Low Voltage PLL Clock Driver

The MPC9351 is a 2.5V and 3.3V compatible, PLL based clock generator targeted for high performance clock distribution systems. With output frequencies of up to 200 MHz and a maximum output skew of 150 ps the MPC9351 is an ideal solution for the most demanding clock tree designs. The device offers 9 low skew clock outputs, each is configurable to support the clocking needs of the various high-performance microprocessors including the PowerQuicc II integrated communication microprocessor. The extended temperature range of the MPC9351 supports telecommunication and networking requirements.The devices employs a fully differential PLL design to minimize cycle-to-cycle and long-term jitter.

Features

- 9 outputs LVCMOS PLL clock generator
- 25 200 MHz output frequency range
- Fully integrated PLL
- 2.5V and 3.3V compatible
- Compatible to various microprocessors such as PowerQuicc II
- Supports networking, telecommunications and computer applications
- Configurable outputs: divide-by-2, 4 and 8 of VCO frequency
- LVPECL and LVCMOS compatible inputs
- External feedback enables zero-delay configurations
- Output enable/disable and static test mode (PLL enable/disable)
- Low skew characteristics: maximum 150 ps output-to-output
- Cycle-to-cycle jitter max. 22 ps RMS
- 32 lead LQFP package
- Ambient Temperature Range –40°C to +85°C

Functional Description

The MPC9351 utilizes PLL technology to frequency and phase lock its outputs onto an input reference clock. Normal operation of the MPC9351 requires a connection of one of the device outputs to the EXT_FB input to close the PLL feedback path. The reference clock frequency and the output divider for the feedback path determine the VCO frequency. Both must be selected to match the VCO frequency range. With available output dividers of divide-by-2, divide-by-4 and divide-by-8 the internal VCO of the MPC9351 is running at either 2x, 4x or 8x of the reference clock frequency. The frequency of the QA, QB, QC and QD outputs is either the one half, one fourth or one eighth of the selected VCO frequency and can be configured for each output bank using the FSELA, FSELB, FSELC and FSELD pins, respectively. The available output to input frequency ratios are 4:1, 2:1, 1:1, 1:2 and 1:4. The REF_SEL pin selects the differential LVPECL (PCLK and PCLK) or the LVCMOS compatible reference input (TCLK). The MPC9351 also provides a static test mode when the PLL enable pin (PLL_EN) is pulled to logic low state. In test mode, the selected input reference clock is routed directly to the output dividers bypassing the PLL. The test mode is intended for system diagnostics, test and debug purpose. This test mode is fully static and the minimum clock frequency specification does not apply. The outputs can be disabled by deasserting the OE pin (logic high state). In PLL mode, deasserting OE causes the PLL to loose lock due to no feedback signal presence at EXT_FB. Asserting OE will enable the outputs and close the phase locked loop, also enabling the PLL to recover to normal operation. The MPC9351 is fully 2.5V and 3.3V compatible and requires no external loop filter components. All inputs except PCLK and PCLK accept LVCMOS signals while the outputs provide LVCMOS compatible levels with the capability to drive terminated 50 Ω transmission lines. For series terminated transmission lines, each of the MPC9351 outputs can drive one or two traces giving the devices an effective fanout of 1:18. The device is packaged in a 7x7 mm² 32-lead LQFP package.

Application Information

The fully integrated PLL of the MPC9351 allows the low skew outputs to lock onto a clock input and distribute it with essentially zero propagation delay to multiple components on the board. In zero-delay buffer mode, the PLL minimizes phase offset between the outputs and the reference signal.

MOTOROLA

MPC9351

Freescale Semiconductor, Inc.

The MPC9351 requires an external RC filter for the analog power supply pin VCCA. Please see application section for details.

Figure 1. MPC9351 Logic Diagram

Figure 2. Pinout: 32–Lead Package Pinout (Top View)

PIN CONFIGURATION

GENERAL SPECIFICATIONS

DC CHARACTERISTICS (V_{CC} = 3.3V \pm 5%, T_A = -40° to 85°C)

a. V_{CMR} (DC) is the crosspoint of the differential input signal. Functional operation is obtained when the crosspoint is within the V_{CMR} range and the input swing lies within the V_{PP} (DC) specification.

b. The MPC9351 is capable of driving 50Ω transmission lines on the incident edge. Each output drives one 50Ω parallel terminated transmission line to a termination voltage of V_{TT}. Alternatively, the device drives up to two 50Ω series terminated transmission lines.

AC CHARACTERISTICS (V_{CC} = $3.3V \pm 5\%$, T_A = -40° to 85° C)^a

a. AC characteristics apply for parallel output termination of 50Ω to V τ T b. V_{CMR} (AC) is the crosspoint of the differential input signal. Normal AC

V_{CMR} (AC) is the crosspoint of the differential input signal. Normal AC operation is obtained when the crosspoint is within the V_{CMR} range and the input swing lies within the Vpp (AC) specification. Violation of V_{CMR} or Vpp impacts static phase offset t_(∅).

DC CHARACTERISTICS ($V_{CC} = 2.5V \pm 5\%$, $T_A = -40^\circ$ to 85°C)

a. V_{CMR} (DC) is the crosspoint of the differential input signal. Functional operation is obtained when the crosspoint is within the V_{CMR} range and the input swing lies within the V_{PP} (DC) specification.

b. The MPC9351 is capable of driving 50Ω transmission lines on the incident edge. Each output drives one 50Ω parallel terminated transmission line to a termination voltage of V_{TT}. Alternatively, the device drives up to two 50Ω series terminated transmission lines per output.

AC CHARACTERISTICS (V_{CC} = 2.5V \pm 5%, T_A = –40° to 85°C)^a

a. AC characteristics apply for parallel output termination of 50Ω to V τ T
b. V_{CMR} (AC) is the crosspoint of the differential input signal. Normal AC

VCMR (AC) is the crosspoint of the differential input signal. Normal AC operation is obtained when the crosspoint is within the V_{CMR} range and the input swing lies within the Vpp (AC) specification. Violation of V_{CMR} or Vpp impacts static phase offset t_(∅).

APPLICATIONS INFORMATION

Programming the MPC9351

The MPC9351 clock driver outputs can be configured into several divider modes, in addition the external feedback of the device allows for flexibility in establishing various input to output frequency relationships. The output divider of the four output groups allows the user to configure the outputs into 1:1, 2:1, 4:1 and 4:2:1 frequency ratios. The use of even dividers ensure that the output duty cycle is always 50%. "Output Frequency Relationship for an Example Configuration" illustrates the various output configurations, the table describes the outputs using the input clock frequency CLK as a reference.

The output division settings establish the output relationship, in addition, it must be ensured that the VCO will be stable given the frequency of the outputs desired. The feedback frequency should be used to situate the VCO into a frequency range in which the PLL will be stable. The design of the PLL supports output frequencies from 25 MHz to 200 MHz while the VCO frequency range is specified from 200 MHz to 400 MHz and should not be exceeded for stable operation.

Output frequency relationship with respect to input reference frequency CLK. QC1 is connected to EXT_FB. More frequency ratios are available by the connection of QA to the feedback input (EXT_FB).

Using the MPC9351 in zero–delay applications

Nested clock trees are typical applications for the MPC9351. For these applications the MPC9351 offers a differential LVPECL clock input pair as a PLL reference. This allows for the use of differential LVPECL primary clock distribution devices such as the Motorola MC100EP111 or MC10EP222, taking advantage of its superior low-skew performance. Clock trees using LVPECL for clock distribution and the MPC9351 as LVCMOS PLL fanout buffer with zero insertion delay will show significantly lower clock skew than clock distributions developed from CMOS fanout buffers.

The external feedback option of the MPC9351 PLL allows for its use as a zero delay buffer. The PLL aligns the feedback clock output edge with the clock input reference edge and virtually eliminates the propagation delay through the device.

The remaining insertion delay (skew error) of the MPC9351 in zero-delay applications is measured between the reference clock input and any output. This effective delay consists of the static phase offset (SPO or t (\varnothing)), I/O jitter

(t $_{\mathsf{JIT}(\varnothing)}$, phase or long-term jitter), feedback path delay and the output-to-output skew ($tgK(O)$ relative to the feedback output.

MPC9351 zero–delay configuration (feedback of QD4)

Calculation of part-to-part skew

The MPC9351 zero delay buffer supports applications where critical clock signal timing can be maintained across several devices. If the reference clock inputs (TCLK or PCLK) of two or more MPC9351 are connected together, the maximum overall timing uncertainty from the common TCLK input to any output is:

 t SK(PP) = t (∅) + t SK(O) + t PD, LINE(FB) + t JIT(∅) \cdot CF

This maximum timing uncertainty consist of 4 components: static phase offset, output skew, feedback board trace delay and I/O (phase) jitter:

Figure 3. MPC9351 max. device-to-device skew

Due to the statistical nature of I/O jitter a RMS value (1 σ) is specified. I/O jitter numbers for other confidence factors (CF) can be derived from Table 8.

The feedback trace delay is determined by the board layout and can be used to fine-tune the effective delay through each device. In the following example calculation a I/O jitter confidence factor of 99.7% $(\pm 3\sigma)$ is assumed, resulting in a worst case timing uncertainty from input to any output of -251 ps to 351 ps relative to TCLK (V_{CC} =3.3V and $f_{VCO} = 400 MHz$:

 t SK(PP) = = [–50ps...150ps] + [–150ps...150ps] + $[(17ps -3)...(17ps -3)] + tpD, LINE(FB)$ t SK(PP) = = [–251ps...351ps] + tPD, LINE(FB)

Above equation uses the maximum I/O jitter number shown in the AC characteristic table for $V_{CC}=3.3V$ (17 ps RMS). I/O jitter is frequency dependant with a maximum at the lowest VCO frequency (200 MHz for the MPC9351). Applications using a higher VCO frequency exhibit less I/O jitter than the AC characteristic limit. The I/O jitter characteristics in Figure 4. and Figure 5. can be used to derive a smaller I/O jitter number at the specific VCO frequency, resulting in tighter timing limits in zero-delay mode and for part-to-part skew tSK(PP).

Power Supply Filtering

The MPC9351 is a mixed analog/digital product. Its analog circuitry is naturally susceptible to random noise, especially if this noise is seen on the power supply pins. Noise on the VCCA (PLL) power supply impacts the device characteristics, for instance I/O jitter. The MPC9351 provides separate power supplies for the output buffers (V_{CC}) and the phase-locked loop (V_{CCA}) of the device. The purpose of this design technique is to isolate the high switching noise digital outputs from the relatively sensitive internal analog phase-locked loop. In a digital system environment where it is more difficult to minimize noise on the power supplies a second level of isolation may be required. The simple but effective form of isolation is a power supply filter on the VCCA pin for the MPC9351. Figure 6. illustrates a typical power supply filter scheme. The MPC9351 frequency and phase stability is most susceptible to noise with spectral content in the 100kHz to 20MHz range. Therefore the filter should be designed to

target this range. The key parameter that needs to be met in the final filter design is the DC voltage drop across the series filter resistor R_F. From the data sheet the I_{CCA} current (the current sourced through the V_{CCA} pin) is typically 3 mA (5 mA maximum), assuming that a minimum of 2.325V (V_{CC}=3.3V or $V_{CC}=2.5V$) must be maintained on the V_{CC} pin. The resistor RF shown in Figure 6. "V_{CCA} Power Supply Filter" must have a resistance of 270 Ω (V_{CC}=3.3V) or 9-10 Ω (VCC=2.5V) to meet the voltage drop criteria.

Figure 6. VCCA Power Supply Filter

The minimum values for R_F and the and the filter capacitor CF are defined by the required filter characteristics: the RC filter should provide an attenuation greater than 40 dB for noise whose spectral content is above 100 kHz. In the example RC filter shown in Figure 6. "V_{CCA} Power Supply Filter", the filter cut-off frequency is around 3-5 kHz and the noise attenuation at 100 kHz is better than 42 dB.

As the noise frequency crosses the series resonant point of an individual capacitor its overall impedance begins to look inductive and thus increases with increasing frequency. The parallel capacitor combination shown ensures that a low impedance path to ground exists for frequencies well above the bandwidth of the PLL. Although the MPC9351 has several design features to minimize the susceptibility to power supply noise (isolated power and grounds and fully differential PLL) there still may be applications in which overall performance is being degraded due to system power supply noise. The power supply filter schemes discussed in this section should be adequate to eliminate power supply noise related problems in most designs. **Example Secure Semicial Constrainers between the semiconduction of the PCS and the Separation of the Semiclean of the Semicial Constrainers are semicial constrainers are semicial constrainers are semicial constrainers ar**

Driving Transmission Lines

The MPC9351 clock driver was designed to drive high speed signals in a terminated transmission line environment. To provide the optimum flexibility to the user the output drivers were designed to exhibit the lowest impedance possible. With an output impedance of less than 20 Ω the drivers can drive either parallel or series terminated transmission lines. For more information on transmission lines the reader is referred to Motorola application note AN1091. In most high performance clock networks point-to-point distribution of signals is the method of choice. In a point-to-point scheme either series terminated or parallel terminated transmission lines can be used. The parallel

technique terminates the signal at the end of the line with a 50Ω resistance to $VCC+2$.

This technique draws a fairly high level of DC current and thus only a single terminated line can be driven by each output of the MPC9351 clock driver. For the series terminated case however there is no DC current draw, thus the outputs can drive multiple series terminated lines. Figure 7. "Single versus Dual Transmission Lines" illustrates an output driving a single series terminated line versus two series terminated lines in parallel. When taken to its extreme the fanout of the MPC9351 clock driver is effectively doubled due to its capability to drive multiple lines.

Figure 7. Single versus Dual Transmission Lines

 The waveform plots in Figure 8. "Single versus Dual Line Termination Waveforms" show the simulation results of an output driving a single line versus two lines. In both cases the drive capability of the MPC9351 output buffer is more than sufficient to drive 50Ω transmission lines on the incident edge. Note from the delay measurements in the simulations a delta of only 43ps exists between the two differently loaded outputs. This suggests that the dual line driving need not be used exclusively to maintain the tight output-to-output skew of the MPC9351. The output waveform in Figure 8. "Single versus Dual Line Termination Waveforms" shows a step in the waveform, this step is caused by the impedance mismatch seen looking into the driver. The parallel combination of the 36Ω series resistor plus the output impedance does not match the parallel combination of the line impedances. The voltage wave launched down the two lines will equal:

> $V_L = V_S (Z_0 \div (R_S + R_0 + Z_0))$ $Z_0 = 50Ω || 50Ω$ R S = 36Ω || 36Ω R_0 = 14Ω V_L = 3.0 (25 ÷ (18+17+25) $= 1.31V$

At the load end the voltage will double, due to the near unity reflection coefficient, to 2.6V. It will then increment towards the quiescent 3.0V in steps separated by one round trip delay (in this case 4.0ns).

Since this step is well above the threshold region it will not cause any false clock triggering, however designers may be uncomfortable with unwanted reflections on the line. To better match the impedances when driving multiple lines the situation in Figure 9. "Optimized Dual Line Termination" should be used. In this case the series terminating resistors are reduced such that when the parallel combination is added to the output buffer impedance the line impedance is perfectly matched.

Figure 9. Optimized Dual Line Termination

Figure 10. TCLK MPC9351 AC test reference for $V_{CC} = 3.3V$ and $V_{CC} = 2.5V$

Figure 11. PCLK MPC9351 AC test reference

Figure 12. Propagation delay (tpp, static phase **offset) test reference**

The time from the PLL controlled edge to the non controlled edge, divided by the time between PLL controlled edges, expressed as a percentage

The variation in cycle time of a signal between adjacent cycles, over a random sample of adjacent cycle pairs

Figure 16. Cycle–to–cycle Jitter **Figure 17. Period Jitter**

The deviation in t $_0$ for a controlled edge with respect to a t $_0$ mean in a random sample of cycles

Figure 13. Propagation delay (tPD) test reference

The pin–to–pin skew is defined as the worst case difference in propagation delay between any similar delay path within a single device

Figure 14. Output Duty Cycle (DC) Figure 15. Output–to–output Skew tSK(O)

The deviation in cycle time of a signal with respect to the ideal period over a random sample of cycles

Figure 18. I/O Jitter Figure 19. Transition Time Test Reference

MPC9351

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and \mathbb{Q} are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer. Free Control and the state of the matter of the state of the Moroclap could create stituation where personality and the state of the More of the State of the

How to reach us:
USA/EUROPE/Locations Not Listed: Motorola Literature Distribution; P.O. Box 5405, Denver, Colorado 80217. 1–303–675–2140 or 1–800–441–2447 Minami–Azabu. Minato–ku, Tokyo 106–8573 Japan. 81–3–3440–3569

HOME PAGE: http://www.motorola.com/semiconductors/

JAPAN: Motorola Japan Ltd.; SPS, Technical Information Center, 3-20-1,

Technical Information Center: 1–800–521–6274 ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; Silicon Harbour Centre, 2, Dai King Street, Tai Po Industrial Estate, Tai Po, N.T., Hong Kong. 852–26668334

WOTOROLA For More Information On This Product, MPC9351/D Go to: www.freescale.com