Low-Voltage CMOS Octal **Buffer Flow Through Pinout**

With 5 V-Tolerant Inputs and Outputs (3-State, Non-Inverting)

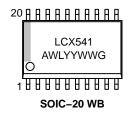
The MC74LCX541 is a high performance, non-inverting octal buffer operating from a 2.3 to 3.6 V supply. This device is similar in function to the MC74LCX244, while providing flow through architecture. High impedance TTL compatible inputs significantly reduce current loading to input drivers while TTL compatible outputs offer improved switching noise performance. A V_I specification of 5.5 V allows MC74LCX541 inputs to be safely driven from 5 V devices. The MC74LCX541 is suitable for memory address driving and all TTL level bus oriented transceiver applications.

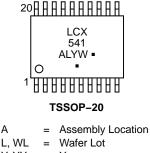
Current drive capability is 24 mA at the outputs. The Output Enable $(\overline{OE1}, \overline{OE2})$ inputs, when HIGH, disables the output by placing them in a HIGH Z condition.

Features

- Designed for 2.3 to 3.6 V V_{CC} Operation
- 5 V Tolerant Interface Capability With 5 V TTL Logic
- Supports Live Insertion and Withdrawal
- I_{OFF} Specification Guarantees High Impedance When $V_{CC} = 0$ V
- LVTTL Compatible
- LVCMOS Compatible
- 24 mA Balanced Output Sink and Source Capability
- Near Zero Static Supply Current in All Three Logic States (10 µA) Substantially Reduces System Power Requirements
- Latchup Performance Exceeds 500 mA
- ESD Performance:
 - ♦ Human Body Model > 2000 V
 - ◆ Machine Model > 200 V
- NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable
- These Devices are Pb-Free, Halogen Free/BFR Free and are RoHS Compliant

ON Semiconductor®


http://onsemi.com

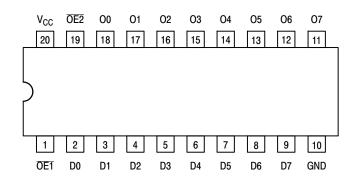


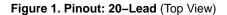
DW SUFFIX CASE 751D

DT SUFFIX CASE 948E

MARKING DIAGRAMS

Y, YY Year Work Week W, WW =


А


G or = Pb-Free Package

(Note: Microdot may be in either location)

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 6 of this data sheet.

PIN NAMES

Pins	Function
OEn	Output Enable Inputs
Dn	Data Inputs
On	3–State Outputs

TRUTH TABLE

	Inputs		Outputs
OE1	OE2	Dn	On
L	L	L	L
L	L	Н	Н
Х	н	Х	Z
Н	Х	Х	Z

H = High Voltage Level; L = Low Voltage Level; Z = High Impedance State; X = High or Low Voltage Level and Transitions are Acceptable, for I_{CC} reasons, DO NOT FLOAT Inputs

MAXIMUM RATINGS

Symbol	Parameter	Value	Condition	Units
V _{CC}	DC Supply Voltage	-0.5 to +7.0		V
VI	DC Input Voltage	$-0.5 \le V_1 \le +7.0$		V
Vo	DC Output Voltage	$-0.5 \le V_{O} \le +7.0$	Output in 3-State	V
		$-0.5 \le V_{O} \le V_{CC} + 0.5$	(Note 1)	V
I _{IK}	DC Input Diode Current	-50	V _I < GND	mA
I _{OK}	DC Output Diode Current	-50	V _O < GND	mA
		+50	$V_{O} > V_{CC}$	mA
Ι _Ο	DC Output Source/Sink Current	±50		mA
I _{CC}	DC Supply Current Per Supply Pin	±100		mA
I _{GND}	DC Ground Current Per Ground Pin	±100		mA
T _{STG}	Storage Temperature Range	-65 to +150		°C
MSL	Moisture Sensitivity		Level 1	

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. Output in HIGH or LOW State. I_O absolute maximum rating must be observed.

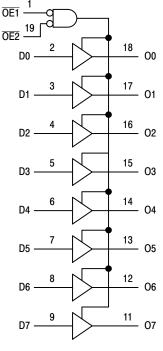


Figure 2. Logic Diagram

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Min	Тур	Max	Units
V _{CC}	Supply Voltage Operating Data Retention Only	2.0 1.5	3.3 3.3	3.6 3.6	V
VI	Input Voltage	0		5.5	V
V _O	Output Voltage (HIGH or LOW State) (3–State)	0 0		V _{CC} 5.5	V
I _{OH}	HIGH Level Output Current, V_{CC} = 3.0 V – 3.6 V			-24	mA
I _{OL}	LOW Level Output Current, V _{CC} = 3.0 V – 3.6 V			24	mA
I _{OH}	HIGH Level Output Current, $V_{CC} = 2.7 V - 3.0 V$			-12	mA
I _{OL}	LOW Level Output Current, V_{CC} = 2.7 V – 3.0 V			12	mA
T _A	Operating Free–Air Temperature	-40		+85	°C
$\Delta t / \Delta V$	Input Transition Rise or Fall Rate, V _{IN} from 0.8 V to 2.0 V, V _{CC} = 3.0 V	0		10	ns/V

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

DC ELECTRICAL CHARACTERISTICS

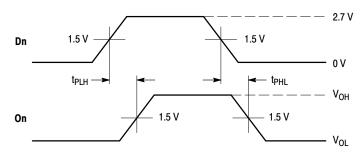
			T _A = −40°C	to +85°C	
Symbol	Characteristic	Condition	Min	Мах	Units
V _{IH}	HIGH Level Input Voltage (Note 2)	$2.7 \text{ V} \le \text{V}_{\text{CC}} \le 3.6 \text{ V}$	2.0		V
V _{IL}	LOW Level Input Voltage (Note 2)	$2.7 \text{ V} \le \text{V}_{\text{CC}} \le 3.6 \text{ V}$		0.8	V
V _{OH}	HIGH Level Output Voltage	$2.7 \text{ V} \le \text{V}_{CC} \le 3.6 \text{ V}; \text{ I}_{OH} = -100 \mu\text{A}$	V _{CC} – 0.2		V
		V _{CC} = 2.7 V; I _{OH} = -12 mA	2.2		
		V _{CC} = 3.0 V; I _{OH} = -18 mA	2.4		
		V _{CC} = 3.0 V; I _{OH} = -24 mA	2.2		
V _{OL}	LOW Level Output Voltage	2.7 V \leq V_{CC} \leq 3.6 V; I_{OL} = 100 μA		0.2	V
		V _{CC} = 2.7 V; I _{OL} = 12 mA		0.4	
		V _{CC} = 3.0 V; I _{OL} = 16 mA		0.4	
		V _{CC} = 3.0 V; I _{OL} = 24 mA		0.55	
I _{OZ}	3-State Output Current	$\label{eq:V_CC} \begin{array}{l} V_{CC} = 3.6 \ V, \ V_{IN} = V_{IH} \ or \ V_{IL}, \\ V_{OUT} = 0 \ to \ 5.5 \ V \end{array}$		±5	μΑ
I _{OFF}	Power Off Leakage Current	V_{CC} = 0, V_{IN} = 5.5 V or V_{OUT} = 5.5 V		10	μΑ
I _{IN}	Input Leakage Current	V_{CC} = 3.6 V, V_{IN} = 5.5 V or GND		±5	μΑ
Icc	Quiescent Supply Current	V_{CC} = 3.6 V, V_{IN} = 5.5 V or GND		10	μΑ
ΔI_{CC}	Increase in I _{CC} per Input	$2.3 \le V_{CC} \le 3.6 \text{ V}; \text{ V}_{IH} = V_{CC} - 0.6 \text{ V}$		500	μΑ

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. 2. These values of V_I are used to test DC electrical characteristics only.

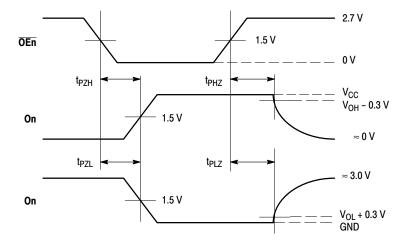
AC ELECTRICAL CHARACTERISTICS ($t_R = t_F = 2.5 \text{ ns}; C_L = 50 \text{ pF}; R_L = 500 \Omega$)

			T _A			
			V _{CC} = 3.0 V to 3.6 V		V _{CC} = 2.7 V	
Symbol	Parameter	Waveform	Min	Мах	Max	Units
t _{PLH} t _{PHL}	Propagation Delay Input to Output	1	1.5 1.5	6.5 6.5	7.5 7.5	ns
t _{PZH} t _{PZL}	Output Enable Time to High and Low Level	2	1.5 1.5	8.5 8.5	9.5 9.5	ns
t _{PHZ} t _{PLZ}	Output Disable Time From High and Low Level	2	1.5 1.5	7.5 7.5	8.5 8.5	ns
t _{OSHL} t _{OSLH}	Output-to-Output Skew (Note 3)			1.0 1.0		ns

 Skew is defined as the absolute value of the difference between the actual propagation delay for any two separate outputs of the same device. The specification applies to any outputs switching in the same direction, either HIGH-to-LOW (t_{OSHL}) or LOW-to-HIGH (t_{OSLH}); parameter guaranteed by design.

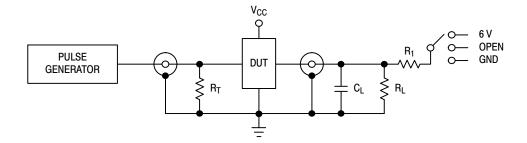

DYNAMIC SWITCHING CHARACTERISTICS

			T _A = +25°C			
Symbol	Characteristic	Condition	Min	Тур	Max	Units
V _{OLP}	Dynamic LOW Peak Voltage (Note 4)	V_{CC} = 3.3 V, C_L = 50 pF, V_{IH} = 3.3 V, V_{IL} = 0 V		0.8		V
V _{OLV}	Dynamic LOW Valley Voltage (Note 4)	V_{CC} = 3.3 V, C_L = 50 pF, V_{IH} = 3.3 V, V_{IL} = 0 V		0.8		V


4. Number of outputs defined as "n". Measured with "n–1" outputs switching from HIGH-to-LOW or LOW-to-HIGH. The remaining output is measured in the LOW state.

CAPACITIVE CHARACTERISTICS

Symbol	Parameter	Condition	Typical	Units
C _{IN}	Input Capacitance	V_{CC} = 3.3 V, V_{I} = 0 V or V_{CC}	7	pF
C _{OUT}	Output Capacitance	V_{CC} = 3.3 V, V_{I} = 0 V or V_{CC}	8	pF
C _{PD}	Power Dissipation Capacitance	10 MHz, V_{CC} = 3.3 V, V_{I} = 0 V or V_{CC}	25	pF



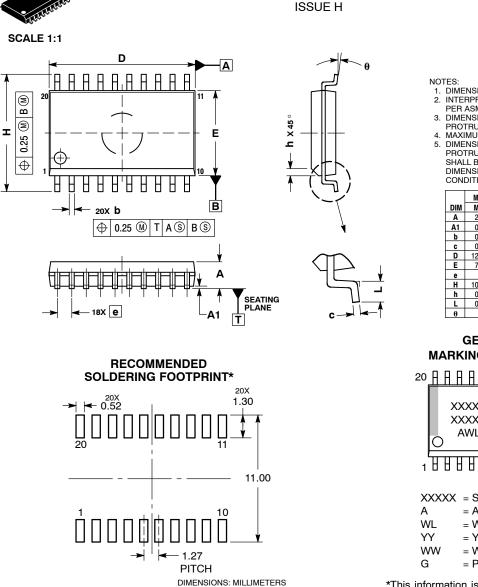
WAVEFORM 1 - PROPAGATION DELAYS $t_{R} = t_{F} = 2.5$ ns, 10% to 90%; f = 1 MHz; $t_{W} = 500$ ns

WAVEFORM 2 - OUTPUT ENABLE AND DISABLE TIMES t_{R} = t_{F} = 2.5 ns, 10% to 90%; f = 1 MHz; t_{W} = 500 ns

Test	Switch
t _{PLH} , t _{PHL}	Open
t _{PZL} , t _{PLZ}	6 V
Open Collector/Drain $t_{\mbox{PLH}}$ and $t_{\mbox{PHL}}$	6 V
^t PZH, ^t PHZ	GND

 C_L = 50 pF or equivalent (Includes jig and probe capacitance)

 $R_L = R_1 = 500 \Omega$ or equivalent $R_T = Z_{OUT}$ of pulse generator (typically 50 Ω)


Figure 4. Test Circuit

ORDERING INFORMATION

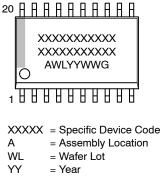
Device	Package	Shipping [†]
MC74LCX541DWR2G	SOIC-20 (Pb-Free)	1000 Tape & Reel
NLV74LCX541DWR2G* (In Development)	SOIC-20 (Pb-Free)	1000 Tape & Reel
MC74LCX541DWG	SOIC-20 (Pb-Free)	38 Units / Rail
NLV74LCX541DWG* (In Development)	SOIC-20 (Pb-Free)	38 Units / Rail
MC74LCX541DTG	TSSOP-20 (Pb-Free)	75 Units / Rail
NLV74LCX541DTG* (In Development)	TSSOP-20 (Pb-Free)	75 Units / Rail
MC74LCX541DTR2G	TSSOP-20 (Pb-Free)	2500 Tape & Reel
NLV74LCX541DTR2G* (In Development)	TSSOP-20 (Pb-Free)	2500 Tape & Reel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.
*NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC–Q100 Qualified and PPAP

Capable.

SOIC-20 WB CASE 751D-05

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

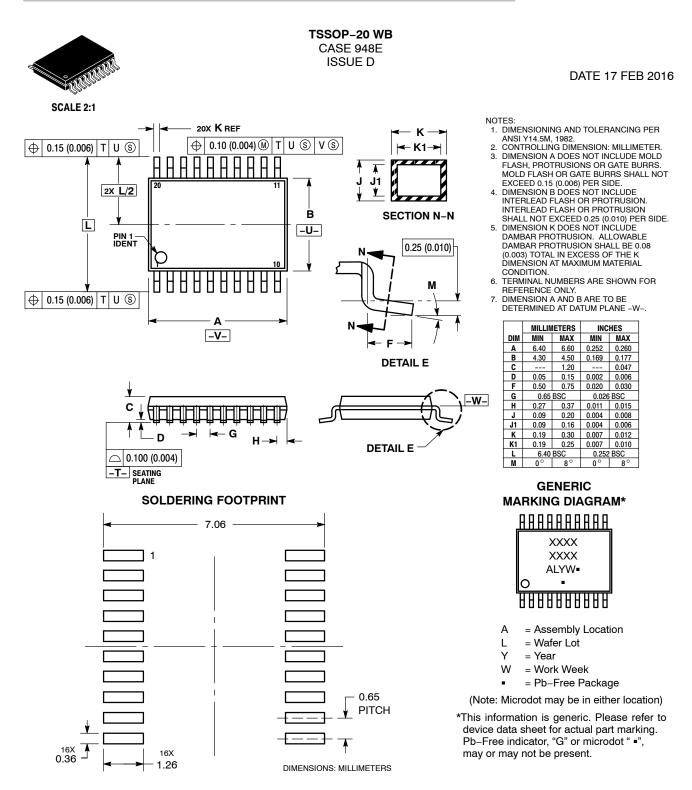

DATE 22 APR 2015

DUSEM

- 1. DIMENSIONS ARE IN MILLIMETERS. 2. INTERPRET DIMENSIONS AND TOLERANCES
- PER ASME Y14.5M, 1994. 3. DIMENSIONS D AND E DO NOT INCLUDE MOLD PROTRUSION. MAXIMUM MOLD PROTRUSION 0.15 PER SIDE.
- DIMENSION B DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE PROTRUSION SHALL BE 0.13 TOTAL IN EXCESS OF B DIMENSION AT MAXIMUM MATERIAL CONDITION.

	MILLIMETERS			
DIM	MIN	MIN MAX		
Α	2.35	2.65		
A1	0.10	0.25		
b	0.35	0.49		
C	0.23	0.32		
D	12.65	12.95		
E	7.40	7.60		
е	1.27	BSC		
н	10.05	10.55		
h	0.25	0.75		
L	0.50	0.90		
θ	0 °	7 °		

GENERIC **MARKING DIAGRAM***



- = Work Week
- = Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part marking. Pb–Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking.

DOCUMENT NUMBER:	98ASB42343B	B42343B Electronic versions are uncontrolled except when accessed directly from the Document Repositor Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.			
DESCRIPTION:	SOIC-20 WB PAGE 1 O				
the right to make changes without furth purpose, nor does onsemi assume an	er notice to any products herein. onsemi making ny liability arising out of the application or use	LLC dba onsemi or its subsidiaries in the United States and/or other cour es no warranty, representation or guarantee regarding the suitability of its pr of any product or circuit, and specifically disclaims any and all liability, inc e under its patent rights nor the rights of others.	oducts for any particular		

DOCUMENT NUMBER:	98ASH70169A	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	
DESCRIPTION:	TSSOP-20 WB		PAGE 1 OF 1

ON Semiconductor and unarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or indental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification. Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs,

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

Technical Library: www.onsemi.com/design/resources/technical-documentation onsemi Website: www.onsemi.com ONLINE SUPPORT: <u>www.onsemi.com/support</u> For additional information, please contact your local Sales Representative at www.onsemi.com/support/sales