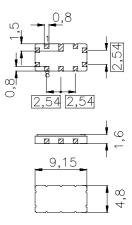


SAW Components

Data Sheet B3817

SAW Components B3817
Low-Loss Filter 208,0 MHz

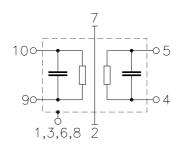
Data Sheet


Ceramic package QCC10B

Features

- IF low-loss filter for W-CDMA base station
- Temperature stable
- Usable bandwidth 3,84 MHz
- Ceramic SMD package

Terminals


Gold plated

Dimensions in mm, appr. weight 0,23 g

Pin configuration

10	Input
9	Input ground
5, 4	Balanced output
1, 3, 6, 8	Case ground
2, 7	To be grounded

Туре	Ordering code	Marking and Package according to	Packing according to
B3817	B39211-B3817-Z710	C61157-A7-A49	F61074-V8172-Z000

Electrostatic Sensitive Device (ESD)

Maximum ratings

Operable temperature range	T	-40 / +85	°C
Storage temperature range	$T_{\rm stg}$	-40 / +85	°C
DC voltage	$V_{\rm DC}$	0	V
Source power	P_{s}	0	dBm

SAW Components B3817

208,0 MHz **Low-Loss Filter**

Data Sheet

Characteristics

Operating temperature range:

 $T = 0 ... 70 \,^{\circ}\text{C}$ $Z_{\text{S}} = 50 \,\Omega$ and matching network $Z_{\text{L}} = 200 \,\Omega$ and matching network Terminating source impedance: Terminating load impedance:

		min.	typ.	max.	
Nominal frequency	f_{N}	_	208,0	_	MHz
	α_{min}	_	11,7	13,0	dB
Passband width					
$\alpha_{rel} \le 1 \text{ dB}$	B_{1dB}	_	4,2	_	MHz
Amplitude ripple (p-p) $f_{\rm N} \pm 1{,}92~{\rm MHz}$	Δα	_	0,7	1,0	dB
Phase ripple (p-p) $f_{\rm N} \pm 1{,}92~{\rm MHz}$	Δφ	_	7	10	۰
Phase ripple (rms) $f_{\rm N} \pm 1{,}92~{\rm MHz}$	Δφ	_	1,1	_	° rms
Absolute group delay mean value within $f_{\rm N} \pm 1{,}92~{\rm MHz}$	$ au_{mean}$	790	795	800	ns
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$lpha_{ m rel}$	9 15 20 25 30 40 55	10 20 30 30 35 50 60	- - - - -	dB dB dB dB dB dB dB
Temperature coefficient of frequency ¹⁾	TC _f	_	- 0,036		ppm/K ²
Turnover temperature	T_0		25	_	°C

¹⁾ Temperature dependance of f_c : $f_c(T_A) = f_c(T_0)(1 + TC_f(T_A - T_0)^2)$

SAW Components B3817

208,0 MHz **Low-Loss Filter**

Data Sheet

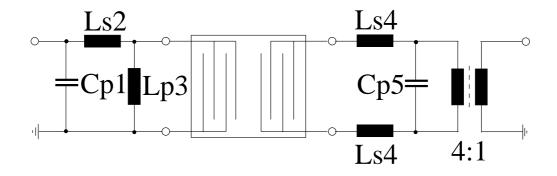
Characteristics

Operating temperature range:

 $T = -40 \dots 85 \,^{\circ}\text{C}$ $Z_{\text{S}} = 50 \,\Omega$ and matching network $Z_{\text{L}} = 200 \,\Omega$ and matching network Terminating source impedance: Terminating load impedance:

		min.	typ.	max.	
Nominal frequency	f _N	_	208,0	_	MHz
Minimum insertion attenuation					
(including matching network) $f_{\rm N} \pm 1,92 \ {\rm MHz}$		_	11,7	13,5	dB
Passband width					
$\alpha_{rel} \le 1 dB$	B_{1dB}	_	4,2	_	MHz
Amplitude ripple (p-p)	$\Delta \alpha$				
$f_{N} \pm 1,92 \text{ MHz}$		_	0,7	1,0	dB
Phase ripple (p-p)	$\Delta \phi$				
$f_{N} \pm 1,92 \; MHz$		_	7	10	•
Phase ripple (rms)	$\Delta \phi$				
$f_{N} \pm 1,92 \; MHz$		_	1,1	_	rms
Absolute group delay mean value within $f_{\rm N} \pm 1,92~{\rm MHz}$					
		790	795	800	ns
Relative attenuation (relative to α_{min})					
$f_N \pm 2,53 \text{ MHz} \dots f_N \pm 2,70 \text{ MHz}$		8	10	_	dB
$f_N \pm 2,70 \text{ MHz} \dots f_N \pm 2,75 \text{ MHz}$		15	20	_	dB
$f_N \pm 2,75 \text{ MHz} \dots f_N \pm 2,90 \text{ MHz}$		20	30	_	dB
$f_N \pm 2,90 \text{ MHz} \dots f_N \pm 3,30 \text{ MHz}$		25	30	_	dB
$f_N \pm 3{,}30 \text{ MHz} \dots f_N \pm 10 \text{ MHz}$		30	35	_	dB
$f_N \pm 10 \text{ MHz} \dots f_N \pm 28 \text{ MHz}$		40	50	_	dB
$f_N \pm 28 \text{ MHz } \dots f_N \pm 60 \text{ MHz}$		55	60	_	dB
Input IP3		40	_	_	dBm
Temperature coefficient of frequency ¹⁾	TC _f	_	- 0,036	_	ppm/K ²
Turnover temperature	T_0		25	_	°C

 $^{^{1)}}$ Temperature dependance of $f_{\rm c}$: $f_{\rm c}(T_{\rm A}) = f_{\rm c}(T_0)(1 + TC_{\rm f}(T_{\rm A} - T_0)^2)$



SAW Components B3817

Low-Loss Filter 208,0 MHz

Data Sheet

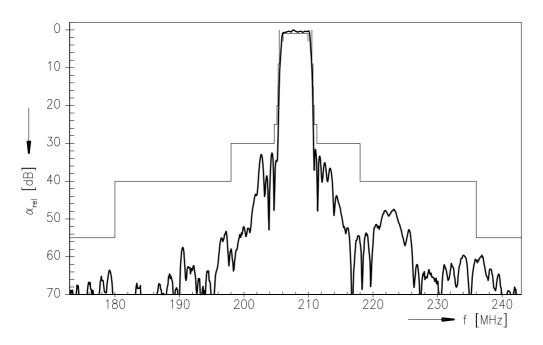
Matching network (element values depend on PCB layout):

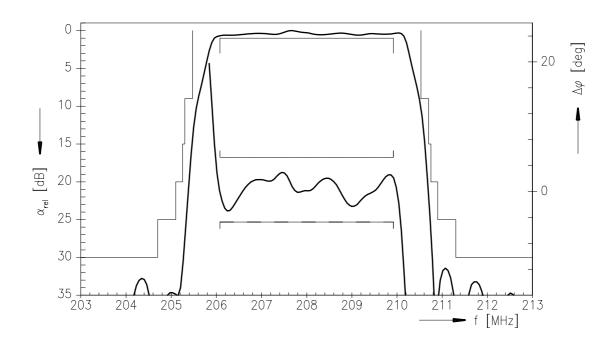
$$C_{p1} = 39 \text{ pF}$$

 $L_{s2} = 68 \text{ nH}$

$$L_{p3} = 390 \text{ nH}$$

 $L_{s4} = 47 \text{ nH}$


$$C_{p5} = 22 pF$$


SAW Components B3817
Low-Loss Filter 208,0 MHz

Data Sheet

Transfer function

Transfer function (pass band)

SAW Components B3817
Low-Loss Filter 208,0 MHz

Data Sheet

Published by EPCOS AG Surface Acoustic Wave Components Division, SAW MC IS P.O. Box 80 17 09, 81617 Munich, GERMANY

© EPCOS AG 2005. Reproduction, publication and dissemination of this brochure and the information contained therein without EPCOS' prior express consent is prohibited.

Purchase orders are subject to the General Conditions for the Supply of Products and Services of the Electrical and Electronics Industry recommended by the ZVEI (German Electrical and Electronic Manufacturers' Association), unless otherwise agreed.

This brochure replaces the previous edition.

For questions on technology, prices and delivery please contact the Sales Offices of EPCOS AG or the international Representatives.

Due to technical requirements components may contain dangerous substances. For information on the type in question please also contact one of our Sales Offices.