       | This pin is AC coupled & matched to 50 Ohms<br>from 1.4 to 2.2 GHz. Blocking capacitors are required<br>if line potential is not equal to 0V.                                                                                                                                                                          |                     |
| 2, 4       | N/C      | Not connected.                                                                                                                                                                                                                                                                                                         |                     |
| 3, 6, 7    | GND      | This pin must be connected to RF ground.                                                                                                                                                                                                                                                                               | O GND               |
| 5          | IF Port  | This pin is DC coupled. For applications not requiring<br>operation to DC this port should be DC blocked externally<br>using a series capacitor. Choose value of capacitor to pass<br>IF frequency desired. For operation to DC, this pin must<br>not sink/source more than 40 mA of current or failure may<br>result. |                     |
| 8          | RF Port  | This pin is DC coupled & matched to 50 Ohm<br>from 1.7 to 2.2 GHz                                                                                                                                                                                                                                                      | RF O                |

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.




# HMC400MS8 / 400MS8E

v02.0705

# HIGH IP3 GaAs MMIC MIXER, 1.7 - 2.2 GHz



#### **Evaluation PCB**



#### List of Materials for Evaluation PCB 101830<sup>[1]</sup>

| Item    | Description                  |  |  |  |
|---------|------------------------------|--|--|--|
| J1 - J3 | PCB Mount SMA RF Connector   |  |  |  |
| U1      | HMC400MS8 / HMC400MS8E Mixer |  |  |  |
| PCB [2] | 101828 Eval Board            |  |  |  |

Reference this number when ordering complete evaluation PCB
Circuit Board Material: Rogers 4350

The circuit board used in the final application should use RF circuit design techniques. Signal lines should have 50 ohm impedance while the package ground leads and exposed paddle should be connected directly to the ground plane similar to that shown. A sufficient number of via holes should be used to connect the top and bottom ground planes. The evaluation circuit board shown is available from Hittite upon request.

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.



# HMC400MS8 / 400MS8E

HIGH IP3 GaAs MMIC MIXER, 1.7 - 2.2 GHz



Notes:

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.