Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010 Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice

- 1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anticrime systems; safety equipment; and medical equipment not specifically designed for life support.
 - "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majorityowned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

MOS INTEGRATED CIRCUIT . _ 78011F, 78012F, 78013F, 78014F, 78015F, 78016F, 78018F

8-BIT SINGLE-CHIP MICROCONTROLLER

★ DESCRIPTION

The μ PD78011F, 78012F, 78013F, 78014F, 78015F, 78016F, and 78018F are the products in the μ PD78018F subseries within the 78K/0 series.

Compared with the older μ PD78014 subseries, this subseries operates at lower voltage and provides a fuller set of ROM and RAM variations.

A one-time PROM or EPROM product μ PD78P018F capable of operating in the same power supply voltage range as of the mask ROM product and other development tools are also provided.

Functions are described in detail in the following User's Manual, which should be read when carring out design work.

 μ PD78018F, 78018FY Subseries User's Manual : U10659E 78K/0 Series Users Manual – Instruction : U12326E

FEATURES

• Large on-chip ROM & RAM

Item	Program		Data Memory		
Product Name	Memory (ROM)	Internal High- Speed RAM	Internal Expanded RAM	Buffer RAM	Package
μPD78011F	8K bytes	512 bytes	-	32 bytes	• 64-pin plastic shrink DIP (750 mil)
μPD78012F	16K bytes				• 64-pin plastic QFP (14 × 14 mm)
μPD78013F	24K bytes	1024 bytes	-		• 64-pin plastic LQFP (12 \times 12 mm)
μPD78014F	32K bytes				
μPD78015F	40K bytes		512 bytes		
μPD78016F	48K bytes				
μPD78018F	60K bytes		1024 bytes		

- External memory expansion space : 64K bytes
- Minimum instruction execution time can be varied from high-speed (0.4 μ s) to ultra-low-speed (122 μ s)
- I/O ports: 53 (N-ch open-drain : 4)
- 8-bit resolution A/D converter : 8 channels
- Serial interface : 2 channels
- Timer : 5 channels
- Supply voltage : VDD = 1.8 to 5.5 V

APPLICATION FIELDS

Cellular phone, pager, VCR, audio, camera, home appliances, etc

The information in this document is subject to change without notice.

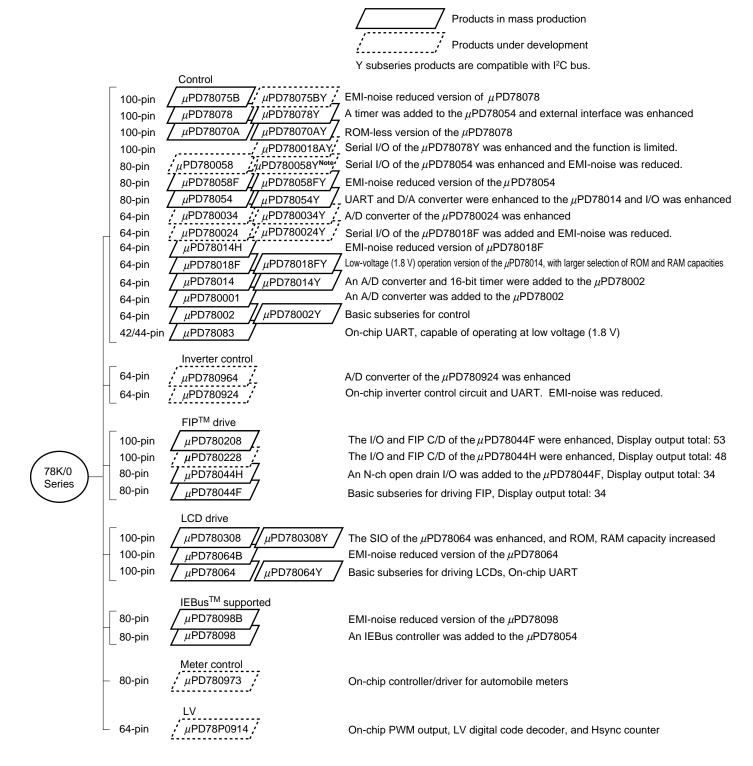
Phase-out/Discontinued

ORDERING INFORMATION

Package

_		
	μPD78011FCW-×××	64-pin plastic shrink DIP (750 mil)
	μPD78011FGC-×××-AB8	64-pin plastic QFP (14 $ imes$ 14 mm)
	μPD78011FGK-×××-8A8	64-pin plastic LQFP (12 \times 12 mm)
	μPD78012FCW-×××	64-pin plastic shrink DIP (750 mil)
	μPD78012FGC-×××-AB8	64-pin plastic QFP (14 $ imes$ 14 mm)
	μPD78012FGK-×××-8A8	64-pin plastic LQFP (12 \times 12 mm)
	μPD78013FCW-×××	64-pin plastic shrink DIP (750 mil)
	μPD78013FGC-×××-AB8	64-pin plastic QFP (14 $ imes$ 14 mm)
	μPD78013FGK-×××-8A8	64-pin plastic LQFP (12 \times 12 mm)
	μPD78014FCW-×××	64-pin plastic shrink DIP (750 mil)
	μPD78014FGC-×××-AB8	64-pin plastic QFP (14 $ imes$ 14 mm)
	μPD78014FGK-×××-8A8	64-pin plastic LQFP (12 \times 12 mm)
	μPD78015FCW-×××	64-pin plastic shrink DIP (750 mil)
	μPD78015FGC-×××-AB8	64-pin plastic QFP (14 $ imes$ 14 mm)
	μPD78015FGK-×××-8A8	64-pin plastic LQFP (12 \times 12 mm)
	μPD78016FCW-×××	64-pin plastic shrink DIP (750 mil)
	μPD78016FGC-×××-AB8	64-pin plastic QFP (14 $ imes$ 14 mm)
	μPD78016FGK-×××-8A8	64-pin plastic LQFP (12 \times 12 mm)
	μPD78018FCW-×××	64-pin plastic shrink DIP (750 mil)
	μPD78018FGC-×××-AB8	64-pin plastic QFP (14 $ imes$ 14 mm)
	μPD78018FGK-×××-8A8	64-pin plastic LQFP (12 \times 12 mm)

Remark ××× indicates a ROM code suffix.


* * *

μPD78011F, 78012F, 78013F, 78014F, 78015F, 78016F, 78018F

★ 78K/0 SERIES DEVELOPMENT

The following shows the products organized according to usage. The names in the parallelograms are subseries names.

μ PD78011F, 78012F, 78013F, 78014F, 78015F, 78016F, 78018F

Phase-out/Discontinued

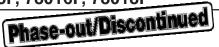
The following lists the main functional differences between subseries products.

Function		ROM		Tin	ner		8-bit 10-b		8-bit	Serial Interface	1/0	Vdd MIN.	External
Subseries	Name	Capacity	8-bit	16-bit	Watch	WDT	A/D	A/D	D/A	Condrinkendoe		Value	Expansion
Control	μPD78075B	32K-40K	4ch	1ch	1ch	1ch	8ch	-	2ch	3ch (UART: 1ch)	88	1.8 V	0
	μPD78078	48K-60K											
	μPD78070A	_									61	2.7 V	
ĺ	μPD780058	24K-60K	2ch						2ch	3ch (time division UART: 1ch)	68	1.8 V	
	μPD78058F	48K-60K								3ch (UART: 1ch)	69	2.7 V	
	μPD78054	16K-60K										2.0 V	
	µPD780034	8K-32K					_	8ch	-	3ch (UART: 1ch,	51	1.8 V	
ĺ	μPD780024	*					8ch	-		time division 3-wire: 1ch)			
ĺ	μPD78014H									2ch	53	1.8 V	
ĺ	μPD78018F	8K-60K											
ĺ	μPD78014	8K-32K]									2.7 V]
ĺ	μPD780001	8K		-	-					1ch	39		-
ĺ	μPD78002	8K-16K			1ch		_				53		0
	μPD78083				-		8ch			1ch (UART: 1ch)	33	1.8 V	-
Inverter	μPD780964	8K-32K	3ch	Note	-	1ch	-	8ch	-	2ch (UART: 2ch)	47	2.7 V	0
control	µPD780924						8ch	-					
FIP	μPD780208	32K-60K	2ch	1ch	1ch	1ch	8ch	-	-	2ch	74	2.7 V	_
drive	μPD780228	48K-60K	3ch	-	-					1ch	72	4.5 V	
ĺ	μPD78044H	32K-48K	2ch	1ch	1ch						68	2.7 V	
	μPD78044F	16K-40K								2ch			
LCD	µPD780308	48K-60K	2ch	1ch	1ch	1ch	8ch	-	-	3ch (time division UART: 1ch)	57	2.0 V	-
drive	μPD78064B	32K								2ch (UART: 1ch)			
	μPD78064	16K-32K											
IEBus	μPD78098	40K-60K	2ch	1ch	1ch	1ch	8ch	-	2ch	3ch (UART: 1ch)	69	2.7 V	0
supported	µPD78098B	32K-60K											
Meter control	μPD780973	24K-32K	3ch	1ch	1ch	1ch	5ch	-	_	2ch (UART: 1ch)	56	4.5 V	-
LV	μPD78P0914	32K	6ch	_	_	1ch	8ch	_	_	2ch	54	4.5 V	0

Note 10-bit timer: 1 channel

OVERVIEW OF FUNCTION (1/2)

Product N	ltem lame	μPD78011F	μPD78012F	μPD78013F	μPD78014F	μPD78015F	μPD78016F	μPD7801			
	ROM	8K bytes	16K bytes	24K bytes	32K bytes	40K bytes	48K bytes	60K byte			
High-speed Internal RAM			512 bytes 1024 bytes								
memory	Expanded RAM		-	_		512	bytes	1024 byt			
	Buffer RAM	32 bytes				·					
Memory s	space	64K bytes									
General-p	ourpose registers	8 bits × 32 re	egisters (8 bits	imes 8 registers $ imes$	4 banks)						
Minimum in	struction execution time	On-chip mini	mum instructio	n execution tin	ne cycle modif	ication functior	1				
	Vhen main system lock selected	0.4 μs/0.8 μs	s/1.6 μs/3.2 μs/	6.4 μs (at 10.0	MHz operatio	n)					
	Vhen subsystem lock selected	122 μs (at 32	2.768 kHz oper	ation)							
Instruction	n set	MultiplicationBit manipul	 16-bit operation Multiplication/division (8 bits × 8 bits,16 bits ÷ 8 bits) Bit manipulation (set, reset, test, boolean operation) BCD correction, etc. 								
I/O ports			ıt open-drain I/O tand voltage)	: 53 : 02 : 47 : 04							
A/D conve	erter	 8-bit resolution × 8 channels Operable over a wide power supply voltage range: AVDD = 1.8 to 5.5 V 									
Serial inte	erface	 3-wire serial I/O/SBI/2-wire serial I/O mode selectable: 1 channel 3-wire mode (on-chip max. 32 bytes automatic data transmit/receive function): 1 channel 									
Timer		 16-bit timer/event counter : 1 channel 8-bit timer/event counter : 2 channels Watch timer : 1 channel Watchdog timer : 1 channel 									
Timer out	put	3 (14-bit PWM output × 1)									
Clock out	Clock output		39.1 kHz, 78.1 kHz, 156 kHz, 313 kHz, 625 kHz, 1.25 MHz (at main system clock: 10.0 MHz operation), 32.768 kHz (at subsystem clock: 32.768 kHz operation)								
Buzzer output		2.4 kHz, 4.9 kHz, 9.8 kHz (at main system clock: 10.0 MHz operation)									
Vectored interrupt	Maskable	Internal : 8 External : 4									
sources	Non-maskable	Internal : 1									


OVERVIEW OF FUNCTION (2/2)

Item Product Name	μPD78011F μPD78012F μPD78013F μPD78014F μPD78015F μPD78016F μPD78018F
Test input	Internal : 1 External : 1
Supply voltage	V _{DD} = 1.8 to 5.5 V
Operating ambient temperature	$T_{A} = -40 \text{ to } +85^{\circ}\text{C}$
Package	 64-pin plastic shrink DIP (750 mil) 64-pin plastic QFP (14 × 14 mm) 64-pin plastic LQFP (12 × 12 mm)

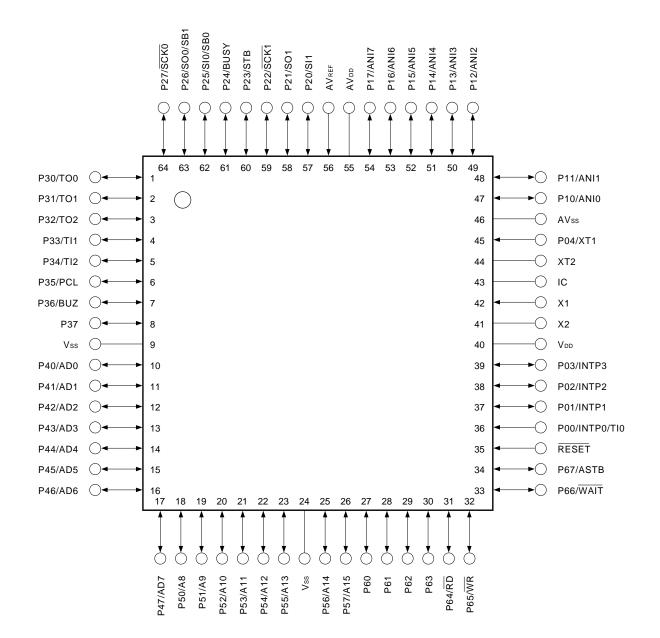
TABLE OF CONTENTS

1.	PIN CONFIGURATION (TOP VIEW)	8
2.	BLOCK DIAGRAM	11
3.	PIN FUNCTIONS 3.1 PORT PINS 3.2 PINS OTHER THAN PORT PINS 3.3 PIN I/O CIRCUITS AND RECOMMENDED CONNECTION OF UNUSED PINS	12 13
4.	MEMORY SPACE	17
5.	PERIPHEL HARDWARE FUNCTION FEATURES 5.1 PORTS 5.2 CLOCK GENERATOR 5.3 TIMER/EVENT COUNTER 5.4 CLOCK OUTPUT CONTROL CIRCUIT 5.5 BUZZER OUTPUT CONTROL CIRCUIT 5.6 A/D CONVERTER 5.7 SERIAL INTERFACES	19 20 21 23 23 24
6.	INTERRUPT FUNCTIONS AND TEST FUNCTIONS 6.1 INTERRUPT FUNCTIONS 6.2 TEST FUNCTIONS	26
7.	EXTERNAL DEVICE EXPANSION FUNCTIONS	30
8.	STANDBY FUNCTIONS	30
9.	RESET FUNCTIONS	30
10.	INSTRUCTION SET	31
11.	ELECTRICAL SPECIFICATIONS	34
12.	CHARACTERISTIC CURVE (REFERENCE VALUES)	61
13.	PACKAGE DRAWINGS	62
14.	RECOMMENDED SOLDERING CONDITIONS	65
APF	PENDIX A. DEVELOPMENT TOOLS	68
APF	PENDIX B. RELATED DOCUMENTS	70

*

- 1. PIN CONFIGURATION (Top View)
 - 64-Pin Plastic Shrink DIP (750 mil)
 μPD78011FCW-xxx, 78012FCW-xxx, 78013FCW-xxx,
 μPD78014FCW-xxx, 78015FCW-xxx, 78016FCW-xxx,
 μPD78018FCW-xxx

	r		۰ <i>–</i>			
P20/SI1	◯◀━►	1	\bigcirc	64		AVREF
P21/SO1	◯◀►►	2		63	———————————————————————————————————————	AVdd
P22/SCK1	◯◀→►	3		62	►	P17/ANI7
P23/STB	◯◀━►	4		61		P16/ANI6
P24/BUSY	◯≁→	5		60	►	P15/ANI5
P25/SI0/SB0	◯◀→►	6		59	►	P14/ANI4
P26/SO0/SB1	◯≁→	7		58	>○	P13/ANI3
P27/SCK0	◯≁→	8		57	►	P12/ANI2
P30/TO0	◯◀→►	9		56	◄-►○	P11/ANI1
P31/TO1	◯◀►►	10		55	>○	P10/ANI0
P32/TO2	◯◀→►	11		54	———————————————————————————————————————	AVss
P33/TI1	◯◀→	12		53	←──	P04/XT1
P34/TI2	◯≁→	13		52	———————————————————————————————————————	XT2
P35/PCL	◯◀→►	14		51	———————————————————————————————————————	IC
P36/BUZ	◯◀→	15		50	←──	X1
P37	◯≁→	16		49	———————————————————————————————————————	X2
Vss	0	17		48	———————————————————————————————————————	Vdd
P40/AD0	◯◀→	18		47	►	P03/INTP3
P41/AD1	◯≁→	19		46	►	P02/INTP2
P42/AD2	◯◀→►	20		45	← ►○	P01/INTP1
P43/AD3	◯◀→►	21		44	←──	P00/INTP0/TI0
P44/AD4	◯≁→	22		43		RESET
P45/AD5	◯◀→►	23		42	►	P67/ASTB
P46/AD6	◯≁→	24		41	►	P66/WAIT
P47/AD7	◯≁→	25		40	>○	P65/WR
P50/A8	◯◀►►	26		39	►	P64/RD
P51/A9	◯≁→	27		38	►	P63
P52/A10	◯◀→►	28		37		P62
P53/A11	◯◀►►	29		36		P61
P54/A12	◯◀ᢇ►	30		35	►	P60
P55/A13	◯◀ᢇ►	31		34		P57/A15
Vss	0	32		33	←)	P56/A14

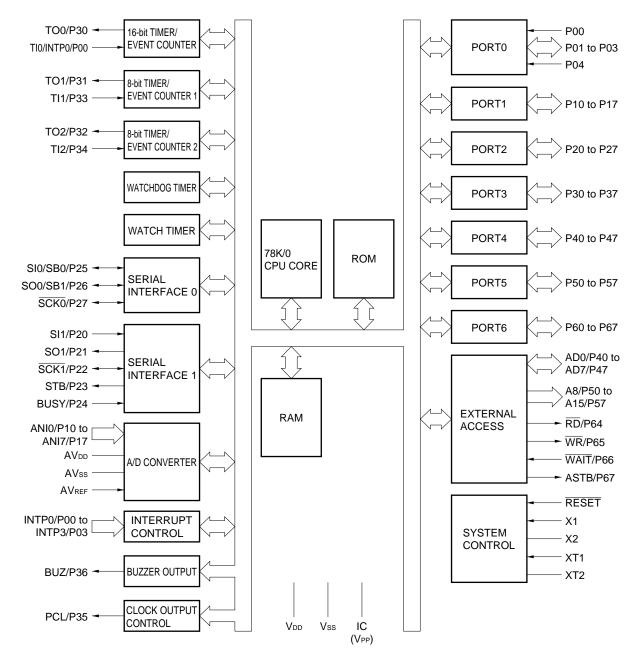

Cautions 1. Always connect the IC (Internally Connected) pin to Vss directly.

- 2. Always connect the AVDD pin to VDD.
- 3. Always connect the AVss pin to Vss.

NEC

- 64-Pin Plastic QFP (14 × 14 mm)
 μPD78011FGC-xxx-AB8, 78012FGC-xxx-AB8, 78013FGC-xxx-AB8,
 μPD78014FGC-xxx-AB8, 78015FGC-xxx-AB8, 78016FGC-xxx-AB8,
- ★ μPD78018FGC-×××-AB8
 - 64-Pin Plastic LQFP (12 × 12 mm) μPD78011FGK-×××-8A8, 78012FGK-×××-8A8, 78013FGK-×××-8A8, μPD78014FGK-×××-8A8, 78015FGK-×××-8A8, 78016FGK-×××-8A8,
- **★** μ**PD78018FGK-**×××-**8A8**

Cautions 1. Always connect the IC (Internally Connected) pin to Vss directly.


- 2. Always connect the AVDD pin to VDD.
- 3. Always connect the AVss pin to Vss.

μ PD78011F, 78012F, 78013F, 78014F, 78015F, 78016F, 78018F

Phase-out/Discontinued

A8 to A15	: Address Bus	PCL	: Programmable Clock
AD0 to AD7	: Address/Data Bus	RD	: Read Strobe
ANI0 to ANI7	: Analog Input	RESET	: Reset
ASTB	: Address Strobe	SB0, SB1	: Serial Bus
AVdd	· Analog Power Supply	SCK0, SCK1	: Serial Clock
AVREF	: Analog Reference Voltage	SI0, SI1	: Serial Input
AVss	: Analog Ground	SO0, SO1	: Serial Output
BUSY	: Busy	STB	: Strobe
BUZ	: Buzzer Clock	TI0 to TI2	: Timer Input
IC	: Internally Connected	TO0 to TO2	: Timer Output
INTP0 to INTP3	3: Interrupt from Peripherals	Vdd	: Power Supply
P00 to P04	: Port0	Vss	: Ground
P10 to P17	: Port1	WAIT	: Wait
P20 to P27	: Port2	WR	: Write Strobe
P30 to P37	: Port3	X1, X2	: Crystal (Main System Clock)
P40 to P47	: Port4	XT1, XT2	: Crystal (Subsystem Clock)
P50 to P57	: Port5		
P60 to P67	: Port6		

2. BLOCK DIAGRAM

Remarks 1. Internal ROM & RAM capacity varies depending on the product. **2.** () : μ PD78P018F

3. PIN FUNCTIONS

3.1 PORT PINS (1/2)

Pin Name	I/O	Function		On Reset	Dual- Function Pin
P00	Input	Port 0	Input only	Input	INTP0/TI0
P01	Input/	5-bit I/O port	Input/output can be specified bit-wise.	Input	INTP1
P02	output		When used as an input port, on-chip pull-up resistor can be used in software.		INTP2
P03					INTP3
P04Note 1	Input		Input only	Input	XT1
P10 to P17	Input/ output	· · ·	n be specified bit-wise. an input port, on-chip pull-up resistor can be used	Input	ANI0 to ANI7
P20	Input/	Port 2		Input	SI1
P21	output	8-bit input/outp			SO1
P22	1		n be specified bit-wise. an input port, on-chip pull-up resistor can be used		SCK1
P23	1	in software.			STB
P24	1				BUSY
P25]				SI0/SB0
P26]				SO0/SB1
P27					SCK0
P30	Input/	Port 3		Input	TO0
P31	output	8-bit input/output	•		TO1
P32		Input/output can be specified in 1-bit units. When used as an input port, on-chip pull-up resistor can be used in software.			TO2
P33				TI1	
P34				TI2	
P35					PCL
P36					BUZ
P37					_
P40 to P47	Input/ output	When used as in software.	ut port. n be specified in 8-bit unit. an input port, on-chip pull-up resistor can be used (KRIF) is set to 1 by falling edge detection.	Input	AD0 to AD7

Notes 1. When using the P04/XT1 pins as an input port, set 1 to bit 6 (FRC) of the processor clock control register (PCC). Do not use the on-chip feedback register of the subsystem clock oscillator.

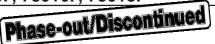
2. When using the P10/ANI0 to P17/ANI7 pins as the A/D converter analog input, on-chip pull-up resistor is automatically unused.

μ PD78011F, 78012F, 78013F, 78014F, 78015F, 78016F, 78018F

Phase-out/Discontinued

3.1 PORT PINS (2/2)

Pin Name	I/O	Fu	On Reset	Dual- Function Pin	
P50 to P57	Input/ output	Port 5 8-bit input/output port. LED can be driven directly. Input/output can be specified bit When used as an input port, on software.	Input	A8 to A15	
P60	Input/	Port 6	N-ch open-drain input/output port.	Input	
P61	output	8-bit input/output port.	On-chip pull-up resistor can be		
P62		Input/output can be specified bit-wise.	specified by mask option.		
P63	_	bit wide.	LED can be driven directly.		
P64			When used as an input port, on-chip		RD
P65			pull-up resistor can be used in soft-		WR
P66]		ware.		WAIT
P67					ASTB


3.2 PINS OTHER THAN PORT PINS (1/2)

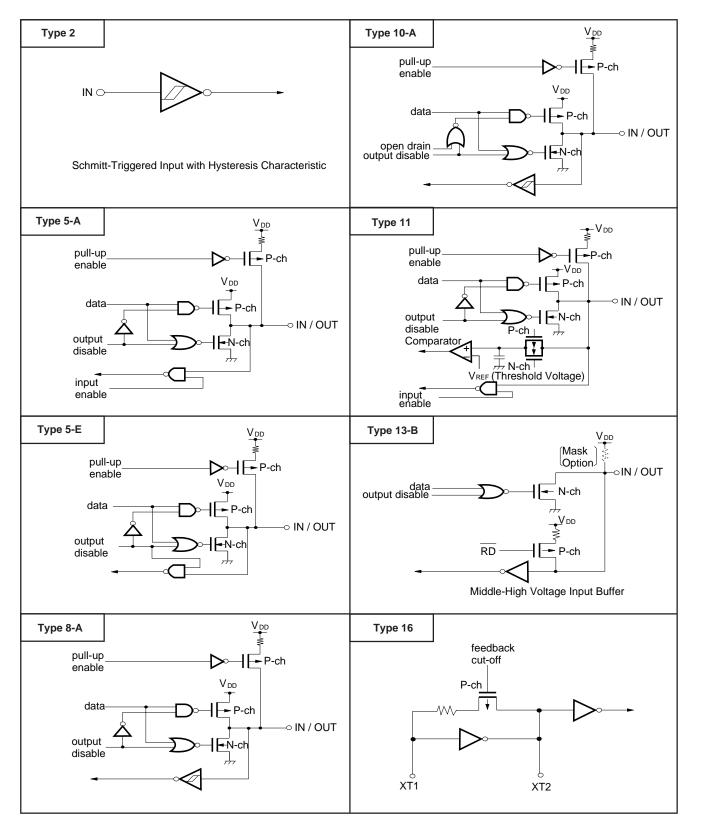
Pin Name	I/O	Function	On Reset	Dual- Function Pin
INTP0	Input	External interrupt request input by which the effective edge (rising	Input	P00/TI0
INTP1	-	edge, falling edge, or both rising edge and falling edge) can be		P01
INTP2	-	specified.		P02
INTP3	-	Falling edge detection external interrupt request input.		P03
S10	Input	Serial interface serial data input.	Input	P25/SB0
SI1	-			P20
SO0	Output	Serial interface serial data output.	Input	P26/SB1
SO1				P21
SB0	Input	Serial interface serial data input/output.	Input	P25/SI0
SB1	/output			P26/SO0
SCK0	Input	Serial interface serial clock input/output.	Input	P27
SCK1	/output			P22
STB	Output	Serial interface automatic transmit/receive strobe output.	Input	P23
BUSY	Input	Serial interface automatic transmit/receive busy input.	Input	P24

3.2 PINS OTHER THAN PORT PINS (2/2)

Pin Name	I/O	Function	On Reset	Dual- Function Pin
TI0	Input	External count clock input to 16-bit timer (TM0).	Input	P00/INTP0
TI1]	External count clock input to 8-bit timer (TM1).		P33
TI2		External count clock input to 8-bit timer (TM2).		P34
ТО0	Output	16-bit timer (TM0) output (shared as 14-bit PWM output).	Input	P30
TO1		8-bit timer (TM1) output.		P31
TO2		8-bit timer (TM2) output.		P32
PCL	Output	Clock output (for main system clock, subsystem clock trimming).	Input	P35
BUZ	Output	Buzzer output.	Input	P36
AD0 to AD7	Input /output	Low-order address/data bus at external memory expansion.	Input	P40 to P47
A8 to A15	Output	High-order address bus at external memory expansion.	Input	P50 to P57
RD	Output	External memory read operation strobe signal output.	Input	P64
WR	-	External memory write operation strobe signal output.		P65
WAIT	Input	Wait insertion at external memory access.	Input	P66
ASTB	Output	Strobe output which latches the address information output at port 4 and port 5 to access external memory.	Input	P67
ANI0 to ANI7	Input	A/D converter analog input.	Input	P10 to P17
AVREF	Input	A/D converter reference voltage input.	_	_
AVdd	_	A/D converter analog power supply. Connected to VDD.	-	—
AVss	_	A/D converter ground potential. Connected to Vss.	_	_
RESET	Input	System reset input.	_	_
X1	Input	Main system clock oscillation crystal connection.	_	_
X2	_		_	_
XT1	Input	Subsystem clock oscillation crystal connection.	Input	P04
XT2	-		—	_
Vdd	-	Positive power supply.	_	_
Vss	_	Ground potential.	_	_
IC	_	Internal connection. Connected to Vss directly.	_	_

3.3 PIN I/O CIRCUITS AND RECOMMENDED CONNECTION OF UNUSED PINS

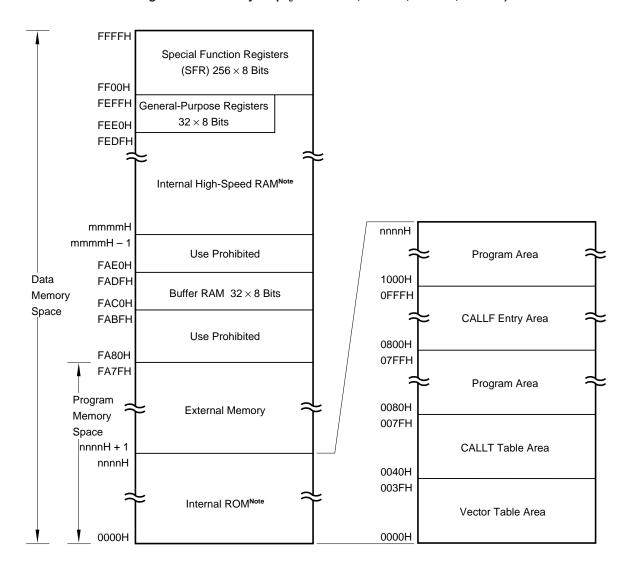
The input/output circuit type of each pin and recommended connection of unused pins are shown in Table 3-1. For the input/output circuit configuration of each type, refer to **Figure 3-1**.


Table 3-1.	Input/Output	Circuit Type	of Each Pin
------------	--------------	---------------------	-------------

Pin Name	Input/output Circuit Type	I/O	Recommended Connection when Not Used
P00/INTP0/TI0	2	Input	Connected to Vss.
P01/INTP1	8-A	Input/output	Individually connected to Vss via resistor.
P02/INTP2			
P03/INTP3			
P04/XT1	16	Input	Connected to VDD or Vss.
P10/ANI0 to P17/ANI7	11	Input/output	Individually connected to VDD or VSS via resisitor.
P20/SI1	8-A		
P21/SO1	5-A		
P22/SCK1	8-A		
P23/STB	5-A		
P24/BUSY	8-A		
P25/SI0/SB0	10-A		
P26/SO0/SB1			
P27/SCK0			
P30/TO0	5-A		
P31/TO1			
P32/TO2			
P33/TI1	8-A		
P34/TI2			
P35/PCL	5-A		
P36/BUZ			
P37			
P40/AD0 to P47/AD7	5-E		Individually connected to VDD via resistor.
P50/A8 to P57/A15	5-A		Individually connected to VDD or VSS via resistor.
P60 to P63	13-B		Individually connected to VDD via resistor.
P64/RD	5-A		Individually connected to VDD or VSS via resistor.
P65/WR			
P66/WAIT			
P67/ASTB			
RESET	2	Input	_
XT2	16	-	Leave open.
AVREF	-	1	Connected to Vss.
AVdd			Connected to VDD.
AVss			Connected to Vss.
IC			Connected to Vss directly.

μPD78011F, 78012F, 78013F, 78014F, 78015F, 78016F, 78018F

Phase-out/Discontinued


Figure 3-1. Pin Input/Output Circuits

★ 4. MEMORY SPACE

The memory maps of the μ PD78011F, 78012F, 78013F, 78014F, 78015F, 78016F, and 78018F are shown in Figure 4-1 and 4-2.

Note Intermal ROM and internal high-speed RAM capacities vary depending on the product (refer to the table below).

Product Name	Intenal ROM End Address nnnnH	Internal High-Speed RAM Start Address mmmmH
μPD78011F	1FFFH	FD00H
μPD78012F	3FFFH	
μPD78013F	5FFFH	FB00H
μPD78014F	7FFFH	

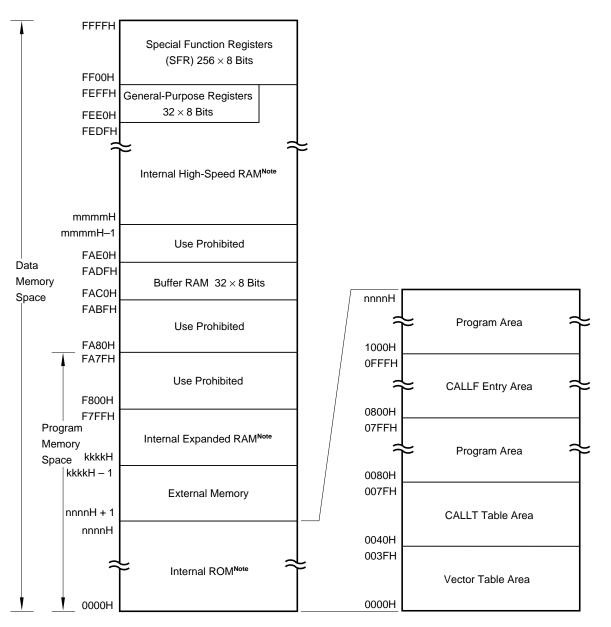


Figure 4-2. Memory Map (µPD78015F, 78016F, 78018F)

Note Internal ROM, internal high-speed RAM, and internal expanded RAM capacities vary depending on the product (refer to the table below).

Product Name	Intenal ROM End Address nnnnH	Internal High-Speed RAM Start Address mmmmH	Internal Expanded RAM Start Address kkkkH
μPD78015F	9FFFH	FB00H	F600H
μPD78016F	BFFFH		
μPD78018F	EFFFH		F400H

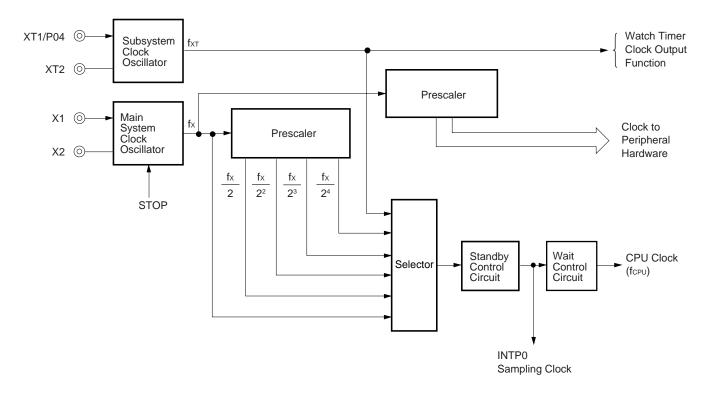
5. PERIPHERAL HARDWARE FUNCTION FEATURES

5.1 PORTS

The I/O port has the following three types

• CMOS input (P00, P04)	: 2
 CMOS input/output (P01 to P03, port 1 to port 5, P64 to P67) 	: 47
 N-ch open-drain input/output(15V withstand voltage) (P60 to P63) 	: 4
Total	: 53

Table 5-1. Functions of Ports


Port Name	Pin Name	Function
Port 0	P00, P04	Dedicated Input port
	P01 to P03	Input/output ports. Input/output can be specified bit-wise.
		When used as an input port, pull-up resistor can be used in software.
Port 1	P10 to P17	Input/output ports. Input/output can be specified bit-wise.
		When used as an input port, pull-up resistor can be used in software.
Port 2	P20 to P27	Input/output ports. Input/output can be specified bit-wise.
		When used as an input port, pull-up resistor can be used in software.
Port 3	P30 to P37	Input/output ports. Input/output can be specified bit-wise.
		When used as an input port, pull-up resistor can be used in software.
Port 4	P40 to P47	Input/output ports. Input/output can be specified in 8-bit units.
		When used as an input port, pull-up resistor can be used in software.
		Test input flag (KRIF) is set to 1 by falling edge detection.
Port 5	P50 to P57	Input/output ports. Input/output can be specified bit-wise.
		When used as an input port, pull-up resistor can be used in software.
		LED can be driven directly.
Port 6	P60 to P63	N-ch open-drain input/output port. Input/output can be specified bit-wise.
		On-chip pull-up resistor can be specified by mask option.
		LED can be driven directly.
	P64 to P67	Input/output ports. Input/output can be specified bit-wise.
		When used as an input port, pull-up resistor can be used in software.

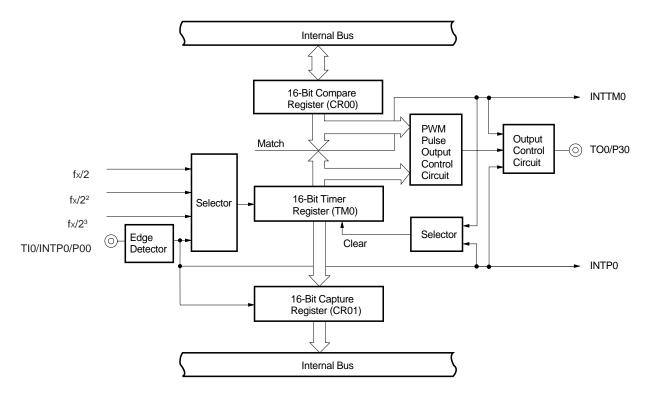
5.2 CLOCK GENERATOR

There are two types of clock generator: main system clock and subsystem clock. The minimum instruction exection time can be changed.

- 0.4μs/0.8μs/1.6μs/3.2μs/6.4μs (Main system clock: at 10.0 MHz operation)
- 122µs (Subsystem clock: at 32.768 KHz operation)

Figure 5-1. Clock Generator Block Diagram

5.3 TIMER/EVENT COUNTER


The following five channels are incorporated in the timer/event counter.

- 16-bit timer/event counter : 1 channel
- 8-bit timer/event counter : 2 channels
- Watch timer
- : 1 channel
- Watchdog timer : 1 channel

Table 5-2. Operation of Timer/Event Counter

		16-bit Timer/Event Counter	8-bit Timer/Event Counter	Watch Timer	Watchdog Timer
Operation	Interval timer	1 channel	2 channels	1 channel	1 channel
mode	Externanal event counter	1 channel	2 channels	-	-
Functions	Timer output	1 output	2 outputs	-	-
	PWM output	1 output	_	-	-
	Pulse width mesurement	1 input	_	-	-
	Sqare wave output	1 output	2 outputs	-	-
	Interrupt request	2	2	1	1
	Test input	_	_	1 input	_

Figure 5-2. 16-bit Timer/Enent Counter Block Diagram

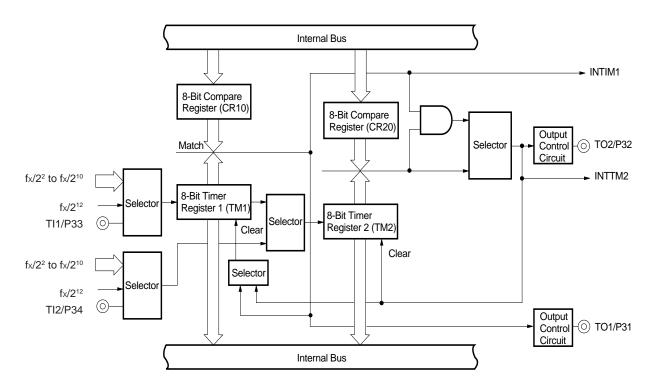
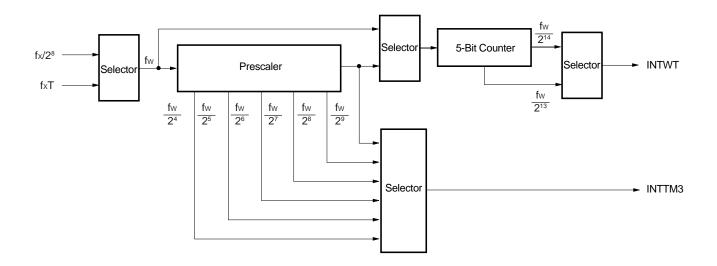
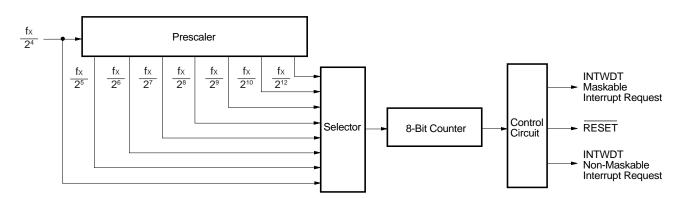
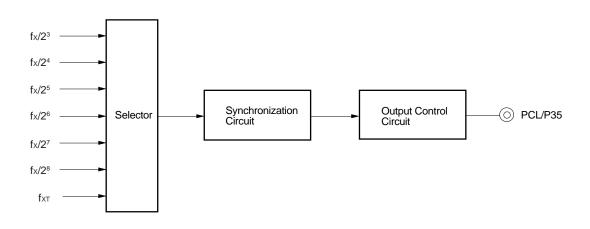


Figure 5-4. Watch Timer Block Diagram

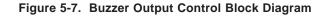



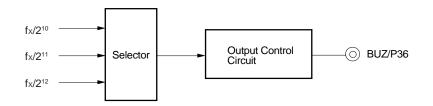

Figure 5-5. Watchdog Timer Block Diagram

5.4 CLOCK OUTPUT CONTROL CIRCUIT

The clock with the following frequencies can be output for clock output.

- 39.1 kHz/78.1 kHz/156 kHz/313 kHz/625 kHz/1.25 MHz (Main system clock: at 10.0 MHz operation)
- 32.768 kHz (Subsystem clock: at 32.768 kHz operation)

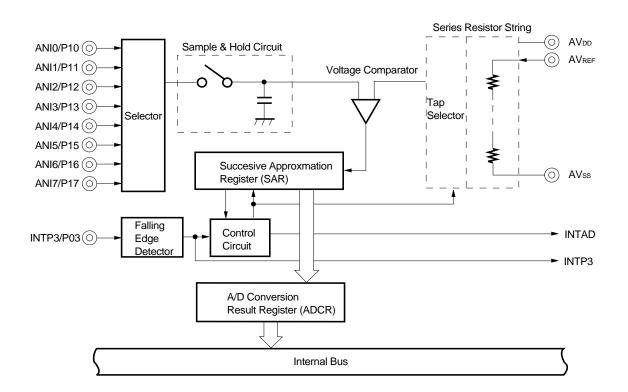



Figure 5-6. Clock Output Control Block Diagram

5.5 BUZZER OUTPUT CONTROL CIRCUIT

The clock with the following frequencies can be output for buzzer output.

• 2.4 kHz/4.9 kHz/9.8 kHz (Main system clock: at 10.0 MHz operation)



5.6 A/D CONVERTER

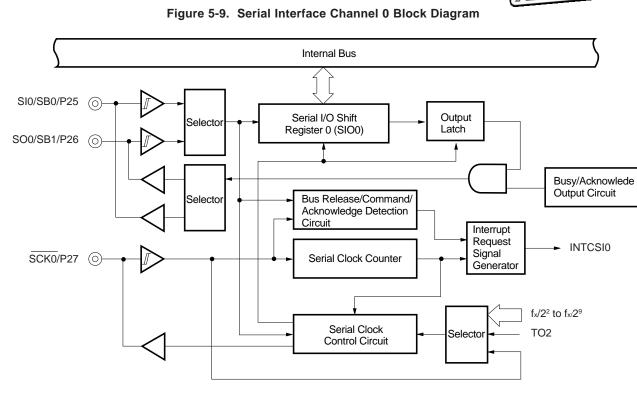
The A/D converter has on-chip eight 8-bit resolution channels. There are the following two method to start A/D conversion.

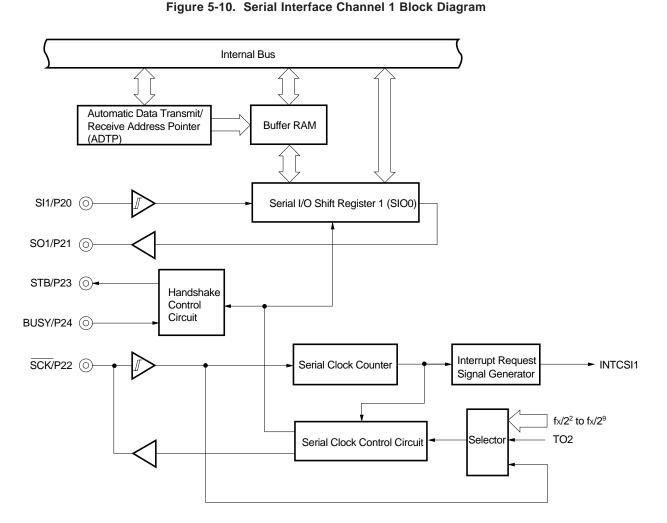
- Hardware starting
- Software starting

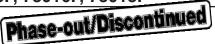
Figure 5-8. A/D Converter Block Diagram

5.7 SERIAL INTERFACES

There are two on-chip clocked serial interfaces as follows.


- Serial Interface channel 0
- Serial Interface channel 1


Table 5-3.	Type and	Function	of Serial	Interface
------------	----------	----------	-----------	-----------


Function	Serial Interface Channel 0	Serial Interface Channel 1	
3-wire serial I/O mode	O (MSB/LSB-first switchable)	O (MSB/LSB-first switchable)	
3-wire serial I/O mode with automatic data transmit/ receive function	_	O (MSB/LSB-first switchable)	
SBI (Serial Bus Interface) mode	O (MSB-first)	-	
2-wire serial I/O mode	O (MSB-first)	-	

μPD78011F, 78012F, 78013F, 78014F, 78015F, 78016F, 78018F

Phase-out/Discontinued

6. INTERRUPT FUNCTIONS AND TEST FUNCTIONS

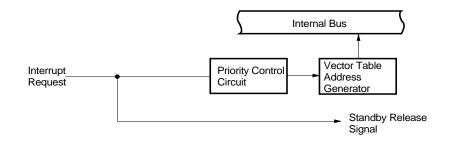
6.1 INTERRUPT FUNCTIONS

There are interrupt functions, 14 sources of three different kinds, as shown below.

•	Non-maskable	:	1
•	Maskable	:	12

• Software : 1

	Default		Interrupt Source	Internal/	Vector Table	Basic
Interrupt Type	Priority Note 1 Externa		External	Address	Configuratin Type Note 2	
Non-maskable		INTWDT	Watchdog timer overflow (with watchdog timer mode 1 selected)	Internal	0004H	(A)
Maskable	0	INTWDT	Watchdog timer overflow (with interval timer mode selected)	•		(B)
-	1	INTP0	Pin input edge detection	External	0006H	(C)
-	2	INTP1			0008H	(D)
-	3	INTP2	2		000AH	
-	4	INTP3			000CH	
-	5	INTCSI0	Serial interface channel 0 transfer end	Internal	000EH	(B)
-	6	INTCSI1	Serial interface channel 1 transfer end		0010H	
-	7	INTTM3	Reference time interval signal from watch timer	•	0012H	
-	8	INTTM0	16 bit timer/event counter match signal generation		0014H	
-	9	INTTM1	8-bit timer/event counter 1 match signal generation		0016H	
-	10	INTTM2	8-bit timer/event counter 2 match signal generation	1	0018H	
-	11	INTAD	A/D converter conversion end		001AH	
Software		BRK	BRK instruction execution		003EH	(E)


Table 6-1. Interrupt Source List

Notes 1. The default privity is the priority applicable when more than one maskable interrupt request is generated. 0 is the highest priority and 11, the lowest.

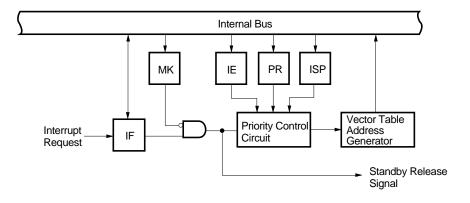

2. Basic configuration types (A) to (E) correspond to (A) to (E) on the next page.

Figure 6-1. Basic Interrupt Function Configuration (1/2)

(A) Internal Non-Maskable Interrupt

(B) Internal Maskable Interrupt

(C) External Maskable Interrupt (INTP0)

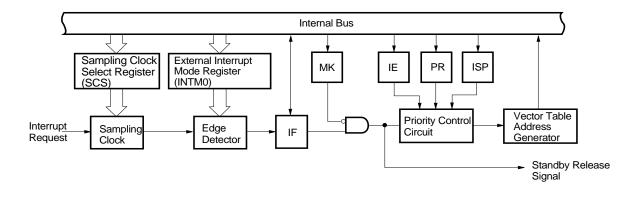
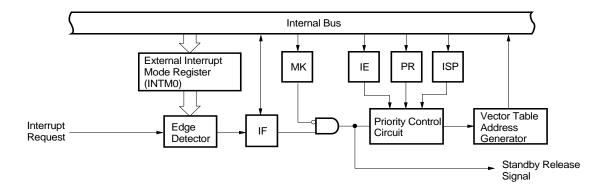
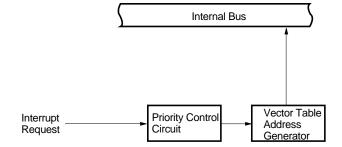
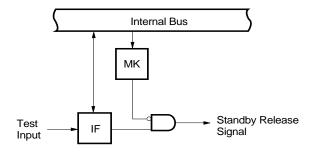




Figure 6-1. Basic Interrupt Function Configuration (2/2)

(D) External Maskable Interrupt (Except INTP0)

(E) Software Interrupt

- IF : Interrupt request flag
- IE : Interrupt enable flag
- ISP : In-service priority flag
- MK : Interrupt mask flag
- PR : Priority spcification flag


6.2 TEST FUNCTIONS

There are two test functions as shown in Table 6-2.

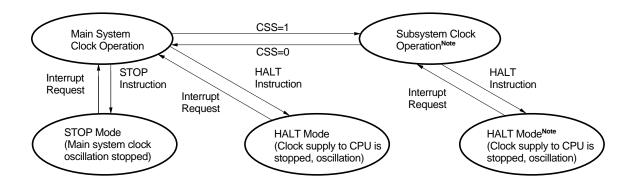
Table 6-2. Test Source List

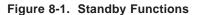
	Test Source				
Name	Trigger	Internal/External			
INTWT	Watch timer overflow	Internal			
INTPT4	Port 4 falling edge detection	External			

Figure 6-2. Test Function Basic Configuration

- IF : Test input flag
- MK : Test mask flag

7. EXTERNAL DEVICE EXPANSION FUNCTIONS

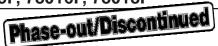

The external device expansion function is used to connect external devices to areas other than the internal ROM, RAM and SFR.


Ports 4 to 6 are used for connection with external devices.

8. STANDBY FUNCTIONS

There are the following two standby functions to reduce the current dissipation.

- HALT mode : The CPU operating clock is stopped. The average consumption current can be reduced by intermittent operation in combination with the normal operating mode.
- STOP mode : The main system clock oscillation is stopped. The whole operation by the main system clock is stopped, so that the system operates withultra-low power consumption using only the subsystem clock.



- **Note** The power consumption can be reduced by stopping the main system clock. When the CPU is operating on the subsystem clock, set the bit 7 (MCC) of the processor clock control register (PCC) to stop the main system clock. The STOP instruction cannot be used.
- Caution When the main system clock is stopped and the system is operated by the subsystem clock, the subsystem clock should be switched again to the main system clock after the oscillation stabilization time is secured by the program by the program.

9. RESET FUNCTIONS

There are the following two reset methods.

- External reset input by RESET pin.
- Internal reset by watchdog timer runaway time detection.

10. INSTRUCTION SET

(1) 8-Bit Instruction

MOV, XCH, ADD, ADDC, SUB, SUBC, AND, OR, XOR, CMP, MULU, DIVUW, INC, DEC, ROR, ROL, RORC, ROLC, ROR4, ROL4, PUSH, POP, DBNZ

,	,	,		.,									
2nd Operand 1st Operand	#byte	А	r Note	sfr	saddr	!addr16	PSW	[DE]	[HL]	[HL+byte] [HL+B] [HL+C]	\$adder16	1	None
A	ADD ADDC SUB SUBC AND OR XOR CMP		MOV XCH ADD ADDC SUB SUBC AND OR XOR CMP	MOV XCH	MOV XCH ADD SUB SUBC AND OR XOR CMP	MOV XCH ADD ADDC SUB SUBC AND OR XOR CMP	MOV	MOV XCH	MOV XCH ADD SUB SUBC AND OR XOR CMP	MOV XCH ADD SUB SUBC AND OR XOR CMP		ROR ROL RORC ROLC	
r	MOV	MOV	ADD ADDC SUB SUBC AND OR XOR CMP										INC DEC
B, C											DBNZ		
sfr	MOV	MOV											
sadder	MOV SUBC AND OR XOR CMP	MOV ADD ADDC SUB									DBNZ		INC DEC
!adder16		MOV											
PSW	MOV	MOV											PUSH POP
[DE]		MOV											
[HL]		MOV											ROR4 ROL4
[HL+byte] [HL+B] [HL+C]		MOV											
Х													MULU
С													DIVUW

*

Note Except r=A

(2) 16-Bit Instruction

MOVW, XCHW ADDW, SUBW, CMPW, PUSH, POP, INCW, DECW

2nd Operand 1st Operand	#byte	AX	rp ^{Note}	saddrp	!addr16	SP	None	
AX	ADDW		MOVW	MOVW	MOVW	MOVW	MOVW	
	SUBW		XCHW					
	CMPW							
rp	MOVW	MOVW ^{Note}						INCW, DECW
								PUSH, POP
sfrp	MOVW	MOVW						
sadderp	MOVW	MOVW						
!adder16		MOVW						
SP	MOVW	MOVW						

Note Only when rp=BC, DE, HL.

(3) Bit Manipulation Instruction

MOV1, AND1, OR1, XOR1, SET1, CLR1, NOT1, BT, BF, BTCLR

2nd Operand 1st Operand	A.bit	sfr.bit	saddr.bit	PWS.bit	[HL].bit	CY	\$addr16	None
A.bit						MOV1	BT BF BTCLR	SET1 CLR1
sfr.bit						MOV1	BT BF BTCLR	SET1 CLR1
saddr.bit						MOV1	BT BF BTCLR	SET1 CLR1
PSW.bit						MOV1	BT BF BTCLR	SET1 CLR1
[HL].bit						MOV1	BT BF BTCLR	SET1 CLR1
CY	MOV1 AND1 OR1 XOR1	MOV1 AND1 OR1 XOR1	MOV1 AND1 OR1 XOR1	MOV1 AND1 OR1 XOR1	MOV1 AND1 OR1 XOR1			SET1 CLR1 NOT1

(4) Call Instruction/Branch Instruction

CALL, CALLF, CALLT, BR, BC, BNC, BZ, BNZ, BT, BF, BTCLR, DBNZ

2nd Operand 1st Operand	AX	!addr16	!addr11	[addr5]	\$addr16
Basic instruction	BR	CALL, BR	CALLF	CALLT	BR, BC, BNC, BZ, BNZ
Compound instruction					BT,BF,BTCLR, DBNZ

(5) Other Instruction

ADJBA, ADJBS, BRK, RET, RETI, RETB, SEL, NOP, EI, DI, HALT, STOP

11. ELECTRICAL SPECIFICATIONS

Absolute Maximum Ratings (T_A = 25 °C)

Parameter	Symbol	Test Conditions		Rating	Unit
Supply voltage	Vdd			-0.3 to +7.0	V
-	AVdd			-0.3 to VDD + 0.3	V
-	AVREF			-0.3 to VDD + 0.3	V
-	AVss			-0.3 to +0.3	V
Input voltage	VII	P00 to P04, P10 to P17, P20 to	P27, P30 to P37	-0.3 to V _{DD} + 0.3	V
	V I1	P40 toP47, P50 to P57, P64 to	P67, X1, X2, XT2	-0.3 to VDD + 0.3	V
-	Vı2	P60 to P67	Open-drain	-0.3 to +16	V
Output voltage	Vo			-0.3 to V _{DD} + 0.3	V
Analog input voltage	Van	P10 to P17	Analog input pin	AV_{SS} – 0.3 to AV_{REF} + 0.3	V
Output		1 pin		-10	mA
current high	Іон	P10 to P17, P20 to P27, P30 to	P37 total	-15	mA
		P01 to P03, P40 to P47, P50 to P57	7, P60 to P67 total	-15	mA
Output			Peak value	30	mA
current low		1 pin	rms	15	mA
		P40 to P47, P50 to P55 total	Peak value	100	mA
			rms	70	mA
		P01 to P03, P56, P57,	Peak value	100	mA
	_{OL} Note	P60 to P67 total	rms	70	mA
		P01 to P03,	Peak value	50	mA
		P64 to P67 total	rms	20	mA
		P10 to P17, P20 to P27, P30 to P37	Peak value	50	mA
		total	rms	20	mA
Operating ambient temperature	TA			-40 to +85	°C
Storage temperature	Tstg			-65 to +150	°C

Note rms should be calculated as follows: [rms] = [peak value] $\times \sqrt{duty}$

Caution Product quality may suffer if the absolute maximum rating is exceeded for even a single parameter or even momentarily. That is, the absolute maximuam ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions which ensure that the absolute maximum ratings are not exceeded.

Capacitance (T_{A} = 25 $^{\circ}C,$ VDD = Vss = 0 V)

Parameter	Symbol	Test	MIN.	TYP.	MAX.	Unit	
Input capacitance	CIN	f = 1 MHz Unmeasure			15	pF	
I/O capacitance			P01 to P03, P10 to P17,				
		f = 1 MHz Unmeasured	P20 to P27, P30 toP37,			15	pF
	Сю	pins returned to 0 V	P40 toP47, P50 to P57,				
			P64 to P67				
			P60 to P63			20	pF

Remark The characteristics of a dual-function pin and a port pin are the same unless specified otherwise.

Resonator	Recommended Circuit	Parameter	Test Conditions	MIN.	TYP.	MAX.	Unit	
Ceramic	X1 X2 Vss	Oscillator	$2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$	1		10	MHz	
resonator	R1	frequency (fx) Note 1	$1.8~V \leq V_{\text{DD}} < 2.7~V$	1		5	IVIFIZ	
		Oscillation stabilization time Note 2	After V _{DD} reaches oscil- lator voltage range MIN.			4	ms	
Crystal	resonator	Oscillator	$2.7~\text{V} \leq \text{V}_{\text{DD}} \leq 5.5~\text{V}$	1		10	MHz	
resonator		frequency (fx) Note 1	$1.8 \text{ V} \leq \text{V}_{\text{DD}} < 2.7 \text{ V}$	1		5		
		C1 C2 Oscillation	V _{DD} = 4.5 to 5.5 V			10		
		stabilization time Note 2				30	ms	
External clock	X1 X2	X1 input frequency (fx) Note 1		1.0		10.0	MHz	
		X1 input high/low level width (t _{XH} , t _{XL})		45		500	ns	

Notes 1. Indicates only oscillation circuit characteristics. Refer to AC Characteristics for instruction execution time.
 2. Time required to stabilize oscillation after reset or STOP mode release.

Cautions 1. When using the main system clock oscillator, wiring the area enclosed with the dotted line should be carried out as follows to avoid an adverse effect from wiring capacitance.

- Wiring should be as short as possible.
- Wiring should not cross other signal lines.
- Wiring should not be placed close to a varying high current.
- The potential of the oscillator capacitor ground should be the same as Vss.
- Do not ground wiring to a ground pattern in which a high current flows.
- Do not fetch a signal from the oscillator.
- 2. When the main system clock is stopped and the system is operated by the subsystem clock, the subsystem clock should be switched again to the main system clock after the oscillation stabilization time is secured by the program.

μ PD78011F, 78012F, 78013F, 78014F, 78015F, 78016F, 78018F

Phase-out/Discontinued

Resonator	Recommended Circuit	Parameter	Test Conditions	MIN.	TYP.	MAX.	Unit
Crystal resonator	XT1 XT2 Vss	Oscillator frequency (f _{XT}) Note 1		32	32.768	35	kHz
		Oscillation	V _{DD} = 4.5 to 5.5 V		1.2	2	s
		stabilization time Note 2				10	-
External clock	XT1 XT2	XT1 input frequency (f _{XT}) ^{Note 1}		32		100	kHz
		XT1 input high/low level width (txтн , txт∟)		5		15	μs

Subsystem Clock Oscillation Circuit Characteristics (TA = -40 to +85 °C, VDD = 1.8 to 5.5 V)

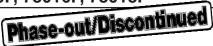
- Notes 1. Indicates only oscillation circuit characteristics. Refer to AC Characteristics for instruction execution time.
 2. Time required to stabilize oscillation after VDD reaches oscillator voltage MIN.
- Cautions 1. When using the subsystem clock oscillator, wiring in the area enclosed with the dotted line should be carried out as follows to avoid an adverse effect from wiring capacitance.
 - Wiring should be as short as possible.
 - Wiring should not cross other signal lines.
 - Wiring should not be placed close to a varying high current.
 - The potential of the oscillator capacitor ground should be the same as Vss.
 - Do not ground wiring to a ground pattern in which a high current flows.
 - Do not fetch a signal from the oscillator.
 - 2. The subsystem clock oscillation circuit is a circuit with a low amplification level,more prone to misoperation due to noise than the main system clock.

Particular care is therefore required with the wiring method when the subsystem clock is used.

★ Recommended Oscillation Circuit Constant

Recommended oscillation circuit constant differs depending on the model.

(1) μ PD78011F, 78012F, 78013F, 78014F


(a) Main system clock: ceramic resonator ($T_A = -45$ to +85 °C)

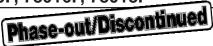
Manufacturer	Product Name	Frequency (MHz)		Recommended Oscillation Circuit Constant		llation Range
			C1 (pF)	C2 (pF)	MIN. (V)	MAX. (V)
TDK Corp.	CCR4.19MC3	4.19	Built-in	Built-in	1.8	5.5
	FCR4.19MC5	4.19	Built-in	Built-in	1.8	5.5
	CCR5.00MC3	5.00	Built-in	Built-in	1.8	5.5
	FCR5.00MC5	5.00	Built-in	Built-in	1.8	5.5
	CCR8.38MC	8.00	Built-in	Built-in	2.7	5.5
	FCR8.38MC5	8.00	Built-in	Built-in	2.7	5.5
	CCR10.00MC	10.00	Built-in	Built-in	2.7	5.5
	FCR10.00MC5	10.00	Built-in	Built-in	2.7	5.5
Murata Mfg. Co. Ltd.	CSA4.19MG	4.19	30	30	1.8	5.5
	CST4.19MGW	4.19	Built-in	Built-in	1.8	5.5
	CSA5.00MG	5.00	30	30	1.8	5.5
	CST5.00MGW	5.00	Built-in	Built-in	1.8	5.5
	CSA8.38MTZ	8.38	30	30	2.7	5.5
	CST8.38MTW	8.38	Built-in	Built-in	2.7	5.5
	CSA10.00MTZ	10.00	30	30	2.7	5.5
	CST10.00MTW	10.00	Built-in	Built-in	2.7	5.5

(b) Main system clock: ceramic resonator (T_A = -20 to +80 °C)

Manufacturer	Product Name	Frequency (MHz)	Recommended Oscillation Circuit Constant		Oscillation Voltage Range		
			C1 (pF)	C2 (pF)	MIN. (V)	MAX. (V)	
Kyocera Corp.	PBRC5.00A	5.00	33	33	1.8	5.5	
	PBRC5.00B	5.00	Built-in	Built-in	1.8	5.5	
	KBR-5.00MSA	5.00	33	33	1.8	5.5	
	KBR-5.00MKS	5.00	Built-in	Built-in	1.8	5.5	
	KBR-8M	8.00	33	33	2.7	5.5	
	KBR-10M	10.00	33	33	2.7	5.5	

Caution The oscillation circuit constants and oscillation voltage range indicate conditions for stable oscillation but do not guarantee the accuracy of the oscillation frequency. If the application circuit requires accuracy of the oscillation frequency, it is necessary to set the oscillation frequency of the resonator in the application circuit. For this, it is necessary to directly contact manufacturer of the resonator being used.

(2) µPD78015F, 78016F


Manufacturer	Product Name	Frequency (MHz)	Recommended Oscillation Circuit Constant			Oscillation Voltage Range		
		(101112)	C1 (pF)	C2 (pF)	R1 (kΩ)	MIN. (V)	MAX. (V)	
TDK Corp.	CSB1000J	1.00	100	100	5.6	1.8	6.0	
	CSA2.00MG040	2.00	100	100	0	1.8	6.0	
	CST2.00MG040	2.00	Built-in	Built-in	0	1.8	6.0	
	CSA4.00MG040	4.00	100	100	0	1.8	6.0	
	CST4.00MGW040	4.00	Built-in	Built-in	0	1.8	6.0	
	CSA6.00MG	6.00	30	30	0	1.8	6.0	
	CST6.00MGW	6.00	Built-in	Built-in	0	1.8	6.0	
	CSA10.0MTZ	10.0	30	30	0	1.8	6.0	
	CST10.0MTW	10.0	Built-in	Built-in	0	1.8	6.0	
Murata Mfg. Co. Ltd.	CSA6.00MG040	6.00	100	100	0	2.7	6.0	
(EMI noise reduced	CST6.00MGW040	6.00	Built-in	Built-in	0	2.7	6.0	
products)	CSA10.0MTZ040	10.0	100	100	0	2.7	6.0	
	CST10.0MTW040	10.0	Built-in	Built-in	0	2.7	6.0	
TDK Corp.	FCR4.0MC5	4.0	Built-in	Built-in	2.2	1.8	6.0	
	FCR10.0MC	10.0	Built-in	Built-in	1.0	1.8	6.0	

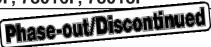
(a) Main system clock: ceramic resonator (T_A = -45 to +85 °C)

(b) Main system clock: ceramic resonator (T_A = -20 to +80 °C)

Manufacturer	Product Name	Frequency (MHz)	Recommended Oscillation Circuit Constant		Oscillation Voltage Range		
			C1 (pF)	C2 (pF)	MIN. (V)	MAX. (V)	
Kyocera Corp.	PBRC5.00A	5.00	33	33	1.8	5.5	
	PBRC5.00B	5.00	Built-in	Built-in	1.8	5.5	
	KBR-5.00MSA	5.00	33	33	1.8	5.5	
	KBR-5.00MKS	5.00	Built-in	Built-in	1.8	5.5	
	KBR-8M	8.00	33	33	2.7	5.5	
	KBR-10M	10.00	33	33	2.7	5.5	

Caution The oscillation circuit constants and oscillation voltage range indicate conditions for stable oscillation but do not guarantee the accuracy of the oscillation frequency. If the application circuit requires accuracy of the oscillation frequency, it is necessary to set the oscillation frequency of the resonator in the application circuit. For this, it is necessary to directly contact manufacturer of the resonator being used.

(3) μPD78018F

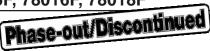

(a) Main system clock: ceramic resonator ($T_A = -40$ to +85 °C)

Manufacturer	Product Name	Frequency (MHz) –	Recommended Oscillation Circuit Constant		Oscillation Voltage Range		
		(10112)	C1 (pF)	C2 (pF)	MIN. (V)	MAX. (V)	
TDK Corp.	CCR4.0MC3	4.00	Built-in	Built-in	1.8	5.5	
	FCR4.0MC5	4.00	Built-in	Built-in	1.8	5.5	
	CCR8.0MC5	8.00	Built-in	Built-in	2.7	5.5	
	FCR8.0MC	8.00	Built-in	Built-in	2.7	5.5	
	CCR10.0MC5	10.0	Built-in	Built-in	2.7	5.5	
	FCR10.0MC	10.0	Built-in	Built-in	2.7	5.5	
Murata Mfg. Co. Ltd.	CSA4.0MG	4.00	30	30	1.8	5.5	
	CST4.0MGW	4.00	Built-in	Built-in	1.8	5.5	
	CSA8.0MTZ	8.00	30	30	2.7	5.5	
	CST8.0MTW	8.00	Built-in	Built-in	2.7	5.5	

(b) Main system clock: ceramic resonator (T_A = -20 to +80 °C)

Manufacturer	Product Name	Frequency (MHz)	Recommended Oscillation Circuit Constant		Oscillation Voltage Range	
		(10112)	C1 (pF)	C2 (pF)	MIN. (V)	MAX. (V)
Kyocera Corp.	FBRC4.00A	4.00	33	33	1.8	5.5
	FBRC4.00B	4.00	Built-in	Built-in	1.8	5.5
	KBR-4.00MSB	4.00	33	33	1.8	5.5
	KBR-4.00MKC	4.00	Built-in	Built-in	1.8	5.5
	KBR-8M	8.00	33	33	2.7	5.5
	KBR-10M	10.00	33	33	2.7	5.5

Caution The oscillation circuit constants and oscillation voltage range indicate conditions for stable oscillation but do not guarantee the accuracy of the oscillation frequency. If the application circuit requires accuracy of the oscillation frequency, it is necessary to set the oscillation frequency of the resonator in the application circuit. For this, it is necessary to directly contact manufacturer of the resonator being used.



DC Characteristics (TA = -40 to +85 °C, VDD = 1.8 to 5.5 V)

Parameter	Symbol	Test Cond	itions	MIN.	TYP.	MAX.	Unit
Input voltage	VIH1	P10 to P17, P21, P23, P30 to P32,	V _{DD} = 2.7 to 5.5 V	0.7 Vdd		Vdd	V
high		P35 to P37, P40 to P47,					
		P50 to P57, P64 to 67		0.8 Vdd		Vdd	V
	VIH2	P00 to P03, P20, P22, P24 to P27,	V _{DD} = 2.7 to 5.5 V	0.8 Vdd		Vdd	V
		P33, P34, RESET		0.85 Vdd		Vdd	V
	VIH3	P60 to P63	V _{DD} = 2.7 to 5.5 V	0.7 Vdd		15	V
		(N-ch open-drain)		0.8 Vdd		15	V
	VIH4	X1, X2	V _{DD} = 2.7 to 5.5 V	Vdd - 0.5		Vdd	V
				VDD-0.2		Vdd	V
	VIH5	XT1/P04, XT2	$4.5 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$	0.8 Vdd		Vdd	V
			$2.7 \text{ V} \leq \text{V}_{\text{DD}} < 4.5 \text{ V}$	0.9 Vdd		VDD	V
			1.8 V \leq V _{DD} $<$ 2.7 V Note	0.9 Vdd		Vdd	V
	VIL1	P10 to P17, P21, P23, P30 to P32,	V _{DD} = 2.7 to 5.5 V	0		0.3 Vdd	V
low		P35 to P37, P40 to P47,		0		0.2 Vdd	V
		P50 to P57, P64 to 67					
-	VIL2	P00 to P03, P20, P22, P24 to P27,	V _{DD} = 2.7 to 5.5 V	0		0.2 VDD	V
		P33, P34, RESET		0		0.15 VDD	V
	VIL3		$4.5 \text{ V} \leq \text{V}_{DD} \leq 5.5 \text{ V}$	0		0.3 VDD	V
			$2.7 \text{ V} \leq \text{V}_{DD} < 4.5 \text{ V}$	0		0.2 VDD	V
				0		0.1 Vdd	V
	VIL4	X1, X2	V _{DD} = 2.7 to 5.5 V	0		0.4	V
				0		0.2	V
	VIL5	XT1/P04, XT2	$4.5 \text{ V} \leq \text{V}_{DD} \leq 5.5 \text{ V}$	0		0.2 VDD	V
			$2.7 \text{ V} \leq \text{V}_{\text{DD}} < 4.5 \text{ V}$	0		0.1 Vdd	V
_			1.8 V \leq V _{DD} $<$ 2.7 V Note	0		0.1 Vdd	V
Output	Vон1	Vpd = 4.5 to 5.5 V, Iон = -1 mA		Vdd - 1.0			V
voltage high		Іон = -100 μА		Vdd - 0.5			V
Output	Vol1	P50 to P57, P60 to P63	$V_{DD} = 4.5 \text{ to } 5.5 \text{ V},$		0.4	2.0	V
voltage low			lo∟ = 15 mA				
		P01 to P03, P10 to P17, P20 to P27	$V_{DD} = 4.5 \text{ to } 5.5 \text{ V},$			0.4	V
		P30 to P37, P40 to P47, P64 to P67	lo∟ = 1.6 mA				
	Vol2	SB0, SB1, SCK0	V_{DD} = 4.5 to 5.5 V, open-drain			0.2 Vdd	V
			pulled-up (R = 1 K Ω)				
	Vol3	IoL = 400 μA				0.5	V

Note When using XT1/P04 as P04, input the inverse of P04 to XT2 using an inverter.

Remark The characteristics of a dual-function pin and a port pin are the same unless specified otherwise.

DC Characteristics (TA = -40 to +85 °C, VDD = 1.8 to 5.5 V)

Parameter	Symbol	Test Conc	litions	MIN.	TYP.	MAX.	Unit
Input leakage	Ілні	Vin = Vdd	P00 to P03, P10 to P17,			3	μΑ
current high			P20 to P27, P30 to P37,				
			P40 to P47, P50 to P57,				
			P60 to P67, RESET				
	ILIH2		X1, X2, XT1/P04, XT2			20	μΑ
	Ілнз	VIN = 15 V	P60 to P63			80	μΑ
Input leakege		VIN = 0 V	P00 to P03, P10 to P17,			-3	μΑ
current low			P20 to P27, P30 to P37,				
			P40 to P47, P50 to P57,				
			P60 to P67, RESET				
	Ilil2		X1, X2, XT1/P04, XT2			-20	μΑ
	Ililis		P60 to P63			_3 Note	μΑ
Output leakage	ILOH1	Vout = Vdd				3	μΑ
current high							
Output leakage	Ilol	Vout = 0 V				-3	μΑ
current low							
Mask option	R1	V _{IN} = 0 V, P60 to P63		20	40	90	kΩ
pull-up resister							
Software	R2	V_{IN} = 0 V, P01 to P03, P10 to P17, P20 to P27, P30 to P37,		15	40	90	kΩ
pull-up resister		P40 to P47, P50 to P57, P60 to P67					

Note For P60 to P63, if pull-up resistor is not provided (specifiable by mask option) a low-level input leak current of $-200 \ \mu$ A (MAX.) flows only during the 3 clocks (no-wait time) after an instruction has been executed to read out port 6 (P6) or port mode register 6 (PM6). Outside the period of 3 clocks following execution a read-out instruction, the current is $-3 \ \mu$ A (MAX.).

Remark The characteristics of a dual-function pin and a port pin are the same unless specified otherwise.

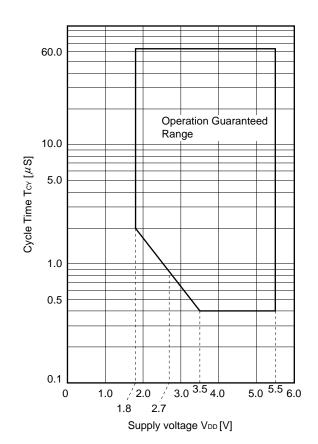
DC Characteristics (TA = -40 to +85 °C, VDD = 1.8 to 5.5 V)

Parameter	Symbol	Test Cond	itions	MIN.	TYP.	MAX.	Unit
Supply	IDD1	10.00 MHz crystal	V_{DD} = 5.0 V \pm 10 % Note 2		9.0	18.0	mA
current Note 1		oscillation operation mode	V_{DD} = 3.0 V \pm 10 % Note 3		1.3	2.6	mA
	IDD2	10.00 MHz crystal	V_{DD} = 5.0 V \pm 10 % Note 2		2.4	4.8	mA
		oscillation HALT mode	V_{DD} = 3.0 V \pm 10 % Note 3		1.2	2.4	mA
	Idd3	32.768 kHz crystal	$V_{\text{DD}} = 5.0 \text{ V} \pm 10 \text{ \%}$		60	120	μA
		oscillation operation mode Note 4	$V_{\text{DD}} = 3.0 \text{ V} \pm 10 \text{ \%}$		35	70	μA
			$V_{DD} = 2.0 \text{ V} \pm 10 \%$		24	48	μA
	IDD4	32.768 kHz crystal	$V_{\text{DD}} = 5.0 \text{ V} \pm 10 \text{ \%}$		25	50	μA
		oscillation HALT mode Note 4	V_{DD} = 3.0 V \pm 10 %		5	15	μA
			$V_{\text{DD}} = 2.0 \text{ V} \pm 10 \text{ \%}$		2	10	μA
	IDD5	XT1 = V _{DD}	V_{DD} = 5.0 V \pm 10 %		1	30	μA
		STOP mode when using feedback	V_{DD} = 3.0 V \pm 10 %		0.5	10	μA
		resistor	$V_{\text{DD}} = 2.0 \text{ V} \pm 10 \text{ \%}$		0.3	10	μA
	IDD6	XT1 = VDD	V_{DD} = 5.0 V \pm 10 %		0.1	30	μA
		STOP mode when not using	$V_{\text{DD}} = 3.0 \text{ V} \pm 10 \text{ \%}$		0.05	10	μA
		feedback resistor	$V_{\text{DD}} = 2.0 \text{ V} \pm 10 \text{ \%}$		0.05	10	μA

Notes 1. This current excludes the AVREF current, port current, and current which flows in the built-in pull-down resistor.

2. When operating at high-speed mode (when the processor clock control register (PCC) is set to 00H)

3. When operating at low-speed mode (when the PCC is set to 04H)


4. When main system clock stopped.

AC Characteristics

Parameter	Symbol	Test Condition	ons	MIN.	TYP.	MAX.	Unit
Cycle time	Тсч	Operating on main system clock	$3.5~V \le V_{\text{DD}} \le 5.5~V$	0.4		64	μs
(Min. instruction			$2.7~\text{V} \leq \text{V}_{\text{DD}} < 3.5~\text{V}$	0.8		64	μs
execution time)			$1.8 \text{ V} \leq \text{V}_{\text{DD}} < 2.7 \text{ V}$	2.0		64	μs
		Operating on subsystem clock		40	122	125	μs
TI0 input	tтіно	$3.5 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$		2/fsam + 0.1 Note			μs
frequency	t⊤ilo	$2.7~\text{V} \leq \text{V}_{\text{DD}} < 3.5~\text{V}$		2/fsam + 0.2 Note			μs
		$1.8 \text{ V} \leq \text{V}_{\text{DD}} < 2.7 \text{ V}$		2/f _{sam} + 0.5 Note			μs
TI1, TI2 input	fTI1	VDD = 4.5 to 5.5 V		0		4	MHz
frequency				0		275	kHz
TI1, TI2 input	tтінı	V _{DD} = 4.5 to 5.5 V		100			ns
high/low-level width	t⊤i∟1			1.8			μs
Interrupt	tілтн	INTP0	$3.5 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$	2/fsam + 0.1 Note			μs
request input	tintl		$2.7~\text{V} \leq \text{V}_{\text{DD}} < 3.5~\text{V}$	2/fsam + 0.2 Note			μs
high/low-level			$1.8~\text{V} \leq \text{V}_{\text{DD}} < 2.7~\text{V}$	2/f _{sam} + 0.5 Note			μs
width		INTP1 to INTP3, KR0 to KR7	V _{DD} = 2.7 to 5.5 V	10			μs
				20			μs
RESET low	trsl	VDD = 2.7 to 5.5 V		10			μs
level width				20			μs

(1) Basic Operation (T_A = -40 to +85 °C, V_{DD} = 1.8 to 5.5 V)

Note In combination with bits 0 (SCS0) and 1 (SCS1) of sampling clock select register (SCS), selection of fsam is possible between fX/2^{N+1}, fX/64 and fx/128 (when N= 0 to 4).

TCY VS VDD (At main system clock operation)

(2) Read/Write Operation (T_A = -40 to +85 °C, V_{DD} = 2.7 to 5.5 V)

Parameter	Symbol	Test Conditions	MIN.	MAX.	Unit
ASTB high-level width	t ASTH		0.5tcr		ns
Address setup time	tADS		0.5tcy - 30		ns
Address hold time	t ADH		50		ns
Data input time from address	tADD1			(2.5 + 2n) tcr – 50	ns
	tADD2			(3 + 2n) tcy - 100	ns
Data input time from $\overline{RD} \downarrow$	trdd1			(1 + 2n) tcy – 25	ns
	trdd2			(2.5 + 2n) tcy - 100	ns
Read data hold time	t RDH		0		ns
RD low-level width	tRDL1		(1.5 + 2n) tcy - 20		ns
	tRDL2		(2.5 + 2n) tcy - 20		ns
$\overline{\text{WAIT}} \downarrow$ input time from $\overline{\text{RD}} \downarrow$	tRDWT1			0.5tcr	ns
	trdwt2			1.5tcr	ns
$\overline{\text{WAIT}} \downarrow$ input time from $\overline{\text{WR}} \downarrow$	twrwt			0.5tcr	ns
WAIT low-level width	t WTL		(0.5 + 2n) tcr + 10	(2 + 2n) tcy	ns
Write data setup time	twos		100		ns
Write data hold time	twdн	Load resistor $\ge 5 \text{ k}\Omega$	20		ns
WR low-level width	twrl1		(2.5 + 2n) tcy - 20		ns
$\overline{RD} \downarrow$ delay time from ASTB \downarrow	t ASTRD		0.5tcy - 30		ns
$\overline{\mathrm{WR}} \downarrow$ delay time from ASTB \downarrow	t ASTWR		1.5tcy - 30		ns
ASTB↑ delay time from RD↑ in external fetch	t rdast		tcy - 10	tcy + 40	ns
Address hold time from RD↑ in external fetch	t rdadh		tcy	tcy + 50	ns
Write data output time from \overline{RD}	trdwd	V _{DD} = 4.5 to 5.5 V	0.5tcy + 5	0.5tcy + 30	ns
			0.5tcr + 15	0.5tcy + 90	ns
Write data output time from $\overline{\mathrm{WR}} \downarrow$	twrwd	V _{DD} = 4.5 to 5.5 V	5	30	ns
			15	90	ns
Address hold time from $\overline{WR} \uparrow$	twradh	V _{DD} = 4.5 to 5.5 V	tcy	tcy + 60	ns
			tcy	tcy + 100	ns
\overline{RD}^{\uparrow} delay time from $\overline{WAIT}^{\uparrow}$	twtrd		0.5tcy	2.5tcy + 80	ns
\overline{WR} \uparrow delay time from \overline{WAIT} \uparrow	twtwr		0.5tcy	2.5tcy + 80	ns

Remarks 1. tcy = Tcy/4

2. n indicates number of waits.

- (3) Serial Interface (TA = -40 to +85 °C, VDD = 1.8 to 5.5 V)
 - (a) Serial Interface Channel 0
 - (i) 3-wire serial I/O mode (SCK0... Internal clock output)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
SCK0 cycle time	tксү1	$4.5~V \le V_{\text{DD}} \le 5.5~V$	800			ns
		$2.7 \text{ V} \leq \text{V}_{\text{DD}} < 4.5 \text{ V}$	1600			ns
		$2.0 \text{ V} \leq \text{V}_{\text{DD}} < 2.7 \text{ V}$	3200			ns
			4800			ns
SCK0 high/low-level	tкн1	V _{DD} = 4.5 to 5.5 V	tксү1/2 – 50			ns
width	tĸL1		tксү1/2 – 100			ns
SI0 setup time	tsik1	$4.5~V \leq V_{\text{DD}} \leq 5.5~V$	100			ns
(to SCK0↑)		$2.7~V \leq V_{\text{DD}} < 4.5~V$	150			ns
		$2.0~V \leq V_{\text{DD}} < 2.7~V$	300			ns
			400			ns
SI0 hold time	tksi1		400			ns
(from SCK0↑)						
SO0 output delay time from $\overline{SCK0}\downarrow$	tkso1	C = 100 pF Note			300	ns

Note C is the load capacitance of SCK0 and SO0 output line.

(ii) 3-wire serial I/O mode (SCK0... External clock input)

Parameter	Symbol	Test Co	onditions	MIN.	TYP.	MAX.	Unit
SCK0 cycle time	tксү2	$4.5 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5$	5 V	800			ns
		$2.7 V \le V_{DD} < 4.5$	5 V	1600			ns
		$2.0 \text{ V} \leq \text{V}_{\text{DD}} < 2.7$	7 V	3200			ns
				4800			ns
SCK0 high/low-level	tкн2	$4.5 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5$	5 V	400			ns
width	tĸL2	$2.7 V \le V_{DD} < 4.5$	5 V	800			ns
		$2.0 \text{ V} \leq \text{V}_{\text{DD}} < 2.7$	7 V	1600			ns
							ns
SI0 setup time	tsik2	V _{DD} = 2.0 to 5.5 V		100			ns
(to SCK0↑)				150			ns
SI0 hold time	tksi2			400			ns
(from SCK0↑)							
SO0 output delay time	tkso2	C = 100 pF Note	V _{DD} = 2.0 to 5.5 V			300	ns
from $\overline{\text{SCK0}}\downarrow$						500	ns
SCK0 rise, fall time	t _{R2}	When external d	levice			160	ns
	tF2	expansion functi	on is used				
		When external	When 16-bit timer			700	ns
		device expansion	output function is				
		function is not	used				
		used	When 16-bit timer			1000	ns
			output function is				
			not used				

Note C is the load capacitance of SO0 output line.

(iii) SBI mode (SCK0... Internal clock output)

Parameter	Symbol	Test Co	onditions	MIN.	TYP.	MAX.	Unit
SCK0 cycle time	tксүз	$4.5 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5$	5 V	800			ns
		$2.0 V \le V_{DD} < 4.5$	5 V	3200			ns
				4800			ns
SCK0 high/low-level	tкнз	V _{DD} = 4.5 to 6.0 V		tксүз/2 – 50			ns
width	tкіз			tксүз/2 – 150			ns
SB0, SB1 setup time	tsıкз	$4.5 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$		100			ns
(to SCK0↑)		$2.0 V \le V_{DD} < 4.5$	5 V	300			ns
				400			ns
SB0, SB1 hold time	tหรเช			tксүз/2			ns
(from SCK0↑)							
SB0, SB1output delay	tкsoз	R = 1 kΩ,	V _{DD} = 4.5 to 5.5 V	0		250	ns
time from $\overline{\text{SCK0}}\downarrow$		C = 100 pF Note		0		1000	ns
SB0, SB1↓ from SCK0↑	tкsв			tксүз			ns
$\overline{\text{SCK0}}\downarrow$ from SB0, SB1 \downarrow	tsвк			tксүз			ns
SB0, SB1 high-level	tsвн			tксүз			ns
width							
SB0, SB1 low-level	tsв∟			tксүз			ns
width							

Note R and C are the load resistors and load capacitance of the SB0, SB1 and SCK0 output line.

(iv) SBI mode (SCK0... External clock input)

Parameter	Symbol	Test Co	onditions	MIN.	TYP.	MAX.	Unit
SCK0 cycle time	t ксү4	$4.5 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5$	5 V	800			ns
		$2.0 V \le V_{DD} < 4.5$	5 V	3200			ns
				4800			ns
SCK0 high/low-level	tкн4	$4.5 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5$	5 V	400			ns
width	tkl4	$2.0 V \le V_{DD} < 4.5$	5 V	1600			ns
				2400			ns
SB0, SB1 setup time	tsik4	$4.5~V \leq V_{\text{DD}} \leq 5.5~V$		100			ns
(to SCK0↑)		$2.0 V \le V_{DD} < 4.5$	5 V	300			ns
				400			ns
SB0, SB1 hold time	tksi4			tксү4/2			ns
(from SCK0↑)							
SB0, SB1 output delay	tkso4	$R = 1 k\Omega$,	$V_{DD} = 4.5 \text{ to } 5.5 \text{ V}$	0		300	ns
time from $\overline{\text{SCK0}}\downarrow$		C = 100 pF Note		0		1000	ns
SB0, SB1 \downarrow from SCK0 \uparrow	tкsв			tkcy4			ns
$\overline{\text{SCK0}}\downarrow$ from SB0, SB1 \downarrow	tsвк			tkcy4			ns
SB0, SB1 high-level	tsвн			tkcy4			ns
width							
SB0, SB1 low-level	t SBL			tkcy4			ns
width							
SCK0 rise, fall time	t _{R4}	When external d	levice			160	ns
	tF4	expansion functi	on is used				
		When external	When 16-bit timer			700	ns
		device expansion	output function is				
		function is not	used				
		used	When 16-bit timer			1000	ns
			output function is				
			not used				

Note $\,$ R and C are the load resistors and load capacitance of the SB0 and SB1 output line.

(v) 2-wire serial I/O mode (SCK0... Internal clock output)

Parameter	Symbol	Test Co	nditions	MIN.	TYP.	MAX.	Unit
SCK0 cycle time	tксү5	R = 1 kΩ,	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	1600			ns
		C = 100 pF Note	$2.0~V \leq V_{\text{DD}} < 2.7~V$	3200			ns
				4800			ns
SCK0 high-level width	tкн5		V _{DD} = 2.7 to 5.5 V	tксү5/2 – 160			ns
				tксү5/2 – 190			ns
SCK0 low-level width	tĸl5		V _{DD} = 4.5 to 5.5 V	tксү₅/2 – 50			ns
				tксү₅/2 – 100			ns
SB0, SB1 setup time	tsik5		$4.5~V \leq V_{\text{DD}} \leq 5.5~V$	300			ns
(to SCK0↑)			$2.7~V \leq V_{\text{DD}} < 4.5~V$	350			ns
			$2.0~V \leq V_{\text{DD}} < 2.7~V$	400			ns
				500			ns
SB0, SB1 hold time	tksi5			600			ns
(from SCK0↑)							
SB0, SB1 output delay	tkso5			0		300	ns
time from $\overline{\text{SCK0}}\downarrow$							

Note R and C are the load resistors and load capacitance of the $\overline{SCK0}$, SB0 and SB1 output line.

(vi) 2-wire serial I/O mode (SCK0... External clock input)

Parameter	Symbol	Test Co	onditions	MIN.	TYP.	MAX.	Unit
SCK0 cycle time	t ксү6	$2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5$	5 V	1600			ns
		$2.0 \text{ V} \leq \text{V}_{\text{DD}} < 2.7$	7 V	3200			ns
				4800			ns
SCK0 high-level width	tкн6	$2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5$	5 V	650			ns
		$2.0 \text{ V} \leq \text{V}_{\text{DD}} < 2.7$	7 V	1300			ns
				2100			ns
SCK0 low-level width	tĸl6	$2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5$	5 V	800			ns
		$2.0 \text{ V} \leq \text{V}_{\text{DD}} < 2.7 \text{ V}$		1600			ns
							ns
SB0, SB1 setup time	tsik6	V _{DD} = 2.0 to 5.5 V		100			ns
(to SCK0↑)				150			ns
SB0, SB1 hold time	tksi6			tксү6/2			ns
(from SCK0↑)							
SB0, SB1 output delay	tkso6	$R = 1 k\Omega$,	$4.5~V \leq V_{DD} \leq 5.5~V$	0		300	ns
time from $\overline{\text{SCK0}}$		C = 100 pF Note	$2.0~V \leq V_{\text{DD}} < 4.5~V$	0		500	ns
				0		800	ns
SCK0 rise, fall time	t _{R6}	When external d	levice			160	ns
	tF6	expansion functi	ion is used				
		When external	When 16-bit timer			700	ns
		device expansion	output function is				
		function is not	used				
		used	When 16-bit timer			1000	ns
			output function is				
			not used				

Note $\,$ R and C are the load resistors and load capacitance of the SB0 and SB1 output line.

(b) Serial Interface Channel 1

(i) 3-wire serial I/O mode (SCK1... Internal clock output)

Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
SCK1 cycle time	tксү7	$4.5 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$	800			ns
		$2.7 \text{ V} \leq \text{V}_{\text{DD}} < 4.5 \text{ V}$	1600			ns
		$2.0 \text{ V} \leq \text{V}_{\text{DD}} < 2.7 \text{ V}$	3200			ns
			4800			ns
SCK1 high/low-level	tкн7	V _{DD} = 4.5 to 5.5 V	tксү7/2 – 50			ns
width	tĸl7		tксү7/2 – 100			ns
SI1 setup time	tsik7	$4.5 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$	100			ns
(to SCK1↑)		$2.7 \text{ V} \leq \text{Vdd} < 4.5 \text{ V}$	150			ns
		$2.0~\text{V} \leq \text{V}_{\text{DD}} < 2.7~\text{V}$	300			ns
			400			ns
SI1 hold time	tksi7		400			ns
(from SCK1↑)						
SO1 output delay time	tkso7	C = 100 pF Note			300	ns
from SCK1↓						

Note C is the load capacitance of SCK1 and SO1 output line.

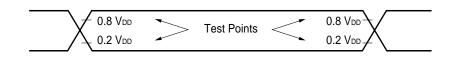
(ii) 3-wire serial I/O mode (SCK1... External clock input)

Parameter	Symbol	Test Co	onditions	MIN.	TYP.	MAX.	Unit
SCK1 cycle time	t ксув	$4.5 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5$	5 V	800			ns
		$2.7 V \le V_{DD} < 4.5$	5 V	1600			ns
		$2.0 V \le V_{DD} < 2.7$	7 V	3200			ns
				4800			ns
SCK1 high/low-level	tкн8	$4.5 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5$	5 V	400			ns
width	tĸl8	$2.7 V \le V_{DD} < 4.5$	5 V	800			ns
		$2.0 V \le V_{DD} < 2.7$	$2.0 \text{ V} \leq \text{V}_{\text{DD}} < 2.7 \text{ V}$				ns
				2400			ns
SI1 setup time	tsik8	V _{DD} = 2.0 to 5.5 V		100			ns
(to SCK1↑)				150			ns
SI1 hold time	tksi8			400			ns
(from SCK1↑)							
SO0 output delay time	tkso8	C = 100 pF Note	$V_{DD} = 2.0 \text{ to } 5.5 \text{ V}$			300	ns
from $\overline{\text{SCK1}}\downarrow$						500	ns
SCK1 rise, fall time	t _{R8}	When external d	levice			160	ns
	tF8	expansion functi	ion is used				
		When external	When 16-bit timer			700	ns
		device expansion	output function is				
		function is not	used				
		used	When 16-bit timer			1000	ns
			output function is				
			not used				

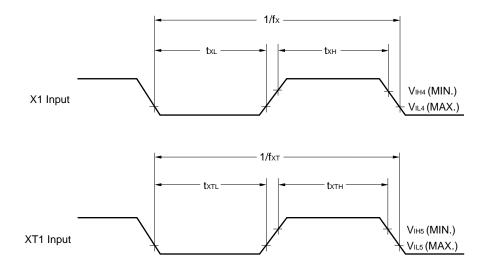
Note C is the load capacitance of SO1 output line.

(iii) 3-wire serial I/O mode with automatic transmit/receive function (SCK1... Internal clock output)

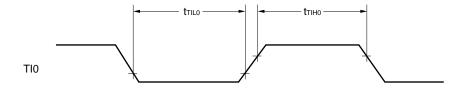
Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
SCK1 cycle time	tксү9	$4.5 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$	800			ns
		$2.7 \text{ V} \leq \text{V}_{\text{DD}} < 4.5 \text{ V}$	1600			ns
		$2.0 \text{ V} \leq \text{V}_{\text{DD}} < 2.7 \text{ V}$	3200			ns
			4800			ns
SCK1 high/low-level	tкнэ	V _{DD} = 4.5 to 5.5 V	tксү9/2 – 50			ns
width	tĸl9		tксү9/2 – 100			ns
SI1 setup time	tsik9	$4.5 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$	100			ns
(to SCK1↑)		$2.7 \text{ V} \leq \text{V}_{\text{DD}} < 4.5 \text{ V}$	150			ns
		$2.0 \text{ V} \leq \text{V}_{\text{DD}} < 2.7 \text{ V}$	300			ns
			400			ns
SI1 hold time	tksia		400			ns
(from SCK1↑)						
SO1 output delay time	tĸso9	C = 100 pF ^{Note}			300	ns
from $\overline{\text{SCK1}}\downarrow$						
STB↑ from SCK1↑	tsвd		tксү9/2 – 100		tксү9/2 + 100	ns
Strobe signal	tsвw	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	tксү9 – 30		tксүэ + 30	ns
high-level width		$2.0~V \leq V_{\text{DD}} < 2.7~V$	tксү9 – 60		tксүэ + 60	ns
			tксүэ – 90		tксүэ + 90	ns
Busy signal setup time	tBYS		100			ns
(to busy signal						
detection timing)						
Busy signal hold time	tвүн	$4.5~V \leq V_{\text{DD}} \leq 5.5~V$	100			ns
(from busy signal		$2.7~\text{V} \leq \text{V}_{\text{DD}} < 4.5~\text{V}$	150			ns
detection timing)		$2.0~\text{V} \leq \text{V}_{\text{DD}} < 2.7~\text{V}$	200			ns
			300			ns
$\overline{\text{SCK1}}\downarrow$ from busy	tsps				2tксүэ	ns
inactive						

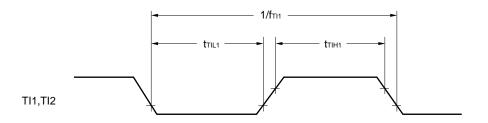

Note C is the load capacitance of $\overline{SCK1}$ and SO1 output line.

(iv) 3-wire serial I/O mode with automatic transmit/receive function (SCK1... External clock input)

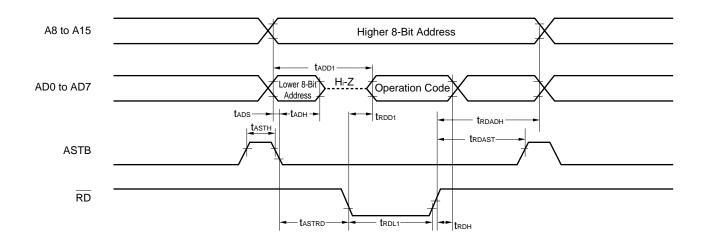

Parameter	Symbol	Test Co	onditions	MIN.	TYP.	MAX.	Unit
SCK1 cycle time	tксү10	$4.5 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5$	5 V	800			ns
		$2.7 V \le V_{DD} < 4.5$	5 V	1600			ns
		$2.0 \text{ V} \leq \text{V}_{\text{DD}} < 2.7$	7 V	3200			ns
				4800			ns
SCK1 high/low-level	tкн10,	$4.5 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5$	5 V	400			ns
width	tKL10	$2.7 V \le V_{DD} < 4.5$	5 V	800			ns
		$2.0 \text{ V} \leq \text{V}_{\text{DD}} < 2.7$	7 V	1600			ns
				2400			ns
SI1 setup time	tsik10	V _{DD} = 2.0 to 5.5	V	100			ns
(to SCK1↑)				150			ns
SI1 hold time	tksi10			400			ns
(from SCK1↑)							
SO1 output delay time	tkso10	C = 100 pF Note	$V_{DD} = 2.0$ to 5.5 V			300	ns
from SCK1↓						500	ns
SCK1 rise, fall time	t R10, t F10	When external d	levice expansion			160	ns
		function is used					
		When external d	levice expansion			1000	ns
		function is not us	sed				

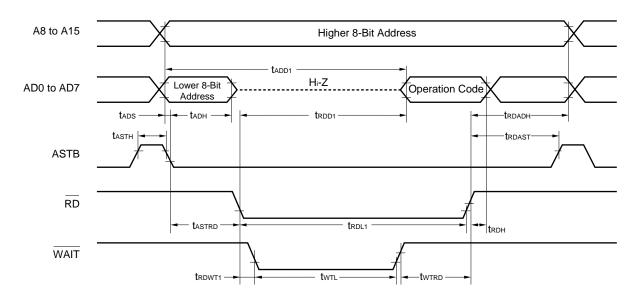
Note C is the load capacitance of the SO1 output line.


AC Timing Test Point (Excluding X1, XT1 Input)

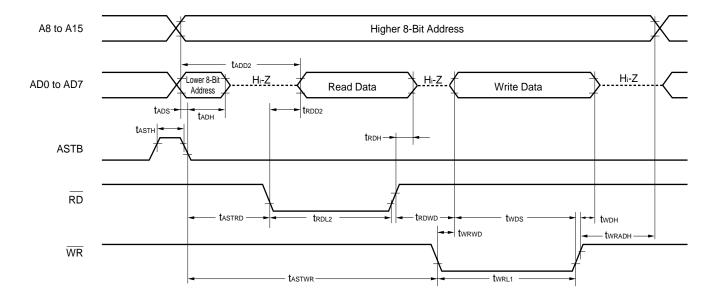


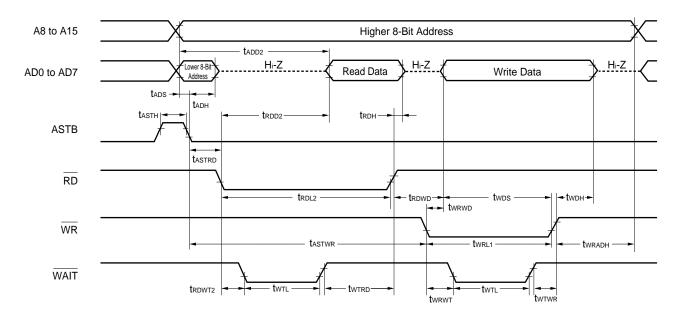
Clock Timing

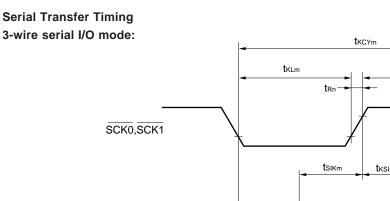

TI Timing

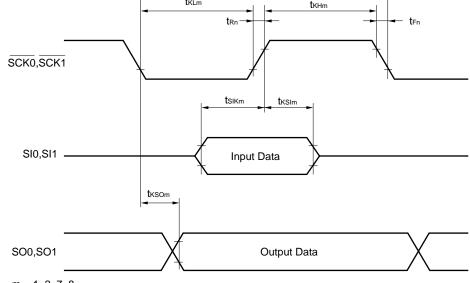


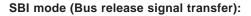
Read/Write Operation

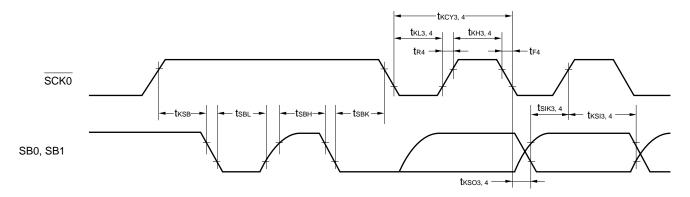

External fetch (No wait):

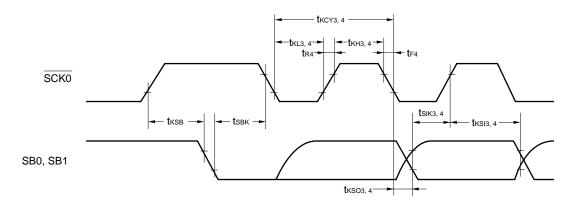

External fetch (Wait insertion):



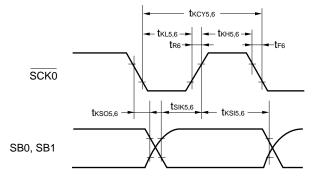

External data access (No wait):

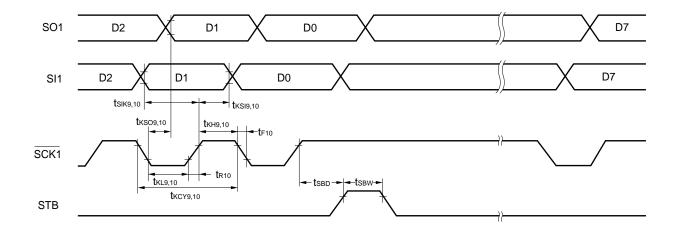

External data access (Wait insertion):

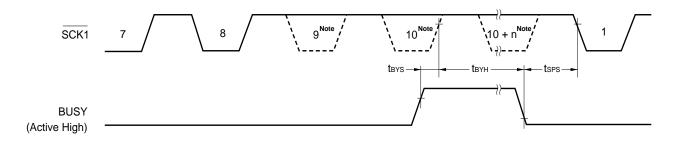


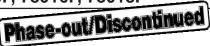


m = 1, 2, 7, 8 n = 2, 8




SBI Mode (command signal transfer):

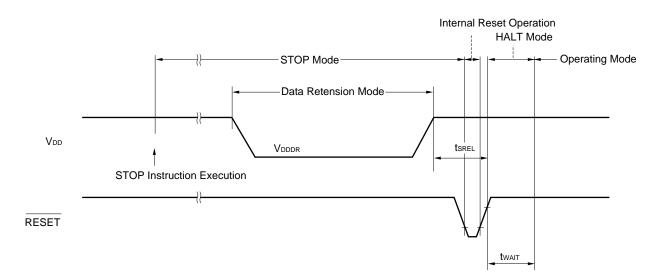

2-wire serial I/O mode:


3-wire serial I/O mode with automatic transmit/receive function:

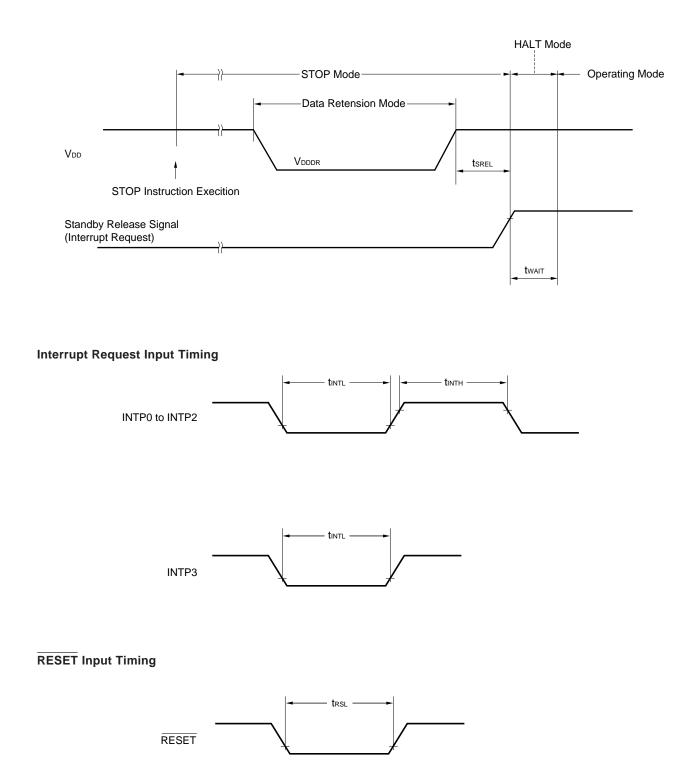
3-wire serial I/O mode with automatic transmit/receive function (busy processing):

A/D converter characteristics (T_A = -40 to +85 °C, AV_{DD} = V_{DD} = 1.8 to 5.5 V, AV_{SS} = V_{SS} = $\overline{0}$ V)

Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
Resolution			8	8	8	bit
Overall error Note		$2.7 \text{ V} \leq AV_{REF} \leq AV_{DD}$			0.6	%
		$1.8 \text{ V} \leq \text{AV}_{\text{REF}} < 2.7 \text{ V}$			1.4	%
Conversion time	t CONV	$2.0 \text{ V} \leq \text{AV}_{\text{DD}} \leq 5.5 \text{ V}$	19.1		200	μs
		$1.8 \text{ V} \le \text{AV}_{\text{DD}} < 2.0 \text{ V}$	38.2		200	μs
Sampling time	t SAMP		24/f x			μs
Analog input voltage	VIAN		AVss		AVREF	V
Reference voltage	AVREF		1.8		AVdd	V
AVREF resistance	RAIREF		4	14		kΩ

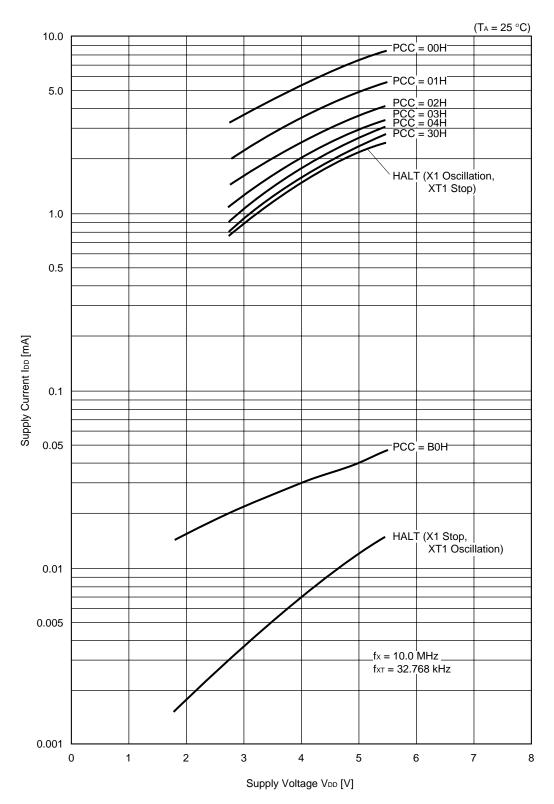

Note Overall error excluding quantization error ($\pm 1/2$ LSB). It is indicated as a ratio to the full-scale value.

Data Memory STOP Mc	ode Low Supply Voltage	Data Retention Characteri	istics (T _A = -40 to $+85 \circ$ C)
---------------------	------------------------	----------------------------------	---

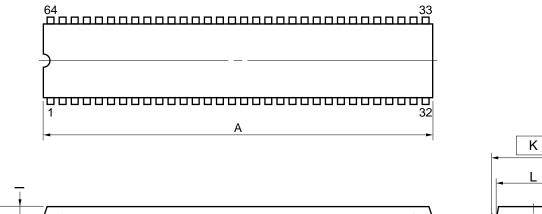

Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
Data retention supply	Vdddr		1.8		5.5	V
voltage						
Data retention supply	Idddr	$V_{DDDR} = 1.8 V$		0.1	10	μΑ
current		Subsystem clock stop and feed-				
		back resister disconnected				
Release signal set time	tsrel		0			μs
Oscillation stabilization	twait	Release by RESET		2 ¹⁸ /fx		ms
wait time		Release by interrupt request		Note		ms

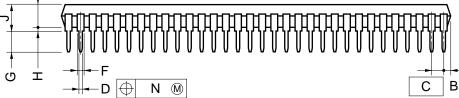
Note In combination with bit 0 to bit 2 (OSTS0 to OSTS2) of oscillation stabilization time select register (OSTS), selection of 2¹³/fx and 2¹⁵/fx to 2¹⁸/fx is possible.

Data Retention Timing (STOP Mode Release by RESET)



Data Retention Timing (Standby Release Signal : STOP Mode Release by Interrupt Request Signal)

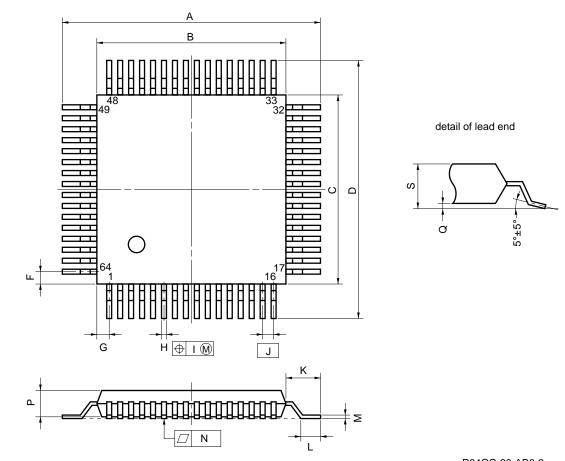

12. CHARACTERISTIC CURVE (REFERENCE VALUES)


IDD VS VDD (Main System Clock: 10.0 MHz)

13. PACKAGE DRAWINGS

64 PIN PLASTIC SHRINK DIP (750 mil)

NOTE

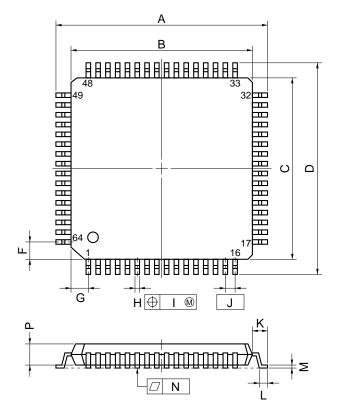

- 1) Each lead centerline is located within 0.17 mm (0.007 inch) of its true position (T.P.) at maximum material condition.
- 2) Item "K" to center of leads when formed parallel.

ITEM	MILLIMETERS	INCHES
Α	58.68 MAX.	2.311 MAX.
В	1.78 MAX.	0.070 MAX.
С	1.778 (T.P.)	0.070 (T.P.)
D	0.50±0.10	$0.020^{+0.004}_{-0.005}$
F	0.9 MIN.	0.035 MIN.
G	3.2±0.3	0.126±0.012
н	0.51 MIN.	0.020 MIN.
1	4.31 MAX.	0.170 MAX.
J	5.08 MAX.	0.200 MAX.
К	19.05 (T.P.)	0.750 (T.P.)
L	17.0	0.669
М	$0.25^{+0.10}_{-0.05}$	$0.010^{+0.004}_{-0.003}$
N	0.17	0.007
R	0~15°	0~15°

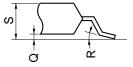
P64C-70-750A,C-1

Remark Dimensions and materials of ES products are the same as those of mass-production products.

64 PIN PLASTIC QFP (□14)


NO	ΓЕ
----	----

Each lead centerline is located within 0.15 mm (0.006 inch) of its true position (T.P.) at maximum material condition.


		P64GC-80-AB8-2
ITEM	MILLIMETERS	INCHES
A	17.6±0.4	0.693±0.016
В	14.0±0.2	$0.551^{+0.009}_{-0.008}$
С	14.0±0.2	$0.551^{+0.009}_{-0.008}$
D	17.6±0.4	0.693±0.016
F	1.0	0.039
G	1.0	0.039
Н	0.35±0.10	$0.014\substack{+0.004\\-0.005}$
I	0.15	0.006
J	0.8 (T.P.)	0.031 (T.P.)
к	1.8±0.2	0.071±0.008
L	0.8±0.2	$0.031^{+0.009}_{-0.008}$
М	$0.15\substack{+0.10 \\ -0.05}$	$0.006\substack{+0.004\\-0.003}$
N	0.10	0.004
Р	2.55	0.100
Q	0.1±0.1	0.004±0.004
S	2.85 MAX.	0.112 MAX.

Remark Dimensions and materials of ES products are the same as those of mass-production products.

64 PIN PLASTIC LQFP (12)

detail of lead end

Each lead centerline is located within 0.13 mm (0.005 inch) of its true position (T.P.) at maximum material condition.

ITEM	MILLIMETERS	INCHES
Α	14.8±0.4	0.583±0.016
В	12.0±0.2	$0.472^{+0.009}_{-0.008}$
С	12.0±0.2	$0.472^{+0.009}_{-0.008}$
D	14.8±0.4	0.583±0.016
F	1.125	0.044
G	1.125	0.044
н	0.30±0.10	$0.012^{+0.004}_{-0.005}$
I	0.13	0.005
J	0.65 (T.P.)	0.026 (T.P.)
К	1.4±0.2	0.055±0.008
L	0.6±0.2	$0.024^{+0.008}_{-0.009}$
М	$0.15^{+0.10}_{-0.05}$	$0.006^{+0.004}_{-0.003}$
Ν	0.10	0.004
Р	1.4	0.055
Q	0.125±0.075	0.005±0.003
R	5°±5°	5°±5°
S	1.7 MAX.	0.067 MAX.
		P64GK-65-8A8-1

Remark Dimensions and materials of ES products are the same as those of mass-production products.

14. RECOMMENDED SOLDERING CONDITIONS

The μ PD78011F/78012F/78013F/78014F/78015F/78016F/78018F should be soldered and mounted under the conditions recommended in the table below.

For detail of recommended soldering conditions, refer to the information document **Semiconductor Device Mounting Technology Manual (C10535E)**.

For soldering methods and conditions other than those recommended below, contact our salespersonnel.

Table 14-1. Surface Mounting Type Soldering Conditions (1/2)

- (1) μPD78011FGC-xxx-AB8: 64-Pin Plastic QFP (14 × 14 mm) μPD78012FGC-xxx-AB8: 64-Pin Plastic QFP (14 × 14 mm) μPD78013FGC-xxx-AB8: 64-Pin Plastic QFP (14 × 14 mm) μPD78014FGC-xxx-AB8: 64-Pin Plastic QFP (14 × 14 mm) μPD78015FGC-xxx-AB8: 64-Pin Plastic QFP (14 × 14 mm) μPD78016FGC-xxx-AB8: 64-Pin Plastic QFP (14 × 14 mm)
- μPD78018FGC-xxx-AB8: 64-Pin Plastic QFP (14 × 14 mm)

Soldering Method	Soldering Conditions	Recommended Condition Symbol
Infrared reflow	Package peak temperature: 235 °C, Duration: 30 sec. max. (at 210 °C or above), Number of times: Three times max.	IR35-00-3
VPS	Package peak temperature: 215 °C, Duration: 40 sec. max. (at 200 °C or above), Number of times: Three times max.	VP15-00-3
Wave soldering	Solder bath temperature: 260 °C max. Duration: 10 sec. max. Number of times: Once Preheating temperature: 120 °C max. (Package surface temperature)	WS60-00-1
Partial heating	Pin temperature: 300 °C max., Duration: 3 sec. max. (per device side)	—

Caution Use more than one soldering method should be avoided (except in the case of partial heating).

Table 14-1. Surface Mounting Type Soldering Conditions (2/2)

- (2) μPD78011FGK-xxx-8A8 : 64-Pin Plastic LQFP (12 × 12 mm) μPD78012FGK-xxx-8A8 : 64-Pin Plastic LQFP (12 × 12 mm) μPD78013FGK-xxx-8A8 : 64-Pin Plastic LQFP (12 × 12 mm) μPD78014FGK-xxx-8A8 : 64-Pin Plastic LQFP (12 × 12 mm) μPD78015FGK-xxx-8A8 : 64-Pin Plastic LQFP (12 × 12 mm) μPD78016FGK-xxx-8A8 : 64-Pin Plastic LQFP (12 × 12 mm) μPD78018FGK-xxx-8A8 : 64-Pin Plastic LQFP (12 × 12 mm)
- *

Soldering Method	Soldering Conditions	Recommended Condition Symbol
Infrared reflow	 Package peak temperature: 235 °C, Duration: 30 sec. max. (at 210 °C or above), Number of times: Twice max., Number of days: 7 days Note (after that, 125 °C prebaking for 10 hours is necessary.) < Precautions > (1) Start the second reflow after the device temprature by the first reflow returns to normal. (2) Flux washing by the water after the first reflow should be avoided. 	IR35-107-2
VPS	 Package peak temperature: 215 °C, Duration: 40 sec. max. (at 200 °C or above), Number of times: Twice max., Number of days: 7 days Note (after that, 125 °C prebaking for 10 hours is necessary.) < Precautions > (1) Start the second reflow after the device temprature by the first reflow returns to normal. (2) Flux washing by the water after the first reflow should be avoided. 	VP15-107-2
Wave soldering	Solder bath temperature: 260 °C max. Duration: 10 sec. max. Number of times: Once, Preheating temperature: 120 °C max. (Package surface temperature), Number of days: 7 days ^{Note} (after that, 125 °C prebaking for 10 hours is necessary.)	WS60-107-1
Partial heating	Pin temperature: 300 °C max., Duration: 3 sec. max. (per device side)	—

Note The number of days the device can be stored at 25 °C, 65% RH MAX. after the dry pack has been opend.

Caution Use more than one soldering method should be avoided (except in the case of partial heating).

★

Phase-out/Discontinued

Table 14-2. Insertion Type Soldering Conditions

 $\begin{array}{l} \mu \text{PD78011FCW-} \times \times : \ 64\text{-Pin Plastic Shrink DIP (750 mil)} \\ \mu \text{PD78012FCW-} \times \times : \ 64\text{-Pin Plastic Shrink DIP (750 mil)} \\ \mu \text{PD78013FCW-} \times \times : \ 64\text{-Pin Plastic Shrink DIP (750 mil)} \\ \mu \text{PD78014FCW-} \times \times : \ 64\text{-Pin Plastic Shrink DIP (750 mil)} \\ \mu \text{PD78015FCW-} \times \times : \ 64\text{-Pin Plastic Shrink DIP (750 mil)} \\ \mu \text{PD78016FCW-} \times \times : \ 64\text{-Pin Plastic Shrink DIP (750 mil)} \\ \mu \text{PD78018FCW-} \times \times : \ 64\text{-Pin Plastic Shrink DIP (750 mil)} \\ \mu \text{PD78018FCW-} \times \times : \ 64\text{-Pin Plastic Shrink DIP (750 mil)} \\ \mu \text{PD78018FCW-} \times \times : \ 64\text{-Pin Plastic Shrink DIP (750 mil)} \\ \mu \text{PD78018FCW-} \times \times : \ 64\text{-Pin Plastic Shrink DIP (750 mil)} \\ \mu \text{PD78018FCW-} \times \times : \ 64\text{-Pin Plastic Shrink DIP (750 mil)} \\ \mu \text{PD78018FCW-} \times \times : \ 64\text{-Pin Plastic Shrink DIP (750 mil)} \\ \mu \text{PD78018FCW-} \times \times : \ 64\text{-Pin Plastic Shrink DIP (750 mil)} \\ \mu \text{PD78018FCW-} \times \times : \ 64\text{-Pin Plastic Shrink DIP (750 mil)} \\ \mu \text{PD78018FCW-} \times \times : \ 64\text{-Pin Plastic Shrink DIP (750 mil)} \\ \mu \text{PD78018FCW-} \times \times : \ 64\text{-Pin Plastic Shrink DIP (750 mil)} \\ \mu \text{PD78018FCW-} \times \times : \ 64\text{-Pin Plastic Shrink DIP (750 mil)} \\ \mu \text{PD78018FCW-} \times \times : \ 64\text{-Pin Plastic Shrink DIP (750 mil)} \\ \mu \text{PD78018FCW-} \times \times : \ 64\text{-Pin Plastic Shrink DIP (750 mil)} \\ \mu \text{PD78018FCW-} \times \times : \ 64\text{-Pin Plastic Shrink DIP (750 mil)} \\ \mu \text{PD78018FCW-} \times \times : \ 64\text{-Pin Plastic Shrink DIP (750 mil)} \\ \mu \text{PD78018FCW-} \times \times : \ 64\text{-Pin Plastic Shrink DIP (750 mil)} \\ \mu \text{PD78018FCW-} \times \times : \ 64\text{-Pin Plastic Shrink DIP (750 mil)} \\ \mu \text{PD78018FCW-} \times \times : \ 64\text{-Pin Plastic Shrink DIP (750 mil)} \\ \mu \text{PD78018FCW-} \times \times : \ 64\text{-Pin Plastic Shrink DIP (750 mil)} \\ \mu \text{PD78018FCW-} \times \times : \ 64\text{-Pin Plastic Shrink DIP (750 mil)} \\ \mu \text{PD78018FCW-} \times \times : \ 64\text{-Pin Plastic Shrink DIP (750 mil)} \\ \mu \text{PD78018FCW-} \times \times : \ 64\text{-Pin Plastic Shrink DIP (750 mil)} \\ \mu \text{PD78018FCW-} \times \times : \ 64\text{-Pin Plastic Shrink DIP (750 mil)} \\ \mu \text{PD78018FCW-} \times \times : \ 64\text{-Pin Plastic Shrink DIP (750 mil)} \\ \mu \text{PD78018FCW-} \times \times : \ 64\text{-Pin Plastic Shrink DIP (750 m$

Soldering Method	Soldering Conditions
Wave soldering (pin only)	Solder bath temperature: 260°C max., Duration: 10 sec. max.
Partial heating	Pin temperature: 300°C max., Duration: 3 sec. max. (per pin)

Caution Wave soldering is only for the lead part in order that jet solder can not contact with the chip directly.

APPENDIX A. DEVELOPMENT TOOLS

The following development tools are available for system development using the μ PD78018F subseries.

Language Processing Software		
RA78K/0 Notes 1, 2, 3, 4	78K/0 series common assembler package	
CC78K/0 Notes 1, 2, 3, 4	C78K/0 Notes 1, 2, 3, 4 78K/0 series common C compiler package	
DF78014 Notes 1, 2, 3, 4	Device file common to μ PD78014 subseries	
CC78K/0-L Notes 1, 2, 3, 4	78K/0 series common C compiler library source file	

PROM Writting Tools

PG-1500	PROM programmer
PA-78P014CW PA-78P018GC PA-78P018GK PA-78P018KK-S	Programmer adapter connected to PG-1500
PG-1500 controller Notes 1, 2	PG-1500 control program

Debugging Tool

	IE-78000-R	78K/0 series common in-circuit emulator	
*	IE-78000-R-A	78K/0 series common in-circuit emulator (for integrated debugger)	
	IE-78000-R-BK	78K/0 series common break board	
	IE-78014-R-EM-A	μ PD78018F and 78018FY subseries evaluation emulation board (V _{DD} = 3.0 to 6.0 V)	
*	IE-78000-R-SV3	Interface adapter and cable when an EWS is used as the host machine (for IE-78000R-A)	
*	IE-70000-98-IF-B	Interface adapter when PC-9800 series (except notebook PC) is used as the host machine (for IE-78000-R-A)	
*	IE-70000-98N-IF	Interface adapter and cable when PC-9800 series notebook PC is used as the host machine (for IE-78000-R-A)	
*	IE-70000-PC-IF-B	Interface adapter when IBM PC/AT [™] is used as the host machine (for IE-78000-R-A)	
	EP-78240CW-R EP-78240GC-R	Emulation probe common to μ PD78244 subseries	
	EV-78012GK-R	μ PD78018F subseries emulation probe	
	EV-9200GC-64	Socket to be mounted on target system board created for the 64-pin plastic QFP (GC-AB8 type)	
*	TGC-064SBW	Conversion adapter to be mounted on a target system board made for 64-pin plastic QFP (GK-8A8 type) TGC-100SDW is a product from Tokyo Eletech Corp. (TEL (03) 5295-1661) When purchasing this product, please consult with our sales offices.	
	EV-9900	Tools for removing µPD78P018FKK-S from EV-9200GC-64	
	SM78K0 Notes 5, 6, 7	78K/0 series common system simulator	
*	ID78K0 Notes 4, 5, 6, 7	IE-78000-R-A integrated dubugger	
	SD78K/0 Notes 1, 2	IE-78000-R screen debugger	
	DF78014 Notes 1, 2, 4, 5, 6, 7	Device file common to µPD78014 subseries	

Real-Time OS

RX78K/0 Notes 1, 2, 3, 4	78K/0 series real-time OS
MX78K0 Notes 1, 2, 3, 4	78K/0 series OS

Fuzzy Inference Devleopment Support System

FE9000 Note 1/FE9200 Note 6	Fuzzy knowledge data creation tool
FT9080 Note 1/FT9085 Note 2	Translator
FI78K0 Notes 1, 2	Fuzzy inference module
FD78K0 Notes 1, 2 Fuzzy inference debugger	

Notes 1. PC-9800 series (MS-DOS[™]) based

- 2. IBM PC/AT and compatible (PC DOSTM/IBM DOSTM/MS-DOS) based
- **3.** HP9000 series 300[™] (HP-UX[™]) based
- 4. HP9000 series 700[™] (HP-UX) based, SPARCstation[™] (SunOS[™]) based, EWS4800 series (EWS-UX/V) based
- 5. PC-9800 series (MS-DOS + Windows[™]) based
- 6. IBM PC/AT and compatible (PC DOS/IBM DOS/MS-DOS + Windows) based
- **7.** NEWS[™] (NEWS-OS[™]) based

Remarks 1. For development tools manufactured by a third party, refer to the 78K/0 Series Selection Guide (U11126E).
 2. RA78K/0, CC78K/0, SM78K0, ID78K0, SD78K/0, and RX78K/0 are used in combination with DF78014.

APPENDIX B. RELATED DOCUMENTS

Device Related Documents

	Document Name		Document No.	
			Japanese	English
*	μPD78018F, 78018FY Subseries User's Manual		U10659J	U10659E
*	78K/0 Series User's Manual - Instruction		U12326J	IEU-1372
*	78K/0 Series Instruction Table		U10903J	—
*	78K/0 Series Instruction Set		U10904J	—
	µPD78018F Subseries Special Function Register Table		IEM-5594	—
	78K/0 Series Application Note Fundamental (I)		IEA-715	IEA-1288
		Floating-Point Arithmetic Program	IEA-718	IEA-1289

Development Tools Documents (User's Manual) (1/2)

	Document Name		Document No.	
				English
	RA78K Series Assembler Package	Operation	EEU-809	EEU-1399
		Language	EEU-815	EEU-1404
	RA78K Series Structured Assembler Preprocesso	or	EEU-817	EEU-1402
*	RA78K0 Assembler Package	Operation	U11802J	U11802E
		Assembly Language	U11801J	U11801E
		Structured Assembly Language	U11789J	U11789E
	CC78K Series C Compiler	Operation	EEU-656	EEU-1280
		Language	EEU-655	EEU-1284
*	CC78K0 C Compiler	Operation	U11517J	U11517E
		Language	U11518J	U11518E
	CC78K/0 C Compiler Application Note	Programming Know-how	EEA-618	EEA-1208
*	CC78K Series Library Source File		U12322J	_
*	PG-1500 PROM Programmer		U11940J	EEU-1335
	PG-1500 Controller PC-9800 Series (MS-DOS) Based		EEU-704	EEU-1291
	PG-1500 Controller IBM PC Series (PC DOS) Based		EEU-5008	U10540E
*	IE-78000-R		U11376J	U11376E
*	E-78000-R-A		U10057J	U10057E
	IE-78000-R-BK		EEU-867	EEU-1427
	IE-78014-R-EM-A		EEU-962	U10418E
	EP-78240		EEU-986	EEU-1513
	EP-78012GK-R	EP-78012GK-R		EEU-1538
	SM78K0 System Simulator	Reference	U10181J	U10181E

Caution The contents of the above related documents are subject to change without notice. The latest documents should be used for designing, etc.

μPD78011F, 78012F, 78013F, 78014F, 78015F, 78016F, 78018F

Phase-out/Discontinued

Development Tools Documents (User's Manual) (2/2)

	Document Name		Document No.	
			Japanese	English
*	SM78K Series System Simulator	External Part User Open Interface Specifications	U10092J	U10092E
*	ID78K0 Integrated Debugger EWS Based	Reference	U11151J	—
*	ID78K0 Integrated Debugger PC Based	Reference	U11539J	U11539E
*	ID78K0 Integrated Debugger Windows Based	Guide	U11649J	U11649E
*	SD78K/0 Screen Debugger	Introduction	EEU-852	U10539E
	PC-9800 Series (MS-DOS) Based	Reference	U10952J	—
*	SD78K/0 Screen Debugger	Introduction	EEU-5024	EEU-1414
	IBM PC/AT (PC DOS) Based	Reference	U11279J	U11279E

Embedded Software Documents (User's Manual)

Document Name		Docume	Document No.	
Document			English	
78K/0 Series Real-Time OS	Fundamental	U11537J	U11537E	
	Installation	U11536J	U11536E	
78K/0 Series OS MX78K0	Fundamental	U12257J		
Fuzzy Knowledge Data Creation Tool	Fuzzy Knowledge Data Creation Tool		EEU-1438	
78K/0, 78K/II, 87AD Series	78K/0, 78K/II, 87AD Series		EEU-1444	
Fuzzy Inference Development Support System - Translator				
78K/0 Series Fuzzy Inference Developme	78K/0 Series Fuzzy Inference Development Suport System -		EEU-1441	
Fuzzy Inference Module				
78K/0 Series Fuzzy Inference Development Support System -		EEU-921	EEU-1458	
Fuzzy Inference Debugger				

★ Other Documents

Document Name	Document No.	
	Japanese	English
IC Package Manual	C10943X	
Semiconductor Device Mounting Technology Manual	C11535J	C10535E
Quality Grades on NEC Semiconductor Device	C11531J	C11531E
NEC Semiconductor Device Reliability/Quality Control System	C10983J	C10983E
Electrostatic Discharge (ESD) Test	MEM-539	_
Guide to Quality Assurance for Semiconductor Device	C11893J	MEI-1202
Guide for Products Related to Microcomputer: Other Companies	U11416J	_

Caution The contents of the above related documents are subject to change without notice. The latest documents should be used for designing, etc.

NOTES FOR CMOS DEVICES

(1) PRECAUTION AGAINST ESD FOR SEMICONDUCTORS

Note: Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it once, when it has occurred. Environmental control must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using insulators that easily build static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work bench and floor should be grounded. The operator should be grounded using wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with semiconductor devices on it.

(2) HANDLING OF UNUSED INPUT PINS FOR CMOS

Note: No connection for CMOS device inputs can be cause of malfunction. If no connection is provided to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence causing malfunction. CMOS device behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND with a resistor, if it is considered to have a possibility of being an output pin. All handling related to the unused pins must be judged device by device and related specifications governing the devices.

③ STATUS BEFORE INITIALIZATION OF MOS DEVICES

Note: Power-on does not necessarily define initial status of MOS device. Production process of MOS does not define the initial operation status of the device. Immediately after the power source is turned ON, the devices with reset function have not yet been initialized. Hence, power-on does not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the reset signal is received. Reset operation must be executed immediately after power-on for devices having reset function.

Phase-out/Discontinued

Regional Information

Some information contained in this document may vary from country to country. Before using any NEC product in your application, please contact the NEC office in your country to obtain a list of authorized representatives and distributors. They will verify:

- Device availability
- Ordering information
- Product release schedule
- Availability of related technical literature
- Development environment specifications (for example, specifications for third-party tools and components, host computers, power plugs, AC supply voltages, and so forth)
- Network requirements

In addition, trademarks, registered trademarks, export restrictions, and other legal issues may also vary from country to country.

NEC Electronics Inc. (U.S.)

Santa Clara, California Tel: 408-588-6000 800-366-9782 Fax: 408-588-6130 800-729-9288

NEC Electronics (Germany) GmbH

Duesseldorf, Germany Tel: 0211-65 03 02 Fax: 0211-65 03 490

NEC Electronics (UK) Ltd. Milton Keynes, UK Tel: 01908-691-133

Fax: 01908-670-290

NEC Electronics Italiana s.r.1.

Milano, Italy Tel: 02-66 75 41 Fax: 02-66 75 42 99

NEC Electronics (Germany) GmbH Benelux Office Eindhoven, The Netherlands Tel: 040-2445845 Fax: 040-2444580

NEC Electronics (France) S.A.

Velizy-Villacoublay, France Tel: 01-30-67 58 00 Fax: 01-30-67 58 99

NEC Electronics (France) S.A. Spain Office Madrid, Spain Tel: 01-504-2787 Fax: 01-504-2860

NEC Electronics (Germany) GmbH

Scandinavia Office Taeby, Sweden Tel: 08-63 80 820 Fax: 08-63 80 388 NEC Electronics Hong Kong Ltd. Hong Kong Tel: 2886-9318 Fax: 2886-9022/9044

NEC Electronics Hong Kong Ltd.

Seoul Branch Seoul, Korea Tel: 02-528-0303 Fax: 02-528-4411

NEC Electronics Singapore Pte. Ltd. United Square, Singapore 1130 Tel: 65-253-8311 Fax: 65-250-3583

NEC Electronics Taiwan Ltd. Taipei, Taiwan Tel: 02-719-2377 Fax: 02-719-5951

NEC do Brasil S.A.

Cumbica-Guarulhos-SP, Brasil Tel: 011-6465-6810 Fax: 011-6465-6829

FIP and IEBus are trademarks of NEC Corporation. MS-DOS and Windows are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or other countries. IBM DOS, PC/AT, and PC DOS are trademarks of IBM Corporation. HP9000 series 300, HP9000 series 700, and HP-UX are trademarks of Hewlett-Packard Company. SPARCstation is a trademark of SPARC International, Inc. SunOS is a trademark of Sun Microsystems, Inc. NEWS and NEWS-OS are trademarks of Sony Corporation.

The related documents referred to in this publication may include preliminary versions. However, preliminary versions are not marked as such.

The export of this product from Japan is regulated by the Japanese government. To export this product may be prohibited without governmental license, the need for which must be judged by the customer. The export or re-export of this product from a country other than Japan may also be prohibited without a license from that country. Please call an NEC sales representative.

No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this document.

NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from use of a device described herein or any other liability arising from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Corporation or others.

While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices, the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or property arising from a defect in an NEC semiconductor device, customers must incorporate sufficient safety measures in its design, such as redundancy, fire-containment, and anti-failure features.

NEC devices are classified into the following three quality grades:

"Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a customer designated "quality assurance program" for a specific application. The recommended applications of a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device before using it in a particular application.

- Standard: Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots
- Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)
- Specific: Aircrafts, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems or medical equipment for life support, etc.

The quality grade of NEC devices is "Standard" unless otherwise specified in NEC's Data Sheets or Data Books. If customers intend to use NEC devices for applications other than those specified for Standard quality grade, they should contact an NEC sales representative in advance.

Anti-radioactive design is not implemented in this product.