

74LCX373 Low Voltage Octal Transparent Latch with 5V Tolerant Inputs and Outputs

Features

- 5V tolerant inputs and outputs
- 2.3V–3.6V V_{CC} specifications provided
- 8.0ns t_{PD} max. (V_{CC} = 3.3V), $10\mu A I_{CC}$ max.
- Power down high impedance inputs and outputs
- Supports live insertion/withdrawal⁽¹⁾
- ±24mA output drive (V_{CC} = 3.0V)
- Implements patented noise/EMI reduction circuitry
- Latch-up performance exceeds JEDEC 78 conditions
- ESD performance
 - Human body model > 2000V
 - Machine model > 200V
- Leadless DQFN package

Note:

1. To ensure the high impedance state during power up or down, $\overline{\text{OE}}$ should be tied to V_{CC} through a pull-up resistor: the minimum value of the resistor is determined by the current-sourcing capability of the driver.

General Description

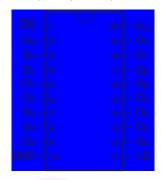
The LCX373 consists of eight latches with 3-STATE outputs for bus organized system applications. The device is designed for low voltage applications with capability of interfacing to a 5V signal environment.

The LCX373 is fabricated with an advanced CMOS technology to achieve high speed operation while maintaining CMOS low power dissipation.

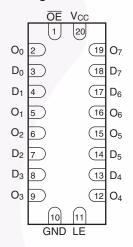
Ordering Information

Order Number	Package Number	Package Description
74LCX373WM	M20B	20-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300" Wide
74LCX373SJ	M20D	20-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide
74LCX373BQX ⁽²⁾	MLP20B	20-Terminal Depopulated Quad Very-Thin Flat Pack No Leads (DQFN), JEDEC MO-241, 2.5 x 4.5mm
74LCX373MSA	MSA20	20-Lead Shrink Small Outline Package (SSOP), JEDEC MO-150, 5.3mm Wide
74LCX373MTC	MTC20	20-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide

Note:


2. DQFN package available in Tape and Reel only.

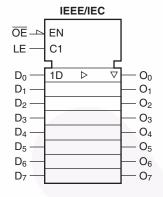
Device also available in Tape and Reel. Specify by appending suffix letter "X" to the ordering number.


All packages are lead free per JEDEC: J-STD-020B standard.

Connection Diagrams

Pin Assignments for SOIC, SOP, SSOP, TSSOP

Pad Assignments for DQFN


(Top View)

Pin Descriptions

Pin Names	Description		
D ₀ –D ₇	Data Inputs		
LE	Latch Enable Input		
ŌĒ	3-STATE Output Enable Input		
O ₀ -O ₇	3-STATE Latch Outputs		

Logic Symbols

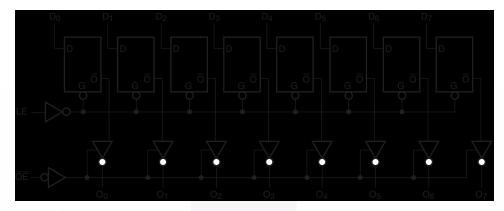
Truth Table

	Inputs		
LE	ŌĒ	D _n	O _n
Х	Н	Х	Z
Н	L	L	L
Н	L	Н	Н
L	L	Х	O ₀

H = HIGH Voltage

L = LOW Voltage

Z = High Impedance


X = Immaterial

 ${\rm O_0}$ = Previous ${\rm O_0}$ before HIGH-to-LOW transition of Latch Enable

Functional Description

The LCX373 contains eight D-type latches with 3-STATE standard outputs. When the Latch Enable (LE) input is HIGH, data on the D_n inputs enters the latches. In this condition the latches are transparent, i.e. a latch output will change state each time its D input changes. When LE is LOW, the latches store the information that was present on the D inputs a setup time preceding the HIGH-to-LOW transition of LE. The 3-STATE standard outputs are controlled by the Output Enable $(\overline{\text{OE}})$ input. When $\overline{\text{OE}}$ is LOW, the standard outputs are in the 2-state mode. When $\overline{\text{OE}}$ is HIGH, the standard outputs are in the high impedance mode but this does not interfere with entering new data into the latches.

Logic Diagram

Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Parameter	Conditions	Value	Units
V _{CC}	Supply Voltage		-0.5 to +7.0	V
V _I	DC Input Voltage		-0.5 to +7.0	V
Vo	DC Output Voltage	Output in 3-STATE	-0.5 to +7.0	V
		Output in HIGH or LOW State ⁽³⁾	-0.5 to V _{CC} + 0.5	
I _{IK}	DC Input Diode Current	V _I < GND	-50	mA
I _{OK}	DC Output Diode Current	V _O < GND	-50	mA
		$V_O > V_{CC}$	+50	
Io	DC Output Source/Sink Current		±50	mA
I _{CC}	DC Supply Current per Supply Pin		±100	mA
I _{GND}	DC Ground Current per Ground Pin		±100	mA
T _{STG}	Storage Temperature		-65 to +150	°C

Recommended Operating Conditions⁽⁴⁾

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. Fairchild does not recommend exceeding them or designing to absolute maximum ratings.

Symbol	Parameter	Conditions	Min.	Max.	Units
V _{CC}	Supply Voltage	Operating	2.0	3.6	V
		Data Retention	1.5	3.6	
VI	Input Voltage		0	5.5	V
Vo	Output Voltage	HIGH or LOW State	0	V _{CC}	V
		3-STATE	0	5.5	
I _{OH} /I _{OL}	Output Current	$V_{CC} = 3.0V - 3.6V$		±24	mA
		$V_{CC} = 2.7V - 3.0V$		±12	
		$V_{CC} = 2.3V - 2.7V$	/	±8	
T _A	Free-Air Operating Temperature		-40	85	°C
Δt/ΔV	Input Edge Rate	$V_{IN} = 0.8V - 2.0V, V_{CC} = 3.0V$	0	10	ns/V

Notes

- 3. I_O Absolute Maximum Rating must be observed.
- 4. Unused inputs must be held HIGH or LOW. They may not float.

DC Electrical Characteristics

				$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$			
Symbol	Parameter	V _{CC} (V)	Conditions	Min.	Max.	Units	
V _{IH}	HIGH Level Input Voltage	2.3–2.7		1.7		V	
		2.7–3.6		2.0			
V _{IL}	LOW Level Input Voltage	2.3–2.7			0.7	V	
		2.7–3.6			0.8		
V _{OH}	HIGH Level Output Voltage	2.3-3.6	$I_{OH} = -100 \mu A$	V _{CC} - 0.2		V	
		2.3	$I_{OH} = -8mA$	1.8			
		2.7	$I_{OH} = -12mA$	2.2			
		3.0	$I_{OH} = -18mA$	2.4			
		3.0	$I_{OH} = -24mA$	2.2			
V _{OL}	LOW Level Output Voltage	2.3-3.6	I _{OL} = 100μA		0.2	V	
		2.3	$I_{OL} = 8mA$		0.6		
		2.7	I _{OL} = 12mA		0.4		
		3.0	I _{OL} = 16mA		0.4		
		3.0	I _{OL} = 24mA		0.55		
I _I	Input Leakage Current	2.3-3.6	$0 \le V_I \le 5.5V$		±5.0	μA	
I _{OZ}	3-STATE Output Leakage	2.3–3.6	$0 \le V_O \le 5.5V$, $V_I = V_{IH}$ or V_{IL}		±5.0	μА	
I _{OFF}	Power-Off Leakage Current	0	V_I or $V_O = 5.5V$		10	μA	
I _{CC}	Quiescent Supply Current	2.3–3.6	$V_I = V_{CC}$ or GND		10	μA	
		2.3–3.6	$3.6V \le V_I, V_O \le 5.5V^{(5)}$		±10		
ΔI_{CC}	Increase in I _{CC} per Input	2.3-3.6	$V_{IH} = V_{CC} - 0.6V$		500	μΑ	

AC Electrical Characteristics

			$T_A = -40$ °C to +85°C, $R_L = 500\Omega$					
			$V_{CC} = 3.3V \pm 0.3V,$ $C_{L} = 50pF$		V _{CC} = 2.7V, C _L = 50pF		$V_{CC} = 2.5 \pm 0.2V,$ $C_{L} = 30pF$	
Symbol	Parameter	Min.	Max.	Min.	Max.	Min.	Max.	Units
t _{PHL} , t _{PLH}	Propagation Delay, D _n to O _n	1.5	8.0	1.5	9.0	1.5	9.6	ns
t _{PHL} , t _{PLH}	Propagation Delay, LE to O _n	1.5	8.5	1.5	9.5	1.5	10.5	ns
t_{PZL}, t_{PZH}	Output Enable Time	1.5	8.5	1.5	9.5	1.5	10.5	ns
t_{PLZ},t_{PHZ}	Output Disable Time	1.5	7.5	1.5	8.5	1.5	9.0	ns
t _S	Setup Time, D _n to LE	2.5		2.5		4.0		ns
t _H	Hold Time, D _n to LE	1.5		1.5		2.0		ns
t _W	LE Pulse Width	3.3		3.3		4.0		ns
t _{OSHL} , t _{OSLH}	Output to Output Skew ⁽⁶⁾		1.0					ns

Notes:

- 5. Outputs disabled or 3-STATE only.
- 6. Skew is defined as the absolute value of the difference between the actual propagation delay for any two separate outputs of the same device. The specification applies to any outputs switching in the same direction, either HIGH-to-LOW (t_{OSHL}) or LOW-to-HIGH (t_{OSLH}).

Dynamic Switching Characteristics

				T _A = 25°C	
Symbol	Parameter	V _{CC} (V)	Conditions	Typical	Units
V _{OLP}	Quiet Output Dynamic Peak V _{OL}	3.3	$C_L = 50pF, V_{IH} = 3.3V, V_{IL} = 0V$	0.8	V
		2.5	$C_L = 30pF, V_I = 2.5V, V_{IL} = 0V$	0.6	
V _{OLV}	Quiet Output Dynamic Valley V _{OL}	3.3	$C_L = 50pF, V_{IH} = 3.3V, V_{IL} = 0V$	-0.8	V
		2.5	$C_L = 30pF, V_I = 2.5V, V_{IL} = 0V$	-0.6	

Capacitance

Symbol	Parameter	Conditions	Typical	Units
C _{IN}	Input Capacitance	V_{CC} = Open, V_I = 0V or V_{CC}	7	pF
C _{OUT}	Output Capacitance	$V_{CC} = 3.3V$, $V_I = 0V$ or V_{CC}	8	pF
C _{PD}	Power Dissipation Capacitance	$V_{CC} = 3.3V$, $V_I = 0V$ or V_{CC} , $f = 10MHz$	25	pF

AC Loading and Waveforms (Generic for LCX Family)

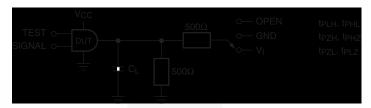
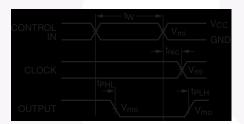
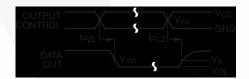
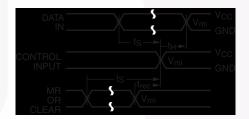



Figure 1. AC Test Circuit (C_L includes probe and jig capacitance)


Test	Switch
t _{PLH} , t _{PHL}	Open
t _{PZL} , t _{PLZ}	6V at $V_{CC} = 3.3 \pm 0.3V$
	$V_{CC} \times 2 \text{ at } V_{CC} = 2.5 \pm 0.2 \text{V}$
t _{PZH} , t _{PHZ}	GND

Waveform for Inverting and Non-Inverting Functions


 $\begin{array}{c} \textbf{Propagation Delay, Pulse Width and} \\ \textbf{t_{rec} Waveforms} \end{array}$

3-STATE Output Low Enable and Disable Times for Logic

3-STATE Output High Enable and Disable Times for Logic

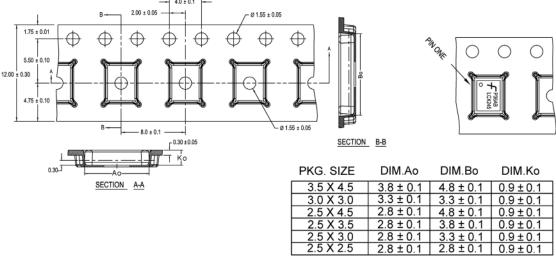
Setup Time, Hold Time and Recovery Time for Logic

t_{rise} and t_{fall}

Figure 2. Waveforms (Input Characteristics; f = 1MHz, $t_r = t_f = 3ns$)

	V _{cc}			
Symbol	3.3V ± 0.3V	2.7V	2.5V ± 0.2V	
V _{mi}	1.5V	1.5V	V _{CC} / 2	
V_{mo}	1.5V	1.5V	V _{CC} / 2	
V_x	V _{OL} + 0.3V	V _{OL} + 0.3V	V _{OL} + 0.15V	
V _y	V _{OH} – 0.3V	V _{OH} – 0.3V	V _{OH} – 0.15V	

Schematic Diagram (Generic for LCX Family)

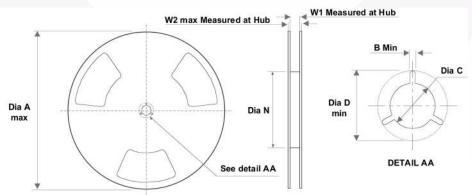


Tape and Reel Specification

Tape Format for DQFN

Package Designator	Tape Section	Number Cavities	Cavity Status	Cover Tape Status
BQX	Leader (Start End)	125 (typ)	Empty	Sealed
	Carrier	3000	Filled	Sealed
	Trailer (Hub End)	75 (typ)	Empty	Sealed

Tape Dimensions inches (millimeters)



DIMENSIONS ARE IN MILLIMETERS

NOTES: unless otherwise specified

- 1. Cummulative pitch for feeding holes and cavities (chip pockets) not to exceed 0.008[0.20] over 10 pitch span.
- 2. Smallest allowable bending radius.
- 3. Thru hole inside cavity is centered within cavity.
- 4. Tolerance is $\pm 0.002[0.05]$ for these dimensions on all 12mm tapes.
- 5. Ao and Bo measured on a plane 0.120[0.30] above the bottom of the pocket.
- 6. Ko measured from a plane on the inside bottom of the pocket to the top surface of the carrier.
- 7. Pocket position relative to sprocket hole measured as true position of pocket. Not pocket hole.
- 8. Controlling dimension is millimeter. Diemension in inches rounded.

Reel Dimensions inches (millimeters)

Tape Size	Α	В	С	D	N	W1	W2
12mm	13.0 (330.0)	0.059 (1.50)	0.512 (13.00)	0.795 (20.20)	2.165 (55.00)	0.488 (12.4)	0.724 (18.4)

Physical Dimensions

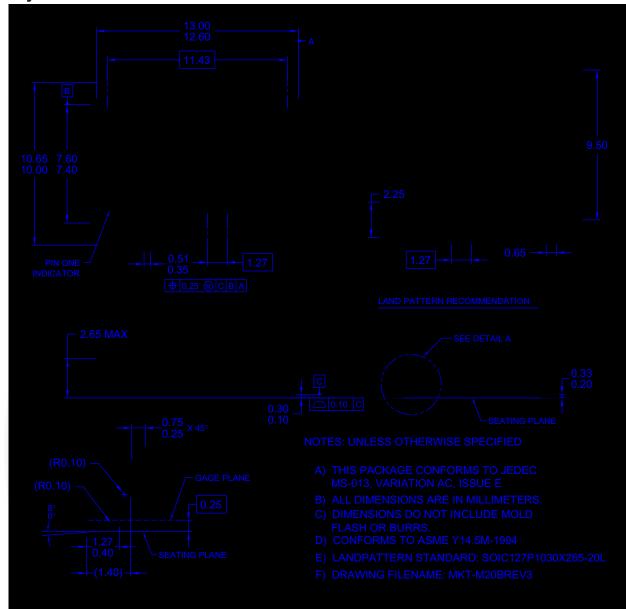


Figure 3. 20-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300" Wide

Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild's worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products.

Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings:

http://www.fairchildsemi.com/packaging/

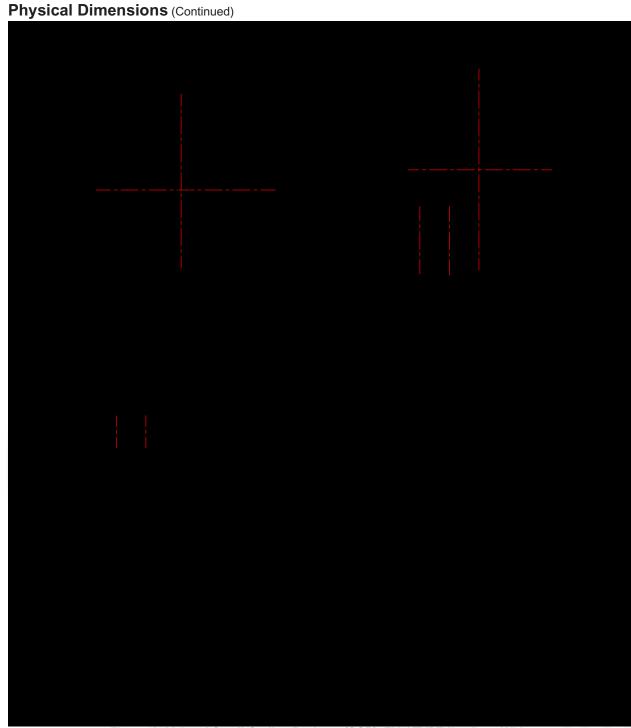
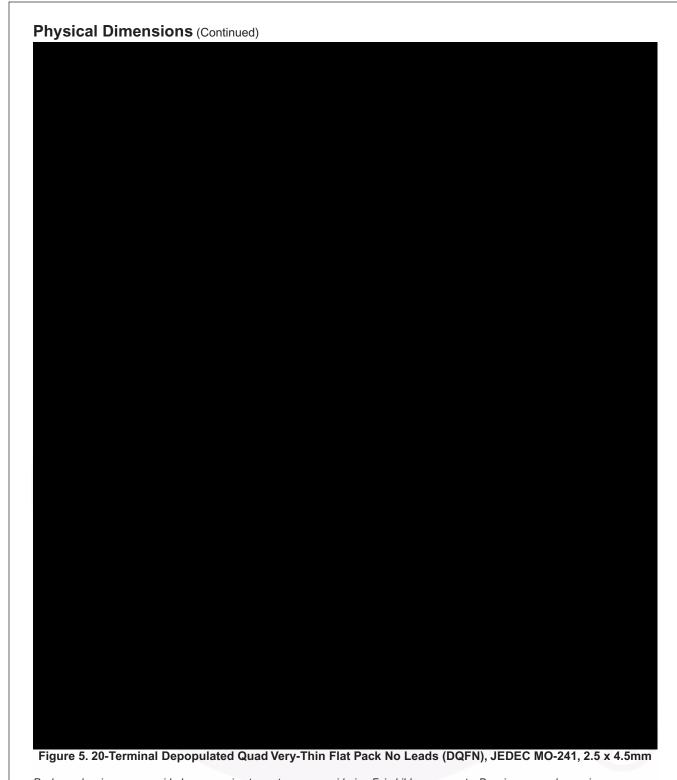



Figure 4. 20-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide

Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings: http://www.fairchildsemi.com/packaging/

Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings: http://www.fairchildsemi.com/packaging/

Figure 6. 20-Lead Shrink Small Outline Package (SSOP), JEDEC MO-150, 5.3mm Wide

Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings: http://www.fairchildsemi.com/packaging/

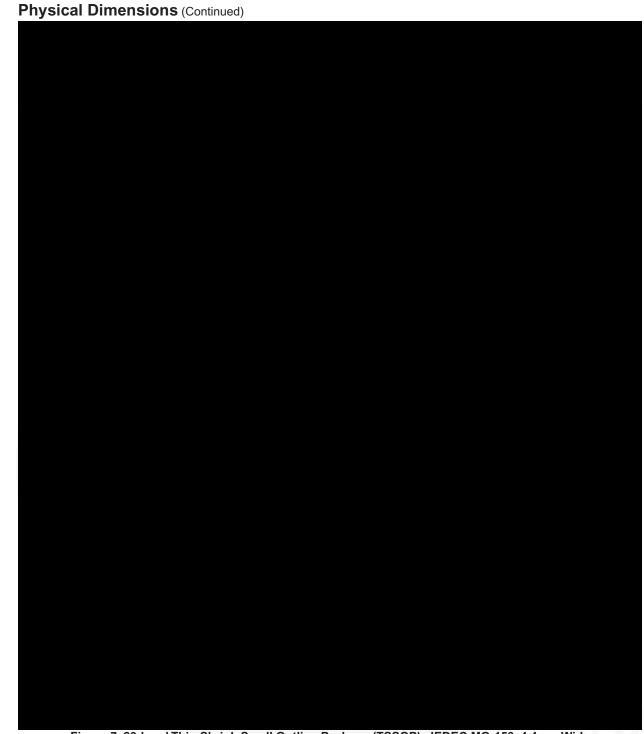


Figure 7. 20-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide

Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings: http://www.fairchildsemi.com/packaging/

subsidiancs, and is not intended to be an exhaustive list of all such trademains

ACEx[®]
Build it Now™
CorePLUS™
CROSSVOLT™
CTL™

Current Transfer Logic™ EcoSPARK[®] EZSWITCH™ *

Fairchild[®]

Fairchild Semiconductor[®] FACT Quiet Series™

FACT[®] FAST[®] FastvCore™ FlashWriter[®]* FPS™ FRFET®

Global Power Resource^{sм}

Green FPS™

Green FPS™e-Series™

GTO™ *i-Lo*™ IntelliMAX™

ISOPLANAR™ MegaBuck™

MICROCOUPLER™

MicroFET™ MicroPak™ MillerDrive™ Motion-SPM™ OPTOLOGIC®

OPTOLOGIC® OPTOPLANAR® PDP-SPM[™] Power220[®] POWEREDGE[®] Power-SPM[™] PowerTrench[®]

Programmable Active Droop™

QFET

QT Optoelectronics™
Quiet Series™
RapidConfigure™
SMART START™
SPM®
STEALTH™

SuperSOT™3 SuperSOT™6 SuperSOT™8 SupreMOS™ SyncFET™ SYSTEM® GENERAL

The Power Franchise®

the property of the property

Ultra FRFET™ UniFET™ VCX™

* EZSWITCH™ and FlashWriter[®] are trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS
HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE
APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS
PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S
WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition					
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.					
Preliminary	First Production	This datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to					