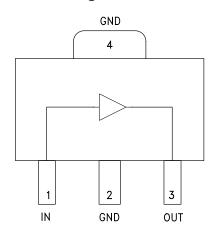


HMC481ST89 / 481ST89E

v02.0710


SiGe HBT GAIN BLOCK MMIC AMPLIFIER, DC - 5 GHz

Typical Applications

The HMC481ST89 / HMC481ST89E is an ideal RF/IF gain block & LO or PA driver for:

- Cellular / PCS / 3G
- Fixed Wireless & WLAN
- CATV, Cable Modem & DBS
- Microwave Radio & Test Equipment

Functional Diagram

Features

P1dB Output Power: +19 dBm

Gain: 20 dB

Output IP3: +33 dBm

Cascadable 50 Ohm I/Os

Single Supply: +6V to +12V

Industry Standard SOT89 Package

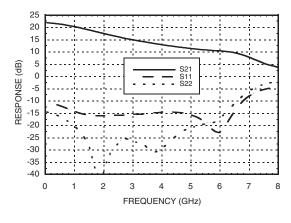
Included in the HMC-DK001 Designer's Kits

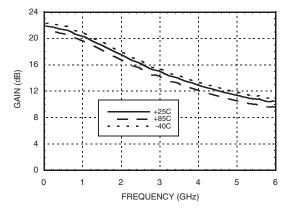
General Description

The HMC481ST89 & HMC481ST89E are SiGe Heterojunction Bipolar Transistor (HBT) Gain Block MMIC SMT amplifiers covering DC to 5 GHz. Packaged in an industry standard SOT89, the amplifier can be used as a cascadable 50 Ohm RF/IF gain stage as well as a LO or PA driver with up to +21 dBm output power. The HMC481ST89(E) offer 20 dB of gain with a +33 dBm output IP3 at 1 GHz while requiring only 79 mA from a single positive supply. The Darlington feedback pair used results in reduced sensitivity to normal process variations and excellent gain stability over temperature while requiring a minimal number of external bias components.

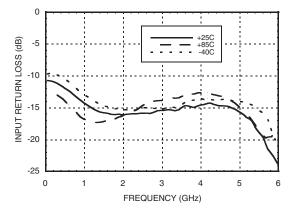
Electrical Specifications, Vs=8.0 V, Rbias=39 Ohm, $T_A=+25^{\circ} \text{ C}$

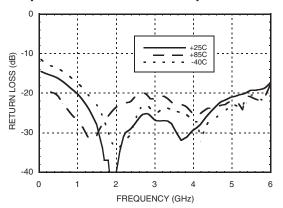
Parameter			Тур.	Max.	Units
	DC - 1.0 GHz	18	20		dB
	1.0 - 2.0 GHz	15.5	17.5		dB
Gain	2.0 - 3.0 GHz	13	15		dB
	3.0 - 4.0 GHz	11	13		dB
	4.0 - 5.0 GHz	9	11		dB
Gain Variation Over Temperature	DC - 5 GHz		0.008	0.016	dB/ °C
Innut Deturn Loss	DC - 1.0 GHz		12		dB
Input Return Loss	1.0 - 5.0 GHz		15		dB
	DC - 1.0 GHz		17		dB
Output Return Loss	1.0 - 4.0 GHz		27		dB
	4.0 - 5.0 GHz		23		dB
Reverse Isolation	DC - 5 GHz		18		dB
	0.5 - 1.0 GHz	16	19		dBm
	1.0 - 2.0 GHz	15	18		dBm
Output Power for 1 dB Compression (P1dB)	2.0 - 3.0 GHz	13	16		dBm
	3.0 - 4.0 GHz	11	14		dBm
	4.0 - 5.0 GHz	9	12		dBm
	0.5 - 2.0 GHz		33		dBm
Output Third Order Intercept (IP3)	2.0 - 3.0 GHz		30		dBm
(Pout= 0 dBm per tone, 1 MHz spacing)	3.0 - 4.0 GHz		27		dBm
	4.0 - 5.0 GHz		25		dBm
Noise Figure	DC - 4 GHz		3.5		dB
INDISE I IYUIE	4.0 - 5.0 GHz		4.0		dB
Supply Current (Icq)			79		mA
Note: Data taken with broadband him too an daving outs					

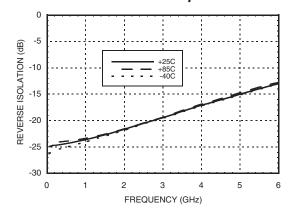

Note: Data taken with broadband bias tee on device output.

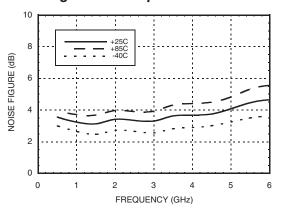


SiGe HBT GAIN BLOCK MMIC AMPLIFIER, DC - 5 GHz


Broadband Gain & Return Loss

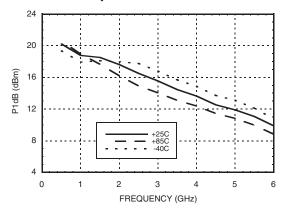

Gain vs. Temperature

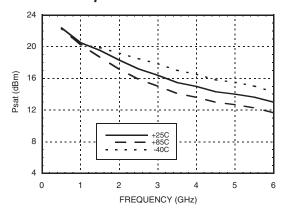

Input Return Loss vs. Temperature


Output Return Loss vs. Temperature

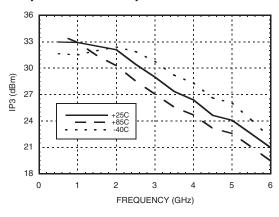
Reverse Isolation vs. Temperature

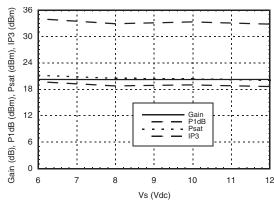
Noise Figure vs. Temperature

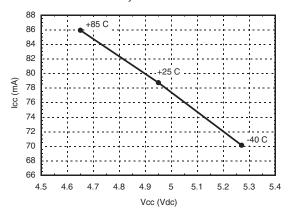




SiGe HBT GAIN BLOCK MMIC AMPLIFIER, DC - 5 GHz

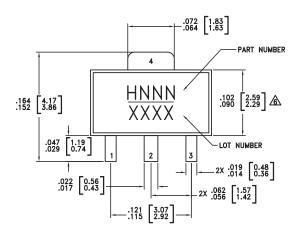

P1dB vs. Temperature

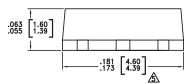

Psat vs. Temperature

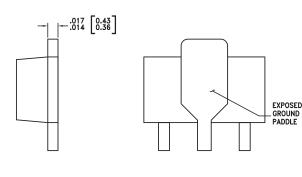

Output IP3 vs. Temperature

Gain, Power & OIP3 vs. Supply Voltage for Constant Icc= 79 mA @ 850 MHz

Vcc vs. Icc Over Temperature for Fixed Vs= 8V, RBIAS= 39 Ohms


SiGe HBT GAIN BLOCK MMIC AMPLIFIER, DC - 5 GHz


Absolute Maximum Ratings


Collector Bias Voltage (Vcc)	+6.0 Vdc	
RF Input Power (RFIN)(Vcc = +5 Vdc)	+10 dBm	
Junction Temperature	150 °C	
Continuous Pdiss (T = 85 °C) (derate 16.3 mW/°C above 85 °C)	1.06 W	
Thermal Resistance (junction to lead)	61.4 °C/W	
Storage Temperature	-65 to +150 °C	
Operating Temperature	-40 to +85 °C	
ESD Sensitivity (HBM)	Class 1A	

Outline Drawing

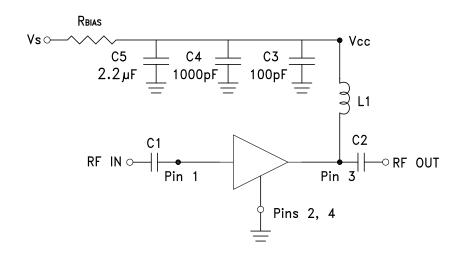
NOTES:

- 1. PACKAGE BODY MATERIAL:
- MOLDING COMPOUND MP-180S OR EQUIVALENT.
- 2. LEAD MATERIAL: Cu w/ Ag SPOT PLATING.
- 3. LEAD PLATING: 100% MATTE TIN.
- 4. DIMENSIONS ARE IN INCHES [MILLIMETERS]
- ADIMENSION DOES NOT INCLUDE MOLDFLASH OF 0.15mm PER SIDE.
 ADIMENSION DOES NOT INCLUDE MOLDFLASH OF 0.25mm PER SIDE.
- 7. ALL GROUND LEADS MUST BE SOLDERED TO PCB RF GROUND.

Package Information

Part Number	Package Body Material	Lead Finish	MSL Rating	Package Marking [3]
HMC481ST89	Low Stress Injection Molded Plastic	Sn/Pb Solder	MSL1 [1]	H481 XXXX
HMC481ST89E	RoHS-compliant Low Stress Injection Molded Plastic	100% matte Sn	MSL1 [2]	H481 XXXX

- [1] Max peak reflow temperature of 235 $^{\circ}\text{C}$
- [2] Max peak reflow temperature of 260 $^{\circ}\text{C}$
- [3] 4-Digit lot number XXXX



SiGe HBT GAIN BLOCK MMIC AMPLIFIER, DC - 5 GHz

Pin Descriptions

Pin Number	Function	Description	Interface Schematic
1	RFIN	This pin is DC coupled. An off chip DC blocking capacitor is required.	RFOUT
3	RFOUT	RF output and DC Bias (Vcc) for the output stage.	
2, 4	GND	These pins and package bottom must be connected to RF/DC ground.	GND =

Application Circuit

Recommended Bias Resistor Values for Icc= 79 mA, Rbias= (Vs - Vcc) / Icc

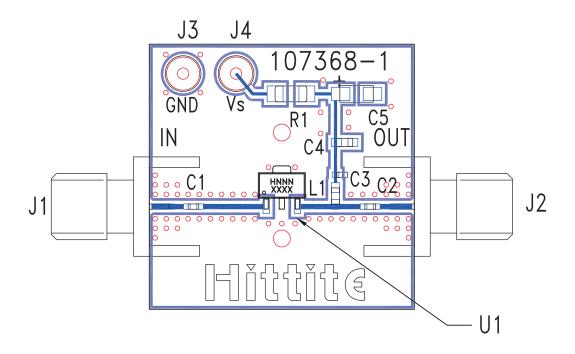
Supply Voltage (Vs)	6V	8V	10V	12V
RBIAS VALUE	11 Ω	39 Ω	62 Ω	91 Ω
RBIAS POWER RATING	1/8 W	1/4 W	1/2 W	1 W

Note:

- External blocking capacitors are required on RFIN and RFOUT.
- 2. RBIAS provides DC bias stability over temperature.

Recommended Component Values for Key Application Frequencies

Component	Frequency (MHz)						
Component	50	900	1900	2200	2400	3500	5000
L1	270 nH	56 nH	18 nH	18 nH	15 nH	8.2 nH	6.8 nH
C1, C2	0.01 μF	100 pF					


Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

RoHS

SiGe HBT GAIN BLOCK MMIC AMPLIFIER, DC - 5 GHz

Evaluation PCB

v02.0710

List of Materials for Evaluation PCB 108324 [1]

Item	Description	
J1 - J2	PCB Mount SMA Connector	
J3 - J4	DC Pin	
C1, C2	Capacitor, 0402 Pkg.	
C3	100 pF Capacitor, 0402 Pkg.	
C4	1000 pF Capacitor, 0603 Pkg.	
C5	2.2 µF Capacitor, Tantalum	
R1	Resistor, 1210 Pkg.	
L1	Inductor, 0603 Pkg.	
U1	HMC481ST89 / HMC481ST89E	
PCB [2]	107368 Evaluation PCB	

^[1] Reference this number when ordering complete evaluation PCB $\,$

The circuit board used in the final application should use RF circuit design techniques. Signal lines should have 50 Ohm impedance while the package ground leads and package bottom should be connected directly to the ground plane similar to that shown. A sufficient number of via holes should be used to connect the top and bottom ground planes. The evaluation board should be mounted to an appropriate heat sink. The evaluation circuit board shown is available from Hittite upon request.

^[2] Circuit Board Material: Rogers 4350