

PNP Silicon Low-Power Transistor Qualified per MIL-PRF-19500/485

Qualified Levels: JAN, JANTX, JANTXV and JANS

DESCRIPTION

This family of 2N5415UA and 2N5416UA epitaxial planar transistors are military qualified up to a JANS level for high-reliability applications. The UA package is hermetically sealed and provides a low profile for minimizing board height. These devices are also available in the long-leaded TO-5, short-leaded TO-39 and low profile U4 packaging.

Important: For the latest information, visit our website http://www.microsemi.com.

FEATURES

- JEDEC registered 2N5415 through 2N5416 series
- JAN, JANTX, JANTXV, and JANS qualifications are available per MIL-PRF-19500/485.
 (See part nomenclature for all available options.)
- RoHS compliant

APPLICATIONS / BENEFITS

- General purpose transistors for low power applications requiring high frequency switching.
- Low package profile
- Military and other high-reliability applications

UA Package

Also available in:

TO-5 package (long-leaded) 2N5415 - 2N5416

TO-39 (TO-205AD)
package
(short-leaded)

<u>2N5415S – 2N5416S</u>

U4 package (surface mount) 2N5415U4 – 2N5416U4

MAXIMUM RATINGS @ T_A = +25 °C unless otherwise noted

Parameters / Test Conditions	Symbol	2N5415UA	2N5416UA	Unit
Collector-Emitter Voltage	$V_{\sf CEO}$	200	300	V
Collector-Base Voltage	V_{CBO}	200	350	V
Emitter-Base Voltage	V_{EBO}	6.0	6.0	V
Collector Current	Ic	1.0	1.0	Α
Operating & Storage Junction Temperature Range	T_J, T_{stg}	-65 to	°C	
Thermal Resistance Junction-to-Ambient	$R_{\Theta JA}$	234		°C/W
Thermal Resistance Junction-to-Solder Pad	$R_{\Theta JSP}$	80		°C/W
Total Power Dissipation @ $T_A = +25 ^{\circ}C ^{(1)}$ @ $T_{SP} = +25 ^{\circ}C ^{(2)}$	P _T		75 <u>2</u>	W

Notes: 1. Derate linearly 4.29 mW/°C for Ta > +25°C

2. Derate linearly 12.5 mW/°C for $T_{SP} > +25$ °C

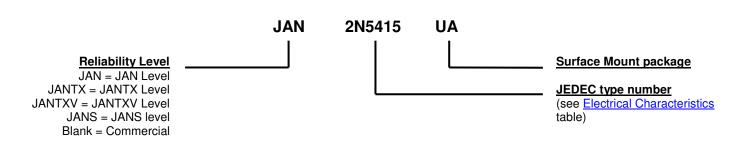
MSC - Lawrence

6 Lake Street, Lawrence, MA 01841 Tel: 1-800-446-1158 or (978) 620-2600 Fax: (978) 689-0803

MSC - Ireland

Gort Road Business Park, Ennis, Co. Clare, Ireland Tel: +353 (0) 65 6840044 Fax: +353 (0) 65 6822298

Website:


www.microsemi.com

MECHANICAL and PACKAGING

- CASE: Hermetically sealed ceramic package
- TERMINALS: Gold plate over nickel
- · MARKING: Manufacturer's ID, date code, part number
- POLARITY: PNP (see package outline)
- TAPE & REEL option: Per EIA-481 (consult factory for quantities)
- WEIGHT: Approximately 0.12 grams
- See Package Dimensions on last page.

PART NOMENCLATURE

	SYMBOLS & DEFINITIONS						
Symbol	Definition						
C_obo	Common-base open-circuit output capacitance						
I _{CEO}	Collector cutoff current, base open						
I _{CEX}	Collector cutoff current, circuit between base and emitter						
I _{EBO}	Emitter cutoff current, collector open						
h _{FE}	h _{FE} Common-emitter static forward current transfer ratio						
$V_{\sf CEO}$	V _{CEO} Collector-emitter voltage, base open						
V_{CBO}	Collector-emitter voltage, emitter open						
V_{EBO}	Emitter-base voltage, collector open						

ELECTRICAL CHARACTERISTICS @ T_A = +25 °C, unless otherwise noted

OFF CHARACTERISTICS

Parameters / Test Conditions		Symbol	Min.	Max.	Unit
Collector-Emitter Breakdown Voltage					
$I_{\rm C} = 50 \text{ mA}, I_{\rm B} = 5 \text{ mA},$	2N5415UA	$V_{(BR)CEO}$	200		V
L = 25 mH; $f = 30 - 60 Hz$	2N5416UA		300		
Emitter-Base Cutoff Current		Leno		20	μΑ
$V_{EB} = 6.0 \text{ V}$		I _{EBO}		20	μΛ
Collector-Emitter Cutoff Current					
$V_{CE} = 200 \text{ V}, V_{BE} = 1.5 \text{ V}$	2N5415UA	I _{CEX}		50	μΑ
$V_{CE} = 300 \text{ V}, V_{BE} = 1.5 \text{ V}$	2N5416UA				
Collector-Emitter Cutoff Current					
$V_{CE} = 150 \text{ V}$	2N5415UA	I _{CEO1}		50	μΑ
$V_{CE} = 250 \text{ V}$	2N5416UA				
Collector-Emitter Cutoff Current					
$V_{CE} = 200 \text{ V}$	2N5415UA	I _{CEO2}		1	mA
$V_{CE} = 300 \text{ V}$	2N5416UA				
Collector-Base Cutoff Current					
$V_{CB} = 175 \text{ V}$	2N5415UA	I _{CBO1}		50	μΑ
$V_{CB} = 280 \text{ V}$	2N5416UA				
$V_{CB} = 200 \text{ V}$	2N5415UA	Lanca		500	
$V_{CB} = 350 \text{ V}$	2N5416UA	I _{CBO2}		500	μΑ
$V_{CB} = 175 \text{ V}, T_A = +150 {}^{\circ}\text{C}$	2N5415UA	Longo		1	mA
$V_{CB} = 280 \text{ V}, T_A = +150 {}^{\circ}\text{C}$	2N5416UA	I _{CBO3}		ı	шл

ON CHARACTERISTICS

Parameters / Test Conditions	Symbol	Min.	Max.	Unit
Forward-Current Transfer Ratio $I_C = 50$ mA, $V_{CE} = 10$ V $I_C = 1$ mA, $V_{CE} = 10$ V $I_C = 50$ mA, $V_{CE} = 10$ V, $T_A = +150$ $^{\circ}C$	h _{FE}	30 15 15	120	
Collector-Emitter Saturation Voltage $I_C = 50 \text{ mA}$, $I_B = 5 \text{ mA}$	V _{CE(sat)}		2.0	V
Base-Emitter Voltage Non-Saturation $I_C = 50 \text{ mA}, V_{CE} = 10 \text{ V}$	V _{BE}		1.5	V

DYNAMIC CHARACTERISTICS

Parameters / Test Conditions	Symbol	Min.	Max.	Unit
Magnitude of Common Emitter Small-Signal Short-Circuit Forward Current Transfer Ratio $I_C = 10 \text{ mA}, V_{CE} = 10 \text{ V}, f = 5 \text{ MHz}$	h _{fe}	3	15	
Small-signal short Circuit Forward-Current Transfer Ratio $I_C = 5 \text{ mA}, V_{CE} = 10 \text{ V}, f \le 1 \text{ kHz}$	h _{fe}	25		
Output Capacitance $V_{CB} = 10 \text{ V}, I_E = 0, 100 \text{ kHz} \le f \le 1 \text{ MHz}$	C _{obo}		15	pF

ELECTRICAL CHARACTERISTICS @ T_A = +25 °C unless otherwise noted. (continued)

SWITCHING CHARACTERISTICS

Parameters / Test Conditions	Symbol	Min.	Max.	Unit
Turn-On Time $V_{CC} = 200 \text{ V}, I_C = 50 \text{ mA}, I_{B1} = 5 \text{ mA}$	t _{on}		1	μs
Turn-Off Time $V_{CC} = 200 \text{ V}, I_C = 50 \text{ mA}, I_{B1} = I_{B2} = 5 \text{ mA}$	t _{off}		10	μs

SAFE OPERATING AREA (See SOA graph below and MIL-STD-750, method 3053)

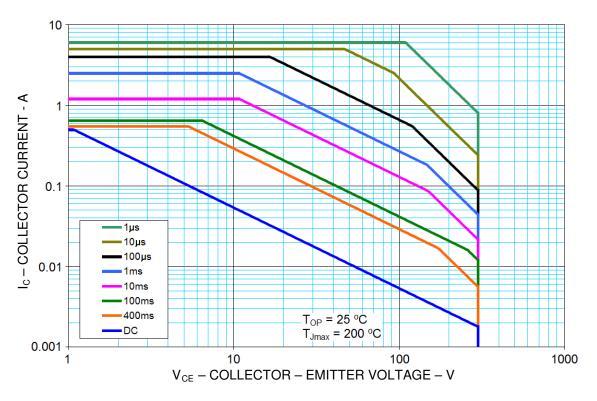
DC Tests

 $T_C = +25$ °C, $t_P = 0.4$ s, 1 Cycle

Test 1

 $V_{CE} = 10 \text{ V}, I_{C} = 0.3 \text{ A}$

Test 2


 $V_{CE} = 100 \text{ V}, I_{C} = 30 \text{ mA}$

Test 3 (2N5415UA only)

 $V_{CE} = 200 \text{ V}, I_{C} = 12 \text{ mA}$

Test 4 (2N5416UA only)

 $V_{CE} = 300 \text{ V}, I_{C} = 5 \text{ mA}$

Maximum Safe Operating Area (T_J = 200 °C)

GRAPHS

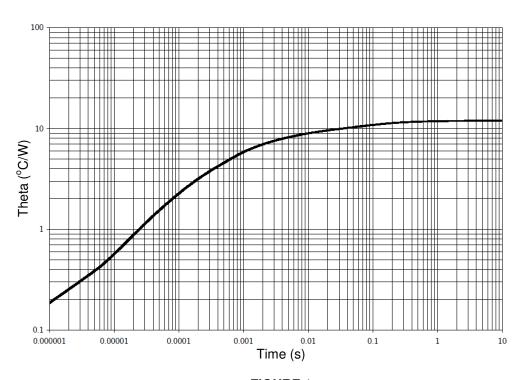
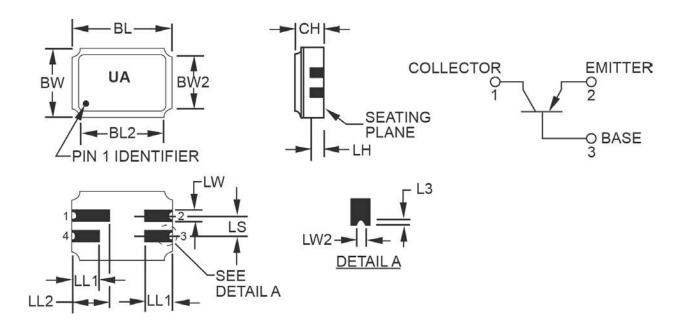



FIGURE 1
Thermal impedance graph (R_{OJA})

PACKAGE DIMENSIONS

NOTES:

- 1. Dimensions are in inches.
- Millimeters are given for information only. 2.
- Dimension "CH" controls the overall package thickness. When a window lid is used, dimension "CH" must increase by a minimum of 0.010 inch (0.254 mm) and a maximum of 0.040 inch (1.020
- The corner shape (square, notch, radius, etc.) may vary at the manufacturer's option, from that shown on the drawing.
- Dimensions " LW2" minimum and "L3" minimum and the appropriate castellation length define an unobstructed threedimensional space traversing all of the ceramic layers in which a castellation was designed. (Castellations are required on bottom two layers, optional on top ceramic layer.) Dimension " LW2" maximum and "L3" maximum define the maximum width and depth of the castellation at any point on its surface. Measurement of these dimensions may be made prior to solder
- The co-planarity deviation of all terminal contact points, as defined by the device seating plane, shall not exceed 0.006 inch (0.15mm) for solder dipped leadless chip carriers.
- In accordance with ASME Y14.5M, diameters are equivalent to Φx symbology.

	Dimensions							
Symbol	Inches			Millimeters			Note	
	Min		Max	M	lin	N	<i>l</i> lax	
BL	0.215	0	0.225 5		46	5	5.71	
BL2	-	0	.225	- 5.71				
BW	0.145	0	.155	3.68 3.93		3.93		
BW2	-	0	.155	- 3		3.93		
СН	0.061	0	.075	1.55		1	.90	3
L3	0.003	0	.007	0.08		C).18	5
LH	0.029	0	.042	0.74 1.07		.07		
LL1	0.032	0	.048	0.81 1.22		.22		
LL2	0.072	0	.088	1.83 2.23		2.23		
LS	0.045	0	.055	1.14 1.39		.39		
LW	0.022	0	.028	0.56 0.71				
LW2	0.006	0	.022	0.	15	C).56	5
	Pin no).	1		2		3	4
							_	

Pin no.	in no. 1 2		3	4
Transistor	Collector	Emitter	Base	N/C