

150 W, 2900 - 3500 MHz, 50V, GaN HEMT for S-Band Radar Systems

Description

Wolfspeed's CGHV35150 is a gallium nitride (GaN) high electron mobility transistor (HEMT) designed specifically with high efficiency, high gain and wide bandwidth capabilities, which makes the CGHV35150 ideal for 2.9 - 3.5 GHz S-Band radar amplifier applications. The transistor is supplied in a ceramic/metal flange and pill package.

Package Types: 440193 / 440206 PNs: CGHV35150F / CGHV35150P

Typical Performance 3.1 - 3.5 GHz ($T_c = 85$ °C)

Parameter	3.1 GHz	3.2 GHz	3.3 GHz	3.4 GHz	3.5 GHz	Units
Output Power	180	180	180	170	150	W
Gain	13.5	13.5	13.5	13.3	12.7	dB
Drain Efficiency	50	49	50	49	48	%

Note: Measured in the CGHV35150-AMP application circuit, under 300 μ s pulse width, 20% duty cycle, P_{IN} = 39 dBm

Features

- Rated Power = 150 W @ T_{CASE} = 85°C
- Operating Frequency = 2.9 3.5 GHz
- Transient 100µsec 300µsec @ 20% Duty Cycle
- 13 dB Power Gain @ T_{CASE} = 85°C
- 50% Typical Drain Efficiency @ T_{CASE} = 85°C
- Input Matched
- <0.3 dB Pulsed Amplitude Droop

Absolute Maximum Ratings (not simultaneous)

Parameter	Symbol	Rating	Units	Conditions
Drain-Source Voltage	V _{DSS}	150	V	25°C
Gate-to-Source Voltage	V _{GS}	-10, +2	V	25°C
Storage Temperature	T _{STG}	-65, +150	°C	
Operating Junction Temperature	TJ	225		
Maximum Forward Gate Current	I _{GMAX}	30	mA	2500
Maximum Drain Current ¹	I _{DMAX}	12	А	- 25°C
Soldering Temperature ²	T _s	245	°C	
Screw Torque	τ	40	in-oz	
Pulsed Thermal Resistance, Junction to Case ³	В	0.81	96 /14/	200,000 200/ 0596
Pulsed Thermal Resistance, Junction to Case⁴	− R _{θJC}	0.86	°C/W	300μsec, 20%, 85°C
Case Operating Temperature	T _c	-40, +150	°C	

Notes:

Electrical Characteristics

Characteristics	Symbol	Min.	Тур.	Max.	Units	Conditions
DC Characteristics ¹ (T _c = 25°C)						
Gate Threshold Voltage	$V_{GS(th)}$	-3.8	-3.0	-2.3	.,,	$V_{DS} = 10 \text{ V}, I_D = 28.8 \text{ mA}$
Gate Quiescent Voltage	$V_{GS(Q)}$	-	-2.7	-	V _{DC}	V _{DS} = 50 V, I _D = 500 mA
Saturated Drain Current ²	I _{DS}	18.7	26.8	_	Α	$V_{DS} = 6.0 \text{ V}, V_{GS} = 2.0 \text{ V}$
Drain-Source Breakdown Voltage	V_{BR}	125	_	_	V _{DC}	V _{GS} = -8 V, I _D = 28.8 mA
RF Characteristics ³ (T _c = 25°C,	RF Characteristics ³ (T _c = 25°C, F ₀ = 3.1 - 3.5 GHz unless otherwise noted)					
Output Power at 3.1 GHz	Б	130	170	_	14/	$V_{DD} = 50 \text{ V}, I_{DQ} = 500 \text{ mA}, P_{IN} = 39 \text{ dBm}$
Output Power at 3.5 GHz	Роит	100	135	_	W	
Gain at 3.1 GHz		12.0	13.3	_	40	
Gain at 3.5 GHz	G_{P}	11.0	12.3	_	- dB	
Drain Efficiency at 3.1 GHz		40	47	_	0/	
Drain Efficiency at 3.5 GHz	η	40	44	_	- %	
Amplitude Droop	D	_	-0.3	-	dB	
Output Mismatch Stress	VSWR	-	_	5:1	Ψ	No damage at all phase angles, $V_{DD} = 50 \text{ V}, I_{DQ} = 500 \text{ mA}, P_{IN} = 39 \text{ dBm Pulsed}$

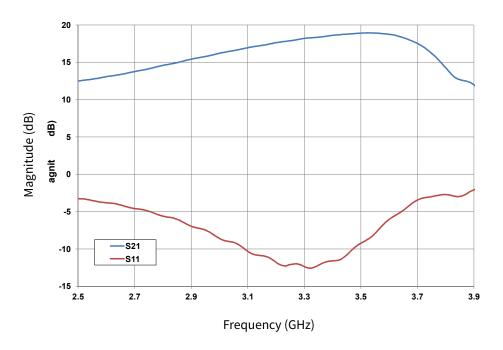
Notes:

¹ Current limit for long term, reliable operation

² Refer to the Application Note on soldering at wolfspeed.com/rf/document-library

 $^{^3}$ Measured for the CGHV35150P at P_{DISS} = 150 W

 $^{^4}$ Measured for the CGHV35150F at $P_{\text{DISS}} = 150 \text{ W}$


 $^{^{\}scriptscriptstyle 1}\,\text{Measured}$ on wafer prior to packaging.

² Scaled from PCM data

 $^{^3}$ Measured in CGHV35150-AMP. Pulse Width = 300 μ S, Duty Cycle = 20%

CGHV35150 3

Typical Performance

Figure 1. CGHV35150 Typical S-Parameters $V_{DD} = 50 \text{ V}, I_{DQ} = 500 \text{ mA}, T_{CASE} = 25^{\circ}\text{C}$

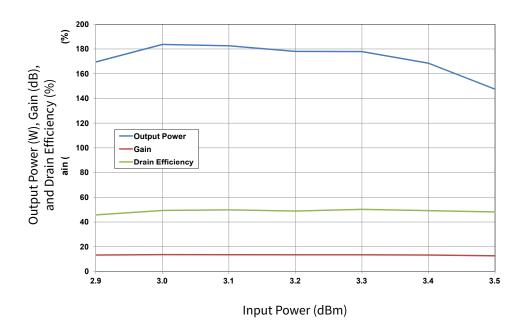
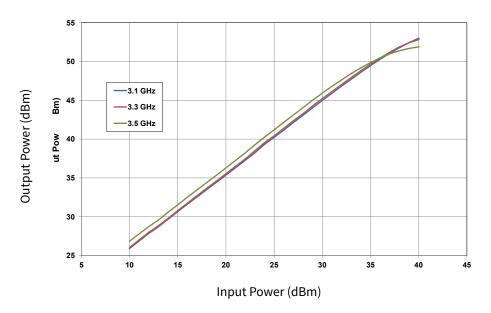
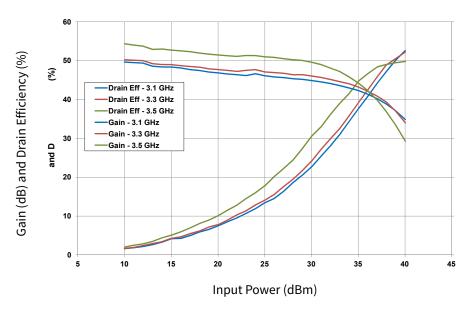




Figure 2. CGHV35150 Typical RF Results V_{DD} = 50 V, I_{DQ} = 500 mA, P_{IN} = 39 dBm T_{PLATE} = 85°C, Pulse Width = 300 μ s, Duty Cycle = 20%

Typical Performance

Figure 3. CGHV35150 Output Power vs Input Power $V_{DD} = 50 \text{ V}$, $I_{DO} = 500 \text{ mA}$, $T_{PLATE} = 85^{\circ}\text{C}$, Pulse Width = 300 μ s, Duty Cycle = 20%

Figure 4. CGHV35150 Gain and Drain Efficiency vs Input Power V_{DD} = 50 V, I_{DQ} = 500 mA, T_{PLATE} = 85°C, Pulse Width = 300 μ s, Duty Cycle = 20%

Electrostatic Discharge (ESD) Classifications

Parameter	Symbol	Class	Classification Level	Test Methodology
Human Body Model	НВМ	TBD	ANSI/ESDA/JEDEC JS-001 Table 3	JEDEC JESD22 A114-D
Charge Device Model	CDM	TBD	ANSI/ESDA/JEDEC JS-002 Table 3	JEDEC JESD22 C101-C

CGHV35150 Power Dissipation De-rating Curve

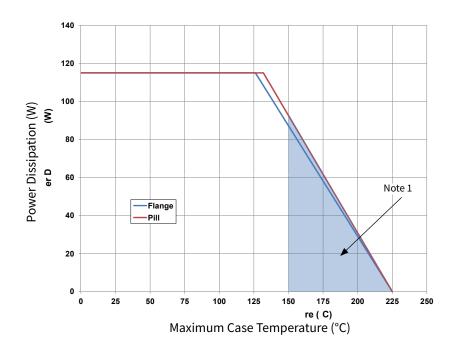
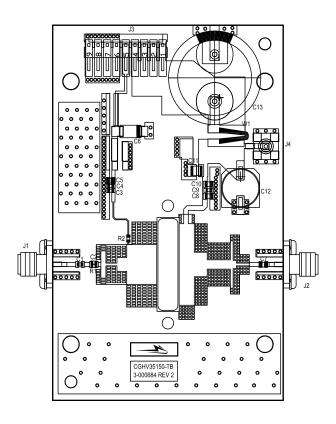
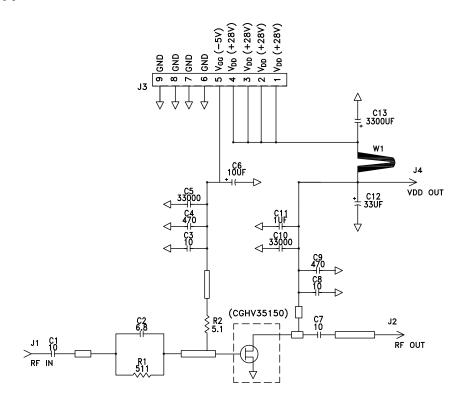


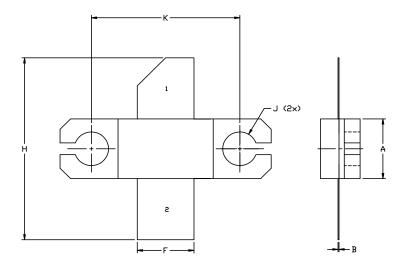
Figure 5. CGHV35150 Transient Power Dissipation De-Rating Curve

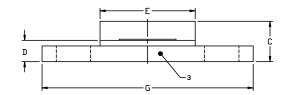

Note 1. Area exceeds Maximum Case Temperature (See Page 2)

CGHV35150-AMP Application Circuit Bill of Materials


Designator	Description	Qty
R1	RES, 511 OHM, +/- 1%, 1/16W, 0603	1
R2	RES, 5.1 OHM, +/- 1%, 1/16W, 0603	1
C1,C7,C8	CAP, 10pF, +/- 1%, 250V, 0805	3
C2	CAP, 6.8pF, +/- 0.25pF, 250V, 0603	1
С3	CAP, 10.0pF, +/-5%, 250V, 0603	1
C4,C9	CAP, 470pF, 5%, 100V, 0603, X	2
C5,C10	CAP, 33000pF, 0805,100V, X7R	1
C6	CAP, 10μF, 16V TANTALUM	1
C11	CAP, 1.0μF, 100V, 10%, X7R, 1210	1
C12	CAP, 33μF, 20%, G CASE	1
C13	CAP, 3300µF, +/-20%, 100V, ELECTROLYTIC	1
J1,J2	CONN, SMA, PANEL MOUNT JACK, FL	2
J3	HEADER RT>PLZ .1CEN LK 9POS	1
J4	CONNECTOR; SMB, Straight, JACK, SMD	1
W1	CABLE, 18 AWG, 4.2	1
	PCB, RO4350, 20 MIL THK, CGHV35150	1
Q1	CGHV35150	1

CGHV35150 6


CGHV35150-AMP Application Circuit Outline



CGHV35150-AMP Application Circuit Schematic

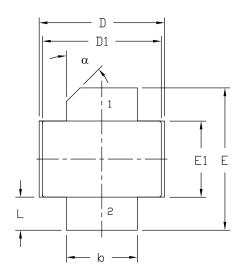
Product Dimensions CGHV35150F (Package Type — 440193)

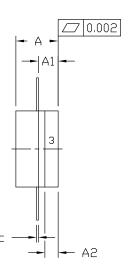
NOTES

1. DIMENSIONING AND TOLERANICING PER ANSI Y14.5M, 1982.

2. CONTROLLING DIMENSION: INCH.

3. ADHESIVE FROM LID MAY EXTEND A MAXIMUM OF 0.020 BEYOND EDGE OF LID.


4. LID MAY BE MISALIGNED TO THE BODY OF THE PACKAGE BY A MAXIMUM OF 0.008' IN ANY DIRECTION.


5. ALL PLATED SURFACES ARE NI/AU

	INC	HES	MILLIMETERS	
DIM	MIN	MAX	MIN	MAX
Α	0.225	0.235	5.72	5.97
В	0.004	0.006	0.10	0.15
C	0.145	0.165	3.18	4.19
D	0.077	0.087	1.96	2.21
E	0.355	0.365	9.02	9.27
F	0.210	0.220	5.33	5.59
G	0.795	0.805	20.19	20.45
Н	0.670	0.730	17.02	18.54
J	ø .130		3.30	
k	0.5	62	14.	28

PIN 1. GATE PIN 2. DRAIN PIN 3. SOURCE

Product Dimensions CGHV35150P (Package Type — 440206)

NOTES:

- 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M 1994.
- 2. CONTROLLING DIMENSION: INCH.
- 3, ADHESIVE FROM LID MAY EXTEND A MAXIMUM OF 0.020" BEYOND EDGE OF LID.
- 4. LID MAY BE MISALIGNED TO THE BODY OF PACKAGE BY A MAXIMUM OF 0.008° IN ANY DIRECTION.

	INC	HES	MILLIM	IETERS	NOTES
DIM	MIN	MAX	MIN	MAX	
Α	0.125	0.145	3.18	3.68	
A1	0.057	0.067	1.45	1.70	
A2	0.035	0.045	0.89	1.14	
b	0.210	0.220	5.33	5.59	2x
С	0.004	0.006	0.10	0.15	2x
D	0.375	0.385	9.53	9.78	
D1	0.355	0.365	9.02	9.27	
E	0.400	0.460	10.16	11.68	
E1	0.225	0.235	5.72	5.97	
L	0.085	0.115	2.16	2.92	2x
α	45°	REF	45°	REF	

- PIN 1. GATE
 - 2. DRAIN
 - 3. SOURCE

Part Number System

CGHV35150F

Table 1.

Parameter	Value	Units
Upper Frequency ¹	3.5	GHz
Power Output	150	W
Package	F = Flange, P = Pill	-

Note

Table 2.

Character Code	Code Value
A	0
В	1
С	2
D	3
E	4
F	5
G	6
Н	7
J	8
K	9
Examples	1A = 10.0 GHz 2H = 27.0 GHz

¹ Alpha characters used in frequency code indicate a value greater than 9.9 GHz. See Table 2 for value.

Product Ordering Information

Order Number	Description	Unit of Measure	Image
CGHV35150F	GaN HEMT	Each	CGHV36150P
CGHV35150P	GaN HEMT	Each	CGHV35150P CO78945
CGHV35150F-AMP	Test board with GaN HEMT installed	Each	

For more information, please contact:

4600 Silicon Drive Durham, NC 27703 USA Tel: +1.919.313.5300 www.wolfspeed.com/RF

Sales Contact RFSales@wolfspeed.com

RF Product Marketing Contact RFMarketing@wolfspeed.com

Notes & Disclaimer

Specifications are subject to change without notice. "Typical" parameters are the average values expected by Wolfspeed in large quantities and are provided for information purposes only. Wolfspeed products are not warranted or authorized for use as critical components in medical, life-saving, or life-sustaining applications, or other applications where a failure would reasonably be expected to cause severe personal injury or death. No responsibility is assumed by Wolfspeed for any infringement of patents or other rights of third parties which may result from use of the information contained herein. No license is granted by implication or otherwise under any patent or patent rights of Wolfspeed.

©2019-2022 Wolfspeed, Inc. All rights reserved. Wolfspeed® and the Wolfstreak logo are registered trademarks and the Wolfspeed logo is a trademark of Wolfspeed, Inc. PATENT: https://www.wolfspeed.com/legal/patents

The information in this document is subject to change without notice.