

Features

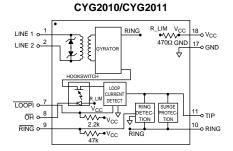
- Low distortion transformer signal coupling (0.01% max)
- · Complete ring detector circuit
- · Low power hookswitch
- Electronic inductor/gyrator circuit
- Surge protection
- Transient protection zeners
- Half- (20X0) or Full- (20X1) Wave Detection
- V.32 bis /V.34 compatible
- FCC Compatible
- Compatible with U.S. and Canadian dial up phone lines
- · Supports leased-line operation
- · PC board mountable

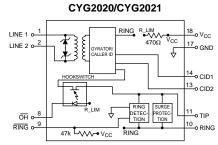
Applications

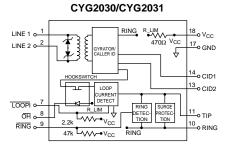
- Modems
- Fax machines
- · Remote data acquisition
- · Security systems
- · Voice mail systems
- · PC motherboard
- Computer telephony
- · Process control
- Medical
- PBX
- · Direct broadcast satellite

Description

The CYG2000/2001/2010/2011/2020/2021/2030/2031 are Data Access Arrangement (DAA) modules featuring a 350V, 120mA, 15 Ω relay used for hookswitch, optocoupler with minimum CTR of 33% for ring detection, and a low distortion transformer with 28.8kbps capabilities.


Approvals


UL recognized file #: E174201


Ordering Information

Part #	Description
CYG2000	DAA Module, Half Wave Ring Detection
CYG2001	DAA Module, Full Wave Ring Detection
CYG2010	DAA Module, Half Wave Ring Detection,
	Loop Current Detection
CYG2011	DAA Module, Full Wave Ring Detection
	Loop Current Detection
CYG2020	DAA Module, Half Wave Ring Detection,
	CID
CYG2021	DAA Module, Full Wave Ring Detection,
	CID
CYG2030	DAA Module, Half Wave Ring Detection,
	CID and Loop Current Detection
CYG2031	DAA Module, Full Wave Ring Detection,
	CID and Loop Current Detection

Block Diagrams

Handling and Assembly Recommendations

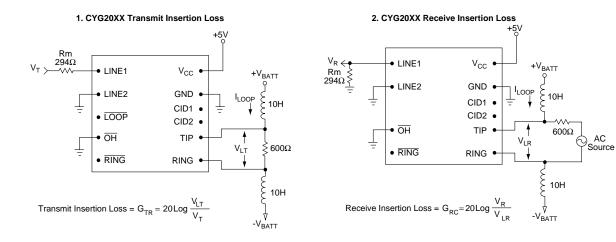
The CYG20XX products are not hermetically sealed and should not be exposed to any liquid-based rinsing processes. Clare recommends two (2) approaches. The modem should either use a no clean soldering flux that would mostly evaporate during the normal wave soldering processes, or be soldered in by hand after the rest of the card is wave soldered.

Absolute Maximum Ratings (@ 25° C)

Parameter	Min	Тур	Max	Units
Isolation Voltage	-	-	1000	V _{RMS}
Operational Temperature	0	-	70	°C
Storage Temperature	0	-	70	°C
Relative Humidity				
(Non-Condensing)	10	-	85	%
Soldering Temperature	-	-	260	°C
Tip/Ring (5, 6) Load				
current (continuous)	-	-	120	mA
Hookswitch LED				
Drive Current	-	-	50	mA
Hookswitch LED				
Reverse Voltage	-	-	5	V
Ring Detect				
Phototransistor Voltage V_{∞}	-	-	20	V

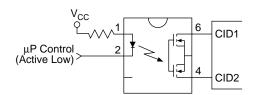
Absolute Maximum Ratings are stress ratings. Stresses in excess of these ratings can cause permanent damage to the device. Functional operation of the device at these or any other conditions beyond those indicated in the operational sections of this data sheet is not implied. Exposure of the device to the absolute maximum ratings for an extended period may degrade the device and effect its reliability.

Electrical Characteristics


Parameter	Conditions	Min	Тур	Max	Unit
DC Electrical Characteristics			,,		
On-Hook Impedance	@100VDC across pins 10,11 (R,T), per FCC 68.312	10	-	-	МΩ
Off-Hook Line Leakage Current	@100VDC across pins 10,11 (R,T), per FCC 68.312	-	-	10	μΑ
Hookswitch Resistance	-	-	-	15	Ω
Off-Hook Supply Current	@+5V, V _{cc}	7	8	9	mA
Hookswitch Power Source, Pin 8	-	4.75	5.0	20	V
DC Loop Current	-	20	-	120	mA
AC Signal Path Electrical Characteristics					
Return Loss	300-3500Hz	18	25	-	dB
Insertion Loss	300-3500Hz				
Transmit	Test Circuit 1	-	-	7	dB
Receive	Test Circuit 2	-	-	7	dB
Frequency Response	300-3500Hz	-0.25	-	+0.25	dB
Longitudinal Balance					
On-Hook	Per FCC 68.310	60	-	-	dB
Off-Hook	Per FCC 68.310	40	-	-	dB
DC Loop Current	-	20	-	120	mA
Total Harmonic Distortion	@600Hz and -10dBm	-	-	0.01	%
Secondary Load Impedance	Line 1 and Line 2	-	294	-	Ω
Primary Source Impedance	Tip and Ring	-	600	-	Ω
Ring Detection Circuit Characteristics	-				
Ringing Voltage Detection Range	-	20	-	150	Vrms
Ringing Frequency Detection Range	-	15	-	70	Hz
Ringer Equivalence Number	-	-	0.8B	_	
RING (Pin 9) Output Voltage (Pulsed)	V _{CC} @+5V				
Logic '0', Ring present	0, 5 1	-	_	0.8	V
Logic '1', Ring not present		-	-	Vcc	V

Electrical Characteristics (Continued)

Parameter	Conditions	Min	Тур	Max	Unit
Surge, Transient, and Isolation Characteristics					
Surge Protection Voltage Tip and Ring (Pins 11,10)	-	-	-	300	V
Transient Voltage Protection on Line 1 and Line 2 (Pins 1,2)	-	-5	-	+5	V
Isolation Voltage (Pins 1,2,7,8,9,17,18 to10,11,13,14)	Per FCC 68.302	-	1	1000	V_{RMS}
Loop Detection Characteristics (CYG2010/CYG2011/CYG2030/CYG2031)					
Loop Current Detection Threshold	Internal optocoupler with 2.2K Pull-up resistor	9	10	11	mA


Test Circuits

CYG2020/2021/2030/2031

Caller ID Connections

Pins 13 & 14 should be connected to a 1-Form-A solid state relay (Clare LCA110), as follows:

Rev. 1 www.clare.com 3

Package Pinouts

CYG2010/CYG2011

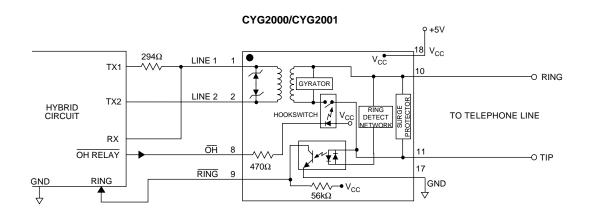
 V_{CC} GND

TIP RING

CYG2000/CYG2001		

LINE 1 LINE 2	° 1 ° 2	18 ° 17 °	V _{CC} GND	LINE 1 LINE 2	°1 °2	18 ° 17 °
DO NOT USE OH RING	07 08 09	11 ° 10 °	TIP RING	LOOPI OH RING	789	11 ° 10 °
	Top Vie	N				Top View

CYG2020/CYG2021 CYG2030/CYG2031


LINE 1	°1	18 °	V _{CC}	LINE 1 LINE 2	°1	18 °	V _{CC}
LINE 2	°2	17 °	GND		°2	17 °	GND
		14 ° 13 °	CID1 CID2	TOOPI	07	14 º 13 º	CID1 CID2
OH	0 8	11 °	TIP	OH RING	08	11 °	TIP
RING	0 9	10 °	RING		09	10 °	RING
		Top View				Top View	

CYG20XX Pinouts & Definitions

PIN# 1/0 Name **Function** 1 I/O LINE1 Transformer isolated audio signal coupling path for the telephone line. 2 I/O LINE2 Transformer isolated audio signal coupling path for the telephone line. When system is off-hook (OH driven LOW) LOOPI is driven LOW continuously 7 LOOPI ı on CYG2010/2011/2030/2031 devices. N/C Keying pin for CYG2000/CYG2001, do not use. Driving this pin LOW asserts the off-hook condition. The hookswitch LED is cur-8 ı ОН rent limited by an internal 470Ω resistor. RING 0 Active LOW indicates an incoming ring signal. This is pulsed LOW by the AC ring signal at the ring frequency from 15-40Hz. I/O **RING** 10 Connection to telephone line Ring conductor. I/O TIP 11 Connection to telephone line Tip conductor. 13 0 CID2 Caller ID connection on CYG2020/2021/2030/2031. CID1/CID2 connect to an external 1-Form-A solid state relay (CP Clare LCA110). When the SSR is closed (connecting CID1 to CID2) Caller ID information is presented to LINE1/LINE2 after the first telephone ring burst. 14 0 CID1 Caller ID connection. See CID2 above. 17 I **GND** Connected to host system ground. Provides power to the hookswitch LED. Typically +5V for \approx 8mA LED current. 18 I V_{CC} LED is current limited by an internal 470 Ω resistor. V_{CC} should not exceed 20V.

Typical Application

For additional information please visit our website at: www.clare.com

Clare, Inc. makes no representations or warranties with respect to the accuracy or completeness of the contents of this publication and reserves the right to make changes to specifications and product descriptions at any time without notice. Neither circuit patent licenses nor indemnity are expressed or implied. Except as set forth in Clare's Standard Terms and Conditions of Sale, Clare, Inc. assumes no liability whatsoever, and disclaims any express or implied warranty, relating to its products including, but not limited to, the implied warranty of merchantability, fitness for a particular purpose, or infringement of any intellectual property right.

The products described in this document are not designed, intended, authorized or warranted for use as components in systems intended for surgical implant into the body, or in other applications intended to support or sustain life, or where malfunction of Clare's product may result in direct physical harm, injury, or death to a person or severe property or environmental damage. Clare, Inc. reserves the right to discontinue or make changes to its products at any time without notice.