NXP Semiconductors

Technical Data

RF Power LDMOS Transistors

N-Channel Enhancement-Mode Lateral MOSFETs

These RF power transistors are designed for pulse applications operating at 960 to 1215 MHz. These devices are suitable for use in defense and commercial pulse applications with large duty cycles and long pulses, such as IFF, secondary surveillance radars, ADS-B transponders, DME and other complex pulse chains.

Typical Performance: In 1030–1090 MHz reference circuit, $I_{DQ(A+B)} = 100 \text{ mA}$

Frequency (MHz) ⁽¹⁾	Signal Type	V _{DD} (V)	P _{out} (W)	G _{ps} (dB)	η _D (%)
1030	Pulse	50	800 Peak	17.5	52.1
1090	(128 μsec, 10% Duty Cycle)		700 Peak	19.0	56.1
1030	10% Duty Cycle)	52	850 Peak	17.5	51.7
1090			770 Peak	19.2	56.1

Typical Performance: In 960–1215 MHz reference circuit, $I_{DQ(A+B)} = 100 \text{ mA}$

Frequency (MHz)	Signal Type	V _{DD} (V)	P _{out} (W)	G _{ps} (dB)	η _D (%)
960	Pulse	50	747 Peak	16.7	50.8
1030	(128 μsec, 4% Duty Cycle)		713 Peak	16.5	49.7
1090	470 Buty Gyole)		700 Peak	16.5	47.1
1215			704 Peak	16.5	54.5

Typical Performance: In 1030 MHz narrowband production test fixture,

 $I_{DQ(A+B)} = 100 \text{ mA}$

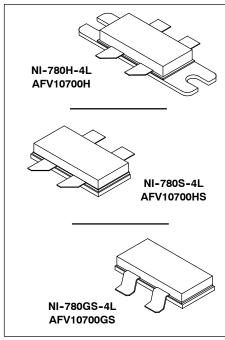
Frequency	Signal Type	V _{DD}	P _{out}	G _{ps}	η _D
(MHz)		(V)	(W)	(dB)	(%)
1030 (2)	Pulse (128 µsec, 10% Duty Cycle)	50	730 Peak	19.2	58.5

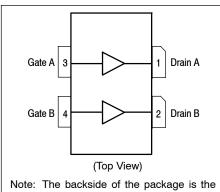
Narrowband Load Mismatch/Ruggedness

Frequency (MHz)	Signal Type	VSWR	P _{in} (W)	Test Voltage	Result
1030 (2)	Pulse (128 μsec, 10% Duty Cycle)	> 20:1 at All Phase Angles	17.2 Peak (3 dB Overdrive)	50	No Device Degradation

- 1. Measured in 1030-1090 MHz reference circuit (page 5).
- 2. Measured in 1030 MHz narrowband production test fixture (page 9).

Features


- · Internally input and output matched for broadband operation and ease of use
- Device can be used in a single-ended, push-pull or quadrature configuration
- Qualified up to a maximum of 55 V_{DD} operation
- High ruggedness, handles > 20:1 VSWR
- Integrated ESD protection with greater negative gate-source voltage range for improved Class C operation and gate voltage pulsing
- Recommended drivers: MRFE6VS25N (25 W) or MRF6V10010N (10 W)
- Included in NXP product longevity program with assured supply for a minimum of 15 years after launch


Document Number: AFV10700H Rev. 2, 08/2019

√RoHS

AFV10700H AFV10700HS AFV10700GS

960-1215 MHz, 700 W PEAK, 52 V AIRFAST RF POWER LDMOS TRANSISTORS

source terminal for the transistor.

Figure 1. Pin Connections

Table 1. Maximum Ratings

Rating	Symbol	Value	Unit
Drain-Source Voltage	V _{DSS}	-0.5, +105	Vdc
Gate-Source Voltage	V _{GS}	-6.0, +10	Vdc
Operating Voltage	V _{DD}	55, +0	Vdc
Storage Temperature Range	T _{stg}	-65 to +150	°C
Case Operating Temperature Range	T _C	-55 to +150	°C
Operating Junction Temperature Range (1,2)	T _J	-55 to +225	°C
Total Device Dissipation @ T _C = 25°C Derate above 25°C	P_D	526 2.63	W W/°C

Table 2. Thermal Characteristics

Characteristic	Symbol	Value (2,3)	Unit
Thermal Impedance, Junction to Case Pulse: Case Temperature 75°C, 730 W Peak, 128 μsec Pulse Width, 10% Duty Cycle, 50 Vdc, I _{DQ(A+B)} = 100 mA, 1030 MHz	Z _θ JC	0.030	°C/W

Table 3. ESD Protection Characteristics

Test Methodology	Class
Human Body Model (per JESD22-A114)	2, passes 2000 V
Charge Device Model (per JESD22-C101)	C3, passes 2000 V

Table 4. Electrical Characteristics (T_A = 25°C unless otherwise noted)

Characteristic	Symbol	Min	Тур	Max	Unit
Off Characteristics (4)					
Gate-Source Leakage Current (V _{GS} = 5 Vdc, V _{DS} = 0 Vdc)	I _{GSS}	_		1	μAdc
Drain-Source Breakdown Voltage ($V_{GS} = 0 \text{ Vdc}, I_D = 10 \mu\text{A}$)	V _{(BR)DSS}	105	_	_	Vdc
Zero Gate Voltage Drain Leakage Current $(V_{DS} = 50 \text{ Vdc}, V_{GS} = 0 \text{ Vdc})$	I _{DSS}	_	_	1	μAdc
Zero Gate Voltage Drain Leakage Current (V _{DS} = 105 Vdc, V _{GS} = 0 Vdc)	I _{DSS}	_	_	10	μAdc
On Characteristics					
Gate Threshold Voltage ⁽⁴⁾ (V _{DS} = 10 Vdc, I _D = 260 μAdc)	V _{GS(th)}	1.3	1.8	2.3	Vdc
Gate Quiescent Voltage (V _{DD} = 50 Vdc, I _{DQ(A+B)} = 100 mAdc, Measured in Functional Test)	V _{GS(Q)}	1.6	2.1	2.6	Vdc
Drain-Source On-Voltage ⁽⁴⁾ (V _{GS} = 10 Vdc, I _D = 2.6 Adc)	V _{DS(on)}	_	0.28	_	Vdc
Dynamic Characteristics (4,5)			•	•	•
Reverse Transfer Capacitance (V _{DS} = 50 Vdc ± 30 mV(rms)ac @ 1 MHz, V _{GS} = 0 Vdc)	C _{rss}	_	1.16	_	pF

- ${\it 1. } \ Continuous \ use \ at \ maximum \ temperature \ will \ affect \ MTTF.$
- 2. MTTF calculator available at http://www.nxp.com.
- 3. Refer to AN1955, Thermal Measurement Methodology of RF Power Amplifiers. Go to http://www.nxp.com/RF and search for AN1955.
- 4. Each side of device measured separately.
- 5. Part internally matched both on input and output.

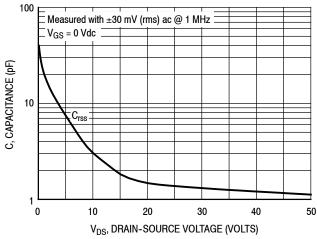
(continued)

Table 4. Electrical Characteristics (T_A = 25°C unless otherwise noted) (continued)

Characteristic		Min	Тур	Max	Unit	
Functional Tests (In NXP Narrowband Production Test Fixture, 50 ohm system) V _{DD} = 50 Vdc, I _{DQ(A+B)} = 100 mA, P _{out} = 730 W Peak						

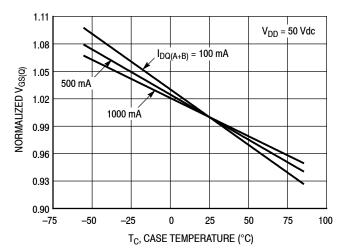
(73 W Avg.), f = 1030 MHz, 128 µsec Pulse Width, 10% Duty Cycle

Power Gain	G _{ps}	18.0	19.2	21.0	dB
Drain Efficiency	η_{D}	54.5	58.5	_	%
Input Return Loss	IRL	_	-15	-9	dB


 $\textbf{Load Mismatch/Ruggedness} \text{ (In NXP Narrowband Production Test Fixture, 50 ohm system) } \textbf{I}_{DQ(A+B)} = 100 \text{ mA}$

Frequency (MHz)	Signal Type	VSWR	P _{in} (W)	Test Voltage, V _{DD}	Result
1030	Pulse (128 μsec, 10% Duty Cycle)	> 20:1 at All Phase Angles	17.2 Peak (3 dB Overdrive)	50	No Device Degradation

Table 5. Ordering Information


Device	Tape and Reel Information	Package
AFV10700HR5	R5 Suffix = 50 Units, 56 mm Tape Width, 13-inch Reel	NI-780H-4L
AFV10700HSR5	DE Cuffing EQ Unite 20 mm Tone Wighth 10 inch Dool	NI-780S-4L
AFV10700GSR5	R5 Suffix = 50 Units, 32 mm Tape Width, 13-inch Reel	NI-780GS-4L

TYPICAL CHARACTERISTICS

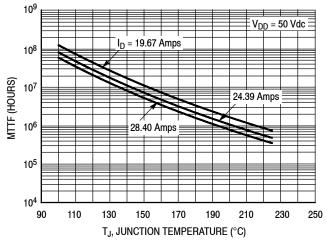

Note: Each side of device measured separately.

Figure 2. Capacitance versus Drain-Source Voltage

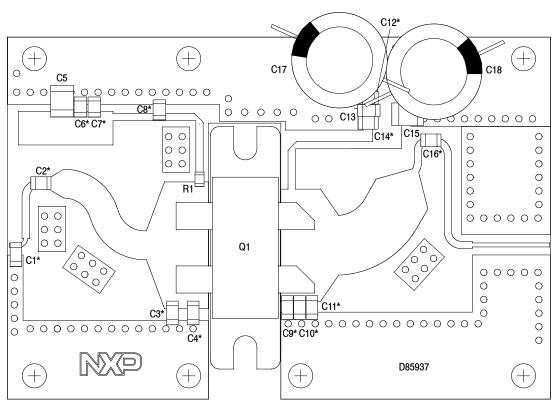
I _{DQ} (mA)	Slope (mV/°C)
100	-2.73
500	-2.39
1500	-2.09

Figure 3. Normalized V_{GS} versus Quiescent Current and Case Temperature

Note: MTTF value represents the total cumulative operating time under indicated test conditions.

MTTF calculator available at $\underline{\text{http://www.nxp.com}}.$

Figure 4. MTTF versus Junction Temperature - Pulse


1030–1090 MHz REFERENCE CIRCUIT – $2.0'' \times 3.0''$ (5.1 cm \times 7.6 cm)

 $\textbf{Table 6. 1030--1090 MHz Performance} \; (In \; NXP \; Reference \; Circuit, \, 50 \; ohm \; system) \; I_{DQ(A+B)} = 100 \; mA \; (A+B) = 100 \; (A+B) = 100 \; mA \; (A+B) = 100 \; mA \; (A+B) = 100 \; mA \; (A+B) =$

Frequency (MHz)	Signal Type	V _{DD} (V)	P _{out} (W)	G _{ps} (dB)	η _D (%)
1030	Pulse (128 μsec, 10% Duty Cycle)	50	800 Peak	17.5	52.1
1090			700 Peak	19.0	56.1
1030		52	850 Peak	17.5	51.7
1090			770 Peak	19.2	56.1

NOTE: Size of the matching area: $1.3'' \times 2.6''$ (3.3 cm x 6.6 cm)

1030–1090 MHz REFERENCE CIRCUIT – $2.0'' \times 3.0''$ (5.1 cm \times 7.6 cm)

*C1, C2, C3, C4, C6, C7, C8, C9, C10, C11, C12, C14 and C16 are mounted vertically.

Figure 5. AFV10700H Reference Circuit Component Layout - 1030-1090 MHz

Table 7. AFV10700H Reference Circuit Component Designations and Values - 1030-1090 MHz

Part	Description	Part Number	Manufacturer
C1	1.5 pF Chip Capacitor	ATC800B1R5BT500XT	ATC
C2, C8, C14	39 pF Chip Capacitor	ATC800B390JT500XT	ATC
C3, C4	4.3 pF Chip Capacitor	ATC800B4R3CT500XT	ATC
C5, C15	2.2 μF Chip Capacitor	C3225X7R2A225K230AB	TDK
C6, C12	1000 pF Chip Capacitor	ATC800B102JT50XT	ATC
C7	100 pF Chip Capacitor	ATC800B101JT500XT	ATC
C9	4.7 pF Chip Capacitor	ATC800B4R7CT500XT	ATC
C10, C11	3.3 pF Chip Capacitor	ATC800B3R3CT500XT	ATC
C13	1.0 μF Chip Capacitor	GRM31CR72A105KA01L	Murata
C16	270 pF Chip Capacitor	ATC800B271JT200XT	ATC
C17, C18	470 μF, 63 V Electrolytic Capacitor	MCGPR63V477M13X26-RH	Multicomp
Q1	RF High Power LDMOS Transistor	AFV10700H	NXP
R1	22 Ω, 1/8 W Chip Resistor	RK73H2ATTD22R0F	KAO Speer
PCB Rogers RO3010 0.025", ε _r = 11.2		D85937	MTL

TYPICAL CHARACTERISTICS – 1030–1090 MHz REFERENCE CIRCUIT

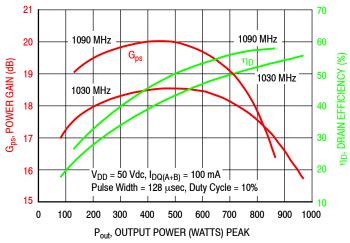


Figure 6. Power Gain and Drain Efficiency versus Output Power – 50 V

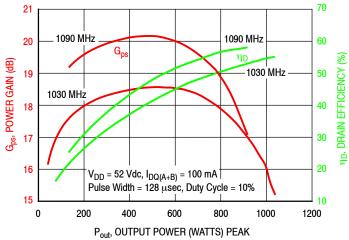
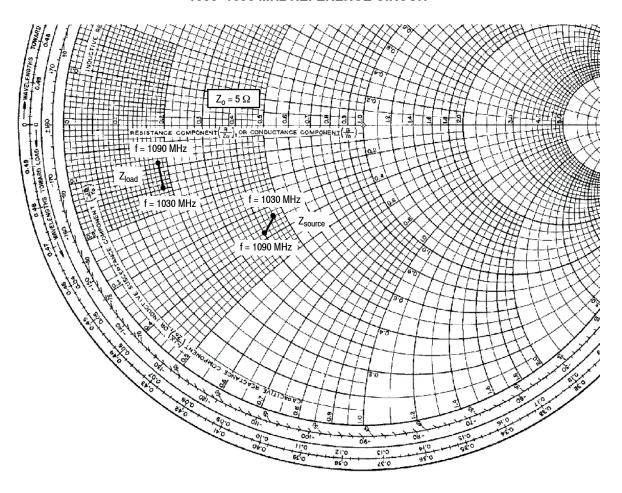



Figure 7. Power Gain and Drain Efficiency versus Output Power – 52 V

1030-1090 MHz REFERENCE CIRCUIT

f MHz	Z _{source} Ω	Z _{load} Ω
1030	2.3 – j1.7	0.91 – j0.76
1090	2.0 - j1.9	0.88 - j0.47

 Z_{source} = Test circuit impedance as measured from gate to ground.

 $Z_{load} \quad = \quad \text{Test circuit impedance as measured} \\ \quad \text{from drain to ground.}$

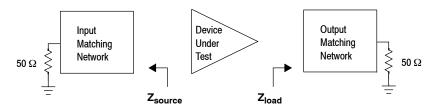
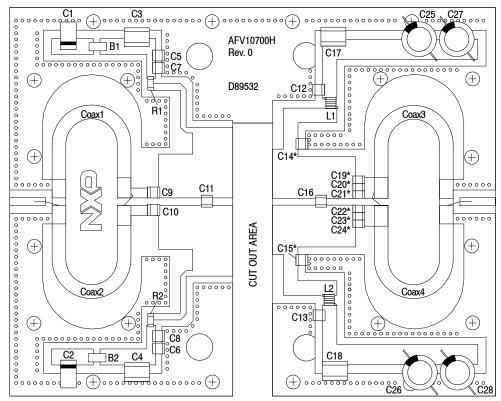



Figure 8. Series Equivalent Source and Load Impedance - 1030-1090 MHz

1030 MHz NARROWBAND PRODUCTION TEST FIXTURE - 4.0" x 5.0" (10.2 cm x 12.7 cm)

^{*}C14, C15, C19, C20, C21, C22, C23 and C24 are mounted vertically.

Figure 9. AFV10700H Narrowband Test Circuit Component Layout - 1030 MHz

Table 8. AFV10700H Narrowband Test Circuit Component Designations and Values – 1030 MHz

Part	Description	Part Number	Manufacturer
B1, B2	Short RF Bead	2743019447	Fair-Rite
C1, C2	22 μF, 35 V Tantalum Capacitor	T491X226K035AT	Kemet
C3, C4	2.2 μF Chip Capacitor	C1825C225J5RAC	Kemet
C5, C6	0.1 μF Chip Capacitor	CDR33BX104AKWS	AVX
C7, C8, C19, C20, C21, C22, C23, C24	43 pF Chip Capacitor	ATC100B430JT500XT	ATC
C9, C10	3.3 pF Chip Capacitor	ATC100B3R3CT500XT	ATC
C11	0.7 pF Chip Capacitor	ATC100B0R7BT500XT	ATC
C12, C13	36 pF Chip Capacitor	ATC100B360JT500XT	ATC
C14, C15	5.1 pF Chip Capacitor	ATC100B5R1CT500XT	ATC
C16	5.6 pF Chip Capacitor	ATC100B5R6CT500XT	ATC
C17, C18	0.01 μF Chip Capacitor	C1825C103K1GACTU	Kemet
C25, C26, C27, C28	470 μF, 63 V Electrolytic Capacitor	MCGPR63V477M13X26-RH	Multicomp
Coax1, Coax2, Coax3, Coax4	35 Ω , Semi Rigid Coax 1.98" Shield Length	HSF-141-35-C	Hongsen Cable
L1, L2	12 nH Inductor, 3 Turns	GA3094-ALC	Coilcraft
R1, R2	5.6 Ω, 1/4 W Chip Resistor	CRCW12065R60FKEA	Vishay
PCB	Arlon, AD255A, $0.03''$, $\epsilon_{\rm r} = 2.55$	D89532	MTL

TYPICAL CHARACTERISTICS - 1030 MHz, $T_C = 25$ °C PRODUCTION TEST FIXTURE

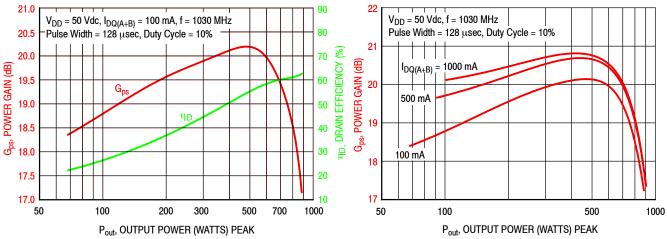


Figure 10. Power Gain and Drain Efficiency versus Output Power

Figure 11. Power Gain versus Output Power and Quiescent Drain Current

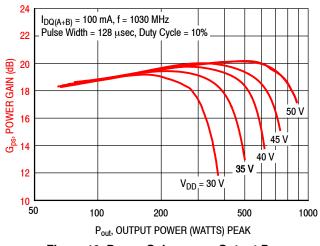
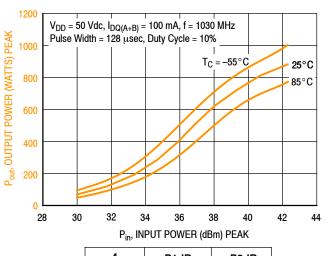
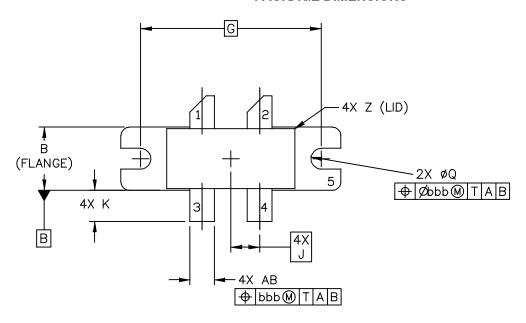
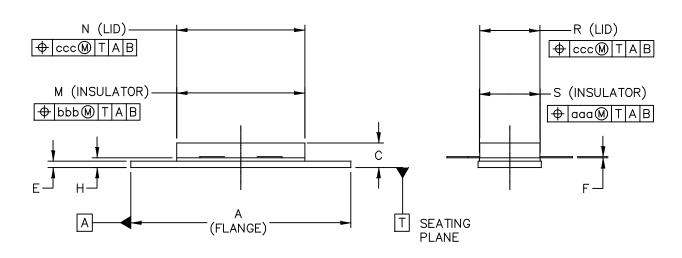



Figure 12. Power Gain versus Output Power and Drain Voltage

f	P1dB	P3dB
(MHz)	(W)	(W)
1030	740	

Figure 13. Output Power versus Input Power


Figure 14. Power Gain and Drain Efficiency versus
Output Power


1030 MHz NARROWBAND PRODUCTION TEST FIXTURE

	f MHz	$Z_{source} \ \Omega$	Z _{load} Ω	
	1030	4.0 – j6.9	3.9 – j1.4	
	000.00	Test circuit impedance gate to gate, balance		1
	iouu	Test circuit impedant from drain to drain, b		on.
⊢ Ma	out atching stwork	Device Under Test	Outpu Match Netw	hing
=	:	Z _{source}	Z _{load}	_

Figure 15. Series Equivalent Source and Load Impedance – 1030 MHz

PACKAGE DIMENSIONS

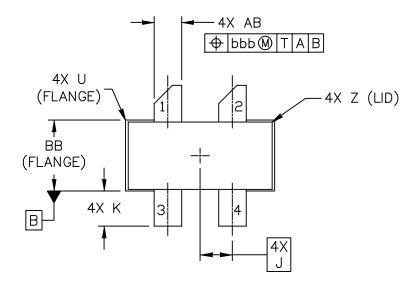
NXP SEMICONDUCTORS N.V. ALL RIGHTS RESERVED	MECHANICAL OUTLINE		PRINT VERSION NO	T TO SCALE
TITLE:		DOCUMEN	NT NO: 98ASA10793D	REV: A
NI 780-4		STANDAF	RD: NON-JEDEC	
		SOT1827	– 1	17 MAR 2016

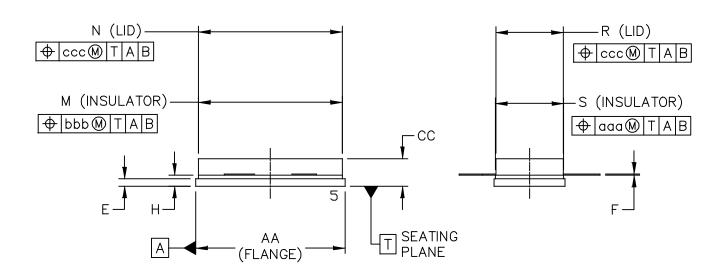
NOTES:

- 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M-1994.
- 2. CONTROLLING DIMENSION: INCH.
- 3. DIMENSION H IS MEASURED . 030 (0.762) AWAY FROM PACKAGE BODY.

STYLE 1:

PIN 1. DRAIN

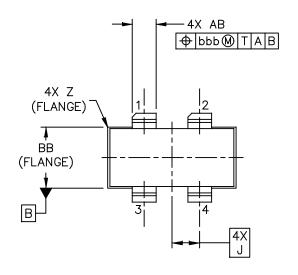

2. DRAIN

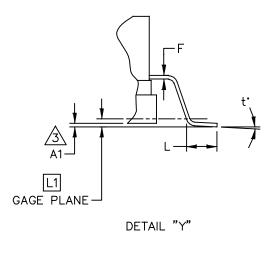

3. GATE

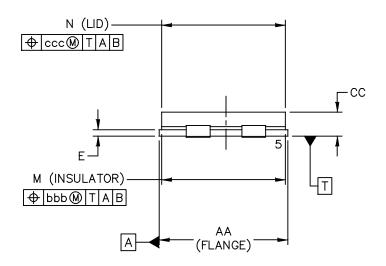
4. GATE

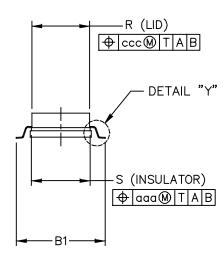
5. SOURCE

INCH		MILLIMETER			INCH		MILLIMETER		
DIM	MIN	MAX	MIN	MAX	DIM	MIN	MAX	MIN	MAX
Α	1.335	1.345	33.91	34.16	R	.365	.375	9.27	9.53
В	.380	.390	9.65	9.91	S	.365	.375	9.27	9.52
С	.125	.170	3.18	4.32	U		.040		1.02
E	.035	.045	0.89	1.14	Z		.030		0.76
F	.003	.006	0.08	0.15	AB	. 145	. 155	3. 68	3. 94
G	1. 100	BSC	27.	94 BSC					
Н	.057	.067	1.45	1.7	aaa		.005 0.12		.127
J	. 175	BSC	4.	44 BSC	bbb		.010	0.254	
K	.170	.210	4.32	5.33	ccc		.015	0	.381
М	.774	.786	19.61	20.02					
N	.772	.788	19.61	20.02					
Q	ø.118	ø.138	ø3	ø3.51					
(IDUCTORS N. V. S RESERVED		MECHANICA	L OU	TLINE	PRINT VERS	SION NOT	TO SCALE
TITL	TITLE:						NT NO: 98ASA1	10793D	REV: A
	NI 780-4						RD: NON-JEDEC	2	
						S0T1827	7-1	17	MAR 2016




© NXP SEMICONDUCTORS N.V. ALL RIGHTS RESERVED	MECHANICAL OUTLINE		PRINT VERSION NO	T TO SCALE
TITLE:		DOCUMEN	NT NO: 98ASA10718D	REV: C
NI-780S-4L	_	STANDAF	D: NON-JEDEC	
		SOT1826	– 1	01 AUG 2016


NOTES:


- 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M-1994.
- 2. CONTROLLING DIMENSION: INCH.
- 3. DELETED
- 4. DIMENSION H IS MEASURED .030 (0.762) AWAY FROM FLANGE TO CLEAR EPOXY FLOW OUT PARALLEL TO DATUM B.

	IN	ICH	MIL	LIMETER		INCH		MILL	MILLIMETER	
DIM	MIN	MAX	MIN	MAX	DIM	MIN	MAX	MIN	MAX	
AA	.805	.815	20.45	20.70	U		.040		1.02	
ВВ	.382	.388	9.70	9.86	Z		.030		0.76	
cc	.125	.170	3.18	4.32	AB	. 145	. 155	3. 68	- 3. 94	
E	.035	.045	0.89	1.14						
F	.003	.006	0.08	0.15	aaa		.005		0.127	
H	.057	.067	1.45	1.70	bbb		.010		0.254	
J	. 175	BSC	4.	44 BSC	ccc		.015 0.381		0.381	
K	.170	.210	4.32	5.33						
M	.774	.786	19.61	20.02						
N	.772	.788	19.61	20.02						
R	.365	.375	9.27	9.53						
S	.365	.375	9.27	9.52						
		NDUCTORS N.V. TS RESERVED		MECHANICA	L OUT	LINE	PRINT VERS	SION NOT	TO SCALE	
TITLE	TITLE:						T NO: 98ASA:	10718D	REV: C	
	NI-780S-4L						D: NON-JEDE			
						S0T1826	-1	01	1 AUG 2016	

© NXP SEMICOND ALL RIGHTS		MECHANICAL OUTLINE		PRINT VERSION NO	T TO SCALE
TITLE:			DOCUMEN	NT NO: 98ASA00238D	REV: C
NI-	-780GS-4L		STANDAR	D: NON-JEDEC	
			S0T1805		23 FEB 2016

NOTES:

- 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M-1994.
- 2. CONTROLLING DIMENSION: INCH.

ALDIMENSION A1 IS MEASURED WITH REFERENCE TO DATUM T. THE POSITIVE VALUE IMPLIES THAT THE PACKAGE BOTTOM IS HIGHER THAN THE LEAD BOTTOM.

	INCH		MILLIMETER				INCH		MILLIMETER	
DIM	MIN	MAX	MIN	MAX	DIM	MIN	MAX	M	1IN	MAX
AA	.805	.815	20.45	20.70	Z	R.000	R.040	D RC	0.00	R1.02
A1	.002	.008	0.05	0.20	AB	.145	.155	3.	.68	3.94
BB	.380	.390	9.65	9.91	t°	0.	8.		0.	8.
B1	.546	.562	13.87	14.27	aaa		.005		0.13	
CC	.125	.170	3.18	4.32	bbb		.010		0.25	
E	.035	.045	0.89	1.14	ccc		.015		0.38	
F	.003	.006	0.08	0.15						
L	.038	.046	0.97	1.17						
L1	.010 BSC		0.25 BSC							
J	.175 BSC		4.44 BSC							
М	.774	.786	19.66	19.96						
N	.772	.788	19.61	20.02						
R	.365	.375	9.27	9.53						
S	.365	.375	9.27	9.53						
© NXP SEMICONDUCTORS N. V. MECHANICAL (TLINE PRINT VERSION NOT TO SCALE				
TITLE: DOCUMENT NO: 98ASA00238D REV:									REV: C	
NI-780GS-4L						STANDARD: NON-JEDEC				
						S0T1805-1			23 FEB 2016	

PRODUCT DOCUMENTATION, SOFTWARE AND TOOLS

Refer to the following resources to aid your design process.

Application Notes

- AN1908: Solder Reflow Attach Method for High Power RF Devices in Air Cavity Packages
- AN1955: Thermal Measurement Methodology of RF Power Amplifiers

Engineering Bulletins

• EB212: Using Data Sheet Impedances for RF LDMOS Devices

Software

- Electromigration MTTF Calculator
- RF High Power Model
- .s2p File

Development Tools

· Printed Circuit Boards

REVISION HISTORY

The following table summarizes revisions to this document.

Revision	Date	Description			
0	May 2017	Initial release of data sheet			
1	Jan. 2018	 Added part number AFV10700GS, p. 1 Production test fixture, Typical Characteristic graphs: clarified temperature condition, p. 10 Added NI-780GS-4L package isometric, p. 1, and Mechanical Outline, pp. 16–17 			
2	Aug. 2019	 Overview copy and device description: updated to reflect frequency band operation from 960–1215 MHz, p. 1 Typical Performance table: added 960–1215 MHz performance data, p. 1 Table 6, 1030–1090 Component Layout Parts List: updated the part number and description for C16 and R1, p. 6 			

How to Reach Us:

Home Page: nxp.com

Web Support: nxp.com/support

Information in this document is provided solely to enable system and software implementers to use NXP products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the information in this document. NXP reserves the right to make changes without further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does NXP assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in NXP data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including "typicals," must be validated for each customer application by customer's technical experts. NXP does not convey any license under its patent rights nor the rights of others. NXP sells products pursuant to standard terms and conditions of sale, which can be found at the following address: nxp.com/SalesTermsandConditions.

NXP, the NXP logo and Airfast are trademarks of NXP B.V. All other product or service names are the property of their respective owners.

© 2017–2019 NXP B.V.

Document Number: AFV10700H Rev. 2, 08/2019