General Description

The MAX9420–MAX9423 are extremely fast, low-skew quad LVECL-to-LVPECL translators designed for high-speed signal and clock driver applications. The devices feature ultra-low propagation delay of 336ps and channel-to-channel skew of 17ps.

The four channels can be operated synchronously with an external clock, or in asynchronous mode, determined by the state of the SEL input. An enable input provides the ability to force all the outputs to a differential low state.

These devices operate with a negative supply voltage of -2.0V to -3.6V, compatible with LVECL input signals. The positive supply range is 2.375V to 3.6V for differential LVPECL output signals.

A variety of input and output terminations are offered for maximum design flexibility. The MAX9420 has open inputs and open-emitter outputs. The MAX9421 has open inputs and 50 Ω series outputs. The MAX9422 has 100 Ω differential input impedance and open-emitter outputs. The MAX9423 has 100 Ω differential input impedance and 50 Ω series outputs.

The MAX9420–MAX9423 are specified for operation from -40°C to +85°C, and are offered in space-saving 32-pin 5mm \times 5mm TQFP and 32-lead 5mm \times 5mm QFN packages.

Applications

Data and Clock Driver and Buffer

Central Office Backplane Clock Distribution

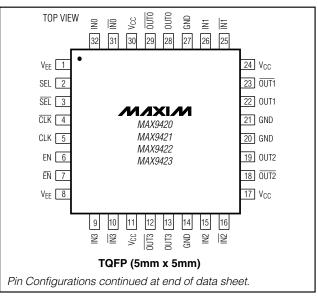
DSLAM Backplane

Base Station

ATE

Functional Diagram appears at end of data sheet.

Features


- >500mV Differential Output at 3.0GHz Clock
- 336ps (typ) Propagation Delay in Asynchronous Mode
- ♦ 17ps (typ) Channel-to-Channel Skew
- Integrated 50Ω Outputs (MAX9421/MAX9423)
- Integrated 100Ω Inputs (MAX9422/MAX9423)
- Synchronous/Asynchronous Operation

_Ordering Information

PART	TEMP RANGE	PIN- PACKAGE	DATA INPUT	OUTPUT
MAX9420EHJ	-40°C to +85°C	32 TQFP	Open	Open
MAX9420EGJ*	-40°C to +85°C	32 QFN	Open	Open
MAX9421EHJ	-40°C to +85°C	32 TQFP	Open	50Ω
MAX9421EGJ*	-40°C to +85°C	32 QFN	Open	50Ω
MAX9422EHJ	-40°C to +85°C	32 TQFP	100Ω	Open
MAX9422EGJ*	-40°C to +85°C	32 QFN	100Ω	Open
MAX9423EHJ	-40°C to +85°C	32 TQFP	100Ω	50Ω
MAX9423EGJ*	-40°C to +85°C	32 QFN	100Ω	50Ω

*Future product—contact factory for availability.

Pin Configurations

Maxim Integrated Products 1

For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at 1-888-629-4642, or visit Maxim's website at www.maxim-ic.com.

MAX9420-MAX9423

ABSOLUTE MAXIMUM RATINGS

V _{CC} to GND -0.3V to +4 V _{EE} to GND -4.1V to +0 Inputs to GND (V _{EE} - 0.3V) to +0 Differential Input Voltage - Continuous Output Current 50 Surge Output Current 100	.3V .3V ⊧3V mA
Continuous Power Dissipation (T _A = +70°C) Single-Layer PC Board 32-Pin 5mm × 5mm TQFP	
(derate 9.5mW/°C above +70°C)761r 32-Lead 5mm × 5mm QFN	πW
(derate 21.3mW/°C above +70°C)1. Junction-to-Ambient Thermal Resistance in Still Air	7W
32-Pin 5mm × 5mm TQFP+105°C 32-Lead 5mm × 5mm QFN+47°C	

Junction-to-Ambient Thermal Resistance with	n 500
LFPM Airflow	7000 111
32-Pin 5mm × 5mm TQFP	+73°C/W
Junction-to-Case Thermal Resistance	
32-Pin 5mm × 5mm TQFP	+25°C/W
32-Lead 5mm × 5mm QFN	
Operating Temperature Range	40°C to +85°C
Junction Temperature	+150°C
Storage Temperature Range	65°C to +150°C
ESD Protection	
Human Body Model (IN_, ĪN_)	500V
Others	
Lead Temperature (soldering, 10s)	+300°C

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

DC ELECTRICAL CHARACTERISTICS

 $(V_{EE} = -2.0V \text{ to } -3.6V, V_{CC} = 2.375V \text{ to } 3.6V, \text{GND} = 0, \text{MAX9420}/\text{MAX9422} \text{ outputs terminated with } 50\Omega \pm 1\% \text{ to } V_{CC} - 2.0V. \text{ Typical values are at } V_{EE} = -3.3V, V_{CC} = 3.3V, T_A = +25^{\circ}C, V_{IHD} = -0.9V, V_{ILD} = -1.7V, \text{ unless otherwise noted.}) (Notes 1, 2, and 3)$

PARAMETER	SYMBOL		CONDITIONS	MIN	ТҮР	MAX	UNITS	
LVECL INPUTS (IN_, \overline{IN} , CLK, \overline{C}	CLK, EN, EN	, SEL, SEL)						
Differential Input High Voltage	VIHD	Figure 1		V _{EE} + 1.4		0	V	
Differential Input Low Voltage	VILD	Figure 1		VEE		-0.2	V	
Differential Input Valtage		Figure 1	$V_{EE} \le -3.0V$	0.2		3.0	V	
Differential Input Voltage	VID	Figure 1	$V_{EE} > -3.0V$	0.2		V_{EE}	V	
langet Oursent		MAX9420/ MAX9421	EN, \overline{EN} , SEL, \overline{SEL} , IN_, IN_, CLK, or $\overline{CLK} = V_{IHD}$ or V_{ILD}	-10		25		
Input Current	I _{IH} , I _{IL}	MAX9422/ MAX9423	EN, \overline{EN} , SEL, \overline{SEL} , CLK, or $\overline{CLK} = V_{IHD}$ or V_{ILD}	-10		25	- μΑ	
Differential Input Resistance (IN, ĪN)	R _{IN}	MAX9422/MA	X9423	86	100	114	Ω	
LVPECL OUTPUTS (OUT_, OUT_	_)							
Differential Output Voltage	V _{OH} - V _{OL}	Figure 1		600		660	mV	
Output Common-Mode Voltage	V _{OCM}	Figure 1		V _{CC} - 1.5	V _{CC} - 1.25	V _{CC} - 1.1	V	
Internal Current Source	ISINK	MAX9421/MA	X9423, Figure 2	6.5	8.2	10.0	mA	
Output Impedance	Rout	MAX9421/MA	X9423, Figure 2	40	50	60	Ω	

DC ELECTRICAL CHARACTERISTICS (continued)

 $(V_{EE} = -2.0V \text{ to } -3.6V, V_{CC} = 2.375V \text{ to } 3.6V, \text{GND} = 0, \text{MAX9420}/\text{MAX9422} \text{ outputs terminated with } 50\Omega \pm 1\% \text{ to } V_{CC} - 2.0V. \text{ Typical values are at } V_{EE} = -3.3V, V_{CC} = 3.3V, T_A = +25^{\circ}\text{C}, V_{IHD} = -0.9V, V_{ILD} = -1.7V, \text{ unless otherwise noted.}) (Notes 1, 2, and 3)$

PARAMETER	SYMBOL		CONDITIONS	MIN	ТҮР	МАХ	UNITS
POWER SUPPLY							
Negative Supply Current	IEE	OUT_, OUT_ open	MAX9421/MAX9422/ MAX9423		7	10	mA
Depitive Supply Current	las	OUT_, OUT_	MAX9421/MAX9423		153	-180	m (
Positive Supply Current	ICC	open	MAX9420/MAX9422		87	105	mA

AC ELECTRICAL CHARACTERISTICS

 $(V_{EE} = -2.0V \text{ to } -3.6V, V_{CC} = 2.375V \text{ to } 3.6V, \text{GND} = 0$, outputs terminated with $50\Omega \pm 1\%$ to $V_{CC} - 2.0V$. For SEL = high, CLK = high or low, $f_{IN} = 2.0$ GHz. For SEL = low, $F_{IN} = 1.5$ GHz, CLK = 3.0GHz, input transition time = 125ps (20% to 80%), $V_{IHD} = V_{EE} + 1.4V$ to 0, $V_{ILD} = V_{EE}$ to -0.2V, $V_{IHD} - V_{ILD} = 0.2V$ to the smaller of 3.0V or IV_{EE}. Typical values are at $V_{EE} = -3.3V$, $V_{CC} = 3.3V$, GND = 0, TA = +25°C, $V_{IHD} = -0.9V$, $V_{ILD} = -1.7V$, unless otherwise noted.) (Note 4)

PARAMETER	SYMBOL	CONDITIONS	MIN	ТҮР	MAX	UNITS
IN-to-OUT Differential	tPLH1, tPHL1	SEL = high, Figure 3	250	336	450	ps
CLK-to-OUT Differential	tplH2, tpHL2	SEL = low, Figure 4	350	506	575	ps
IN-to-OUT Channel-to-Channel Skew (Note 5)	^t SKD1	SEL = high		17	60	ps
CLK-to-OUT Channel-to- Channel Skew (Note 5)	tskd2	SEL = low		17	55	ps
Maximum Clock Frequency	fCLK(MAX)	$V_{OH} - V_{OL} \ge 500 \text{mV}$, SEL = low	3.0			GHz
Maximum Data Frequency	fin(max)	$V_{OH} - V_{OL} \ge 400 \text{mV}$, SEL = high	2			GHz
Added Random Jitter (Note 6)	t _{RJ}	SEL = low, f_{CLK} = 3.0GHz, f_{IN} = 1.5GHz		0.65	1.0	ps(RMS)
Added Mandom Sitter (Note 0)	ιΗJ	SEL = high, f_{IN} = 2GHz		0.53	1.0	ps _(RMS)
Added Deterministic Jitter	to .	SEL = low, f _{CLK} = 3.0GHz, IN_ = 3.0Gbps, 2 ²³ - 1 PRBS pattern		28	45	
(Note 6)	t _D J	SEL = high, IN_ = 3.0Gbps 2 ²³ - 1 PRBS pattern		23	45	PS(P-P)
IN-to-CLK Setup Time	ts	Figure 4	80			ps
CLK-to-IN Hold Time	t _H	Figure 4	80			ps
Output Rise Time	t _R	Figure 3		90	120	ps

AC ELECTRICAL CHARACTERISTICS (continued)

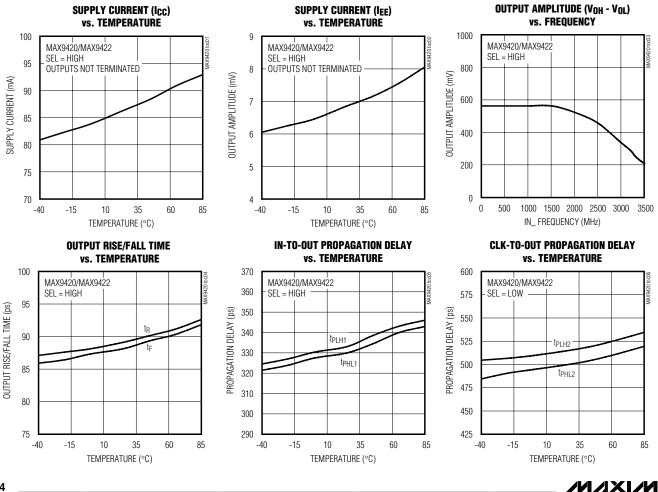
 $(V_{EE} = -2.0V \text{ to } -3.6V, V_{CC} = 2.375V \text{ to } 3.6V, \text{GND} = 0$, outputs terminated with $50\Omega \pm 1\%$ to $V_{CC} - 2.0V$. For SEL = high, CLK = high or low, $f_{IN} = 2.0$ GHz. For SEL = low, $F_{IN} = 1.5$ GHz, CLK = 3.0GHz, input transition time = 125ps (20% to 80%), $V_{IHD} = V_{EE} + 1.4V$ to 0, $V_{ILD} = V_{EE}$ to -0.2V, $V_{IHD} - V_{ILD} = 0.2V$ to the smaller of 3.0V or IV_{EE}. Typical values are at $V_{EE} = -3.3V$, $V_{CC} = 3.3V$, GND = 0, TA = +25°C, $V_{IHD} = -0.9V$, $V_{ILD} = -1.7V$, unless otherwise noted.) (Note 4)

PARAMETER	SYMBOL	CONDITIONS	MIN	ТҮР	MAX	UNITS
Output Fall Time	tF	Figure 3		90	120	ps
Propagation Delay Temperature Coefficient	Δt _{PD} / ΔT			0.2	1	ps/°C

Note 1: Measurements are made with the device in thermal equilibrium.

Note 2: Current into a pin is defined as positive. Current out of a pin is defined as negative.

Note 3: DC parameters are production tested at +25°C. DC limits are guaranteed by design and characterization over the full operating temperature range.


Note 4: Guaranteed by design and characterization. Limits are set to ± 6 sigma.

Note 5: Measured between outputs of the same part at the signal crossing points for a same-edge transition.

Note 6: Device jitter added to the input signal.

Typical Operating Characteristics

 $(V_{EE} = -3.3V, V_{CC} = 3.3V, GND = 0, MAX9420/MAX9422$ outputs terminated with $50\Omega \pm 1\%$ to $V_{CC} - 2.0V$, SEL = high, f_{CLK} = 3.0GHz, f_{IN} = 1.5GHz, input transition time = 125ps (20% to 80%), V_{IHD} = -0.9V, V_{ILD} = -1.7V, T_A = +25°C, unless otherwise noted.)

4

Pin Description

PIN	NAME	FUNCTION
1, 8	VEE	Negative Supply Voltage. Bypass V_{EE} to GND with 0.1µF and 0.01µF ceramic capacitors. Place the capacitors as close to the device as possible with the smaller value capacitor closest to the device.
2	SEL	Noninverting Differential Select Input. Setting SEL = high and \overline{SEL} = low (differential high) enables all four channels to operate asynchronously. Setting SEL = low and \overline{SEL} = high (differential low) enables all four channels to operate in synchronous mode.
3	SEL	Inverting Differential Select Input
4	CLK	Inverting Differential Clock Input. A rising edge on CLK (and falling on $\overline{\text{CLK}}$) transfers data from the inputs to the outputs when SEL = differential low.
5	CLK	Noninverting Differential Clock Input
6	EN	Noninverting Differential Output Enable Input. Setting EN = high and \overline{EN} = low (differential high) enables the outputs. Setting EN = low and \overline{EN} = high (differential low) drives the output low.
7	ĒN	Inverting Differential Output Enable Input
9	IN3	Noninverting Differential Input 3
10	ĪN3	Inverting Differential Input 3
11, 17, 24, 30	V _{CC}	Positive Supply Voltage. Bypass V_{CC} to GND with 0.1µF and 0.01µF ceramic capacitors. Place the capacitors as close to the device as possible with the smaller value capacitor closest to the device.
12	OUT3	Inverting Differential Output 3
13	OUT3	Noninverting Differential Output 3
14, 20, 21, 27	GND	Ground
15	IN2	Noninverting Differential Input 2
16	ĪN2	Inverting Differential Input 2
18	OUT2	Inverting Differential Output 2
19	OUT2	Noninverting Differential Output 2
22	OUT1	Noninverting Differential Output 1
23	OUT1	Inverting Differential Output 1
25	ĪN1	Inverting Differential Input 1
26	IN1	Noninverting Differential Input 1
28	OUTO	Noninverting Differential Output 0
29	OUTO	Inverting Differential Output 0
31	ĪNO	Inverting Differential Input 0
32	IN0	Noninverting Differential Input 0
_	EP	Exposed Paddle (MAX942_EGJ only). Connected to V _{EE} internally. See package dimensions.

Detailed Description

The MAX9420–MAX9423 are extremely fast, low-skew quad LVECL-to-LVPECL translators designed for high-speed signal and clock driver applications. The devices feature ultra-low propagation delay of 336ps and channel-to-channel skew of 17ps.

The four channels can be operated synchronously with an external clock, or in asynchronous mode, determined by the state of the SEL input. An enable input provides the ability to force all the outputs to a differential low state.

These devices operate with a negative supply voltage of -2.0V to -3.6V, compatible with LVECL input signals. The positive supply range is 2.375V to 3.6V for differential LVPECL output signals.

A variety of input and output terminations are offered for maximum design flexibility. The MAX9420 has open inputs and open-emitter outputs. The MAX9421 has open inputs and 50 Ω series outputs. The MAX9422 has 100 Ω differential input impedance and open-emitter outputs. The MAX9423 has 100 Ω differential input impedance and 50 Ω series outputs.

Supply Voltages

For interfacing to differential LVECL input levels, the V_{EE} range is -2.0V to -3.6V with GND = 0. The V_{CC} range is from 2.375V to 3.6V, compatible with LVPECL logic. Output levels are referenced to V_{CC}.

Data Inputs

The MAX9420/MAX9421 have open inputs and require external termination. The MAX9422/MAX9423 have integrated 100 Ω differential input termination resistors from IN_ to IN_, reducing external component count.

Outputs

The MAX9421/MAX9423 have internal 50Ω series output termination resistors and 8mA internal pulldown current sources. Using integrated resistors reduces external component count.

The MAX9420/MAX9422 have open-emitter outputs. An external termination is required. See the *Output Termination* section.

Enable

Setting EN = high and \overline{EN} = low enables the device. Setting EN = low and \overline{EN} = high forces the outputs to a differential low. All changes on CLK, SEL, and IN_ are ignored.

Asynchronous Operation

Setting SEL = high and \overline{SEL} = low enables the four channels to operate independently as LVECL-to-LVPECL translators. The CLK signal is ignored in this mode. In asynchronous mode, the CLK signal should be set to either logic low or high state to minimize noise coupling.

Synchronous Operation

Setting SEL = low and \overline{SEL} = high enables all four channels to operate in synchronized mode. In this mode, buffered inputs are clocked into flip-flops simultaneously on the rising edge of the differential clock input (CLK and \overline{CLK}).

Differential Signal Input Limit

The maximum signal magnitude of all the differential inputs is 3.0V.

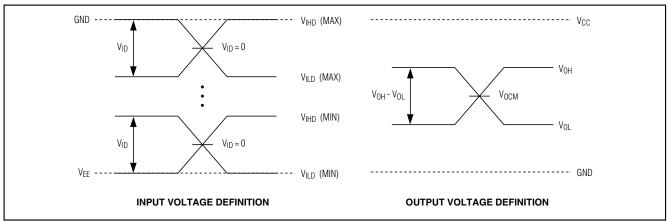


Figure 1. Input and Output Voltage Definitions

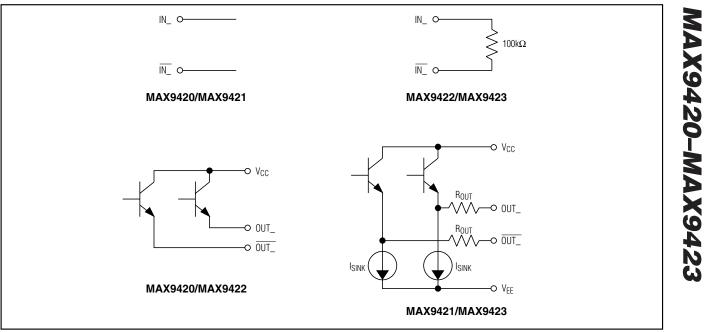


Figure 2. Input and Output Configurations

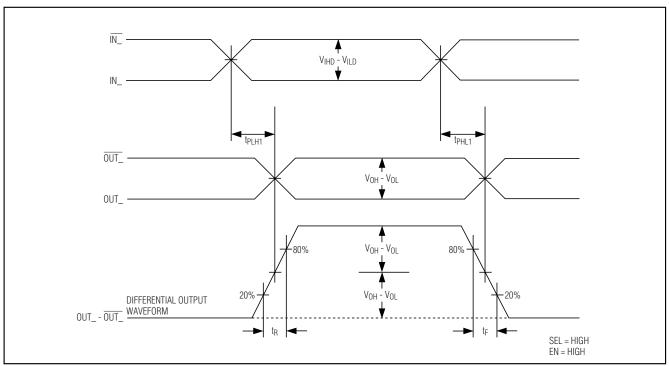


Figure 3. IN-to-OUT Propagation Delay Timing Diagram

M/X/W

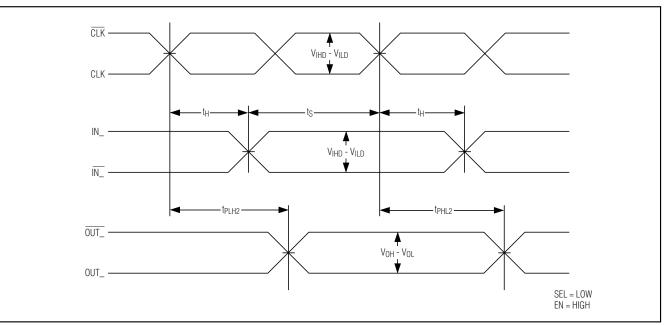


Figure 4. CLK-to-OUT Propagation Delay Timing Diagram

Applications Information

Input Bias

Unused inputs should be biased or driven as shown in Figure 5. This avoids noise coupling that might cause toggling at the unused outputs.

Output Termination

Terminate open-emitter outputs (MAX9420/MAX9422) through 50Ω to V_{CC} - 2V or use an equivalent Thevenin termination. Terminate outputs using identical termination on each for the lowest output-to-output skew. When a single-ended signal is taken from a differential output, terminate both outputs. For example, if OUT_ is used as a single-ended output, terminate both OUT_ and OUT_.

Ensure that the output currents do not exceed the current limits as specified in the *Absolute Maximum Ratings* table. Under all operating conditions, the device's total thermal limits should be observed.

Power-Supply Bypassing

Adequate power-supply bypassing is necessary to maximize the performance and noise immunity. Bypass V_{CC} to GND and V_{EE} to GND with high-frequency surface-mount ceramic 0.1μ F and 0.01μ F capacitors in parallel as close to the device as possible, with the 0.01μ F capacitor closest to the device pins. Use multi-

ple parallel vias for ground-plane connection to minimize inductance.

Circuit Board Traces

Input and output trace characteristics affect the performance of the MAX9420–MAX9423. Connect each of the inputs and outputs to a 50 Ω characteristic impedance trace. Avoid discontinuities in differential impedance and maximize common-mode noise immunity by maintaining the distance between differential traces and avoid sharp corners. Minimize the number of vias to prevent impedance discontinuities. Reduce the reflections by maintaining 50 Ω characteristic impedance through connectors and across cables. Minimize skew by matching the electrical length of the traces.

Chip Information

TRANSISTOR COUNT: 927 PROCESS: Bipolar

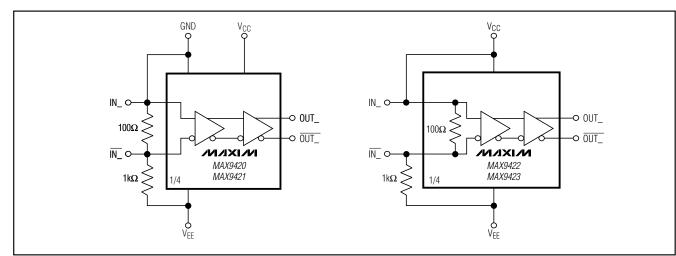
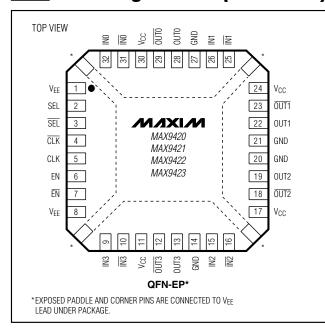
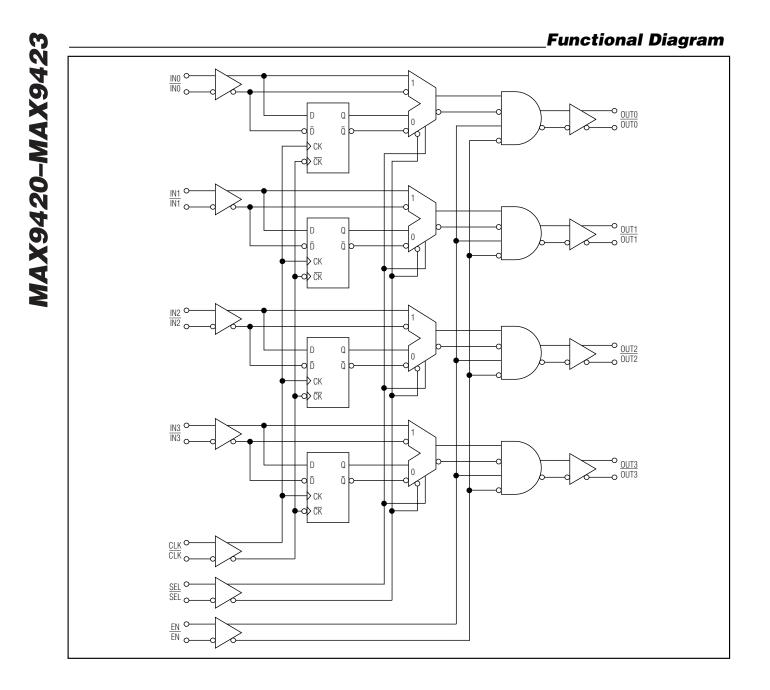
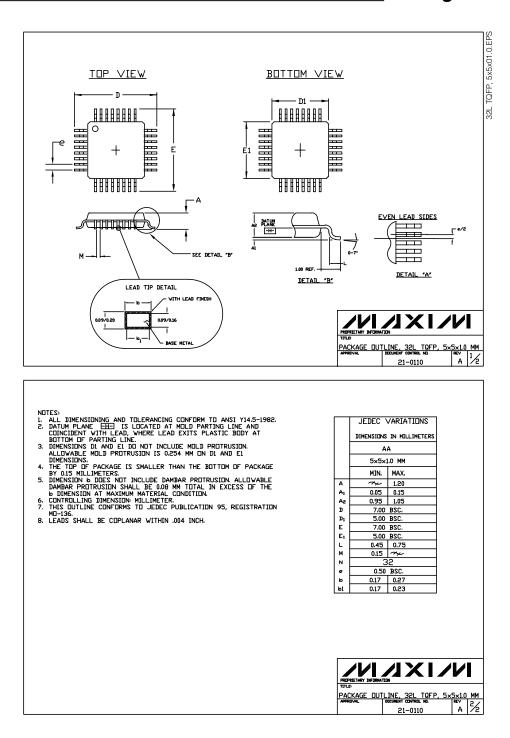
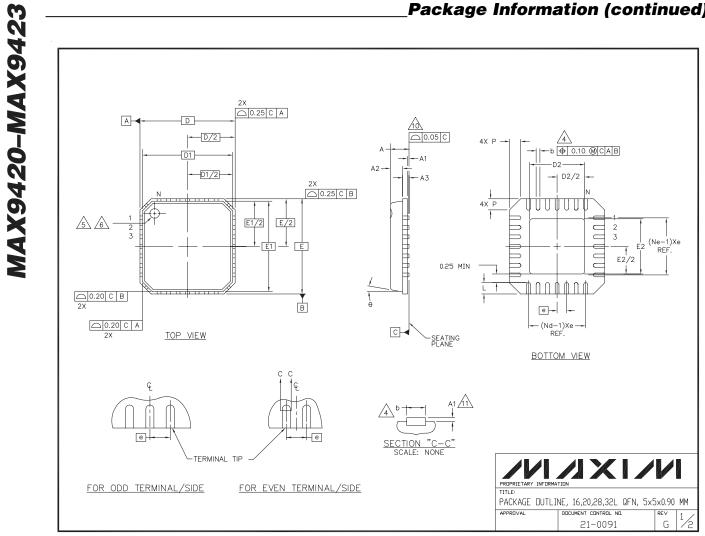




Figure 5. Input Bias Circuits for Unused Inputs



_Pin Configurations (continued)

M/IXI/M



Package Information

MAX9420-MAX9423

Package Information (continued)

Package Information (continued)

	ICKNESS ALLOWA IONING & TOLERA			•			XIMUM)						
Nd IS T	HE NUMBER OF T THE NUMBER OF THE NUMBER OF	TERMINALS IN							s	1	СОММОМ		
	ON 6 APPLIES TO N 0.20 AND 0.25				ASURED				Үм Во L	MIN. 0.80	DIMENSION	NAX. 1.00	N _O TE
	N #1 IDENTIFIER						THE		A1 A2 A3	0.00	0.01 0.65 0.20 REF.	0.05	
	SHAPE AND SIZE IENSIONS ARE IN			PTIONA	L.				D D1 E		5.00 BSC 4.75 BSC 5.00 BSC		
	E WARPAGE MAX								E1 θ Ρ	0 *	4.75 BSC	12* 0.60	
	FOR EXPOSED I			ом мел	SURING.				D2 E2	1.25 1.25		3.25 3.25	
	I VARIATION B	s DITO		011 5	S I	DITO		TION		s _	TOL: 1/4 D		
S DITO		No M PITC	H VARIATI				I VARIA	HON C		HL PI	TCH VARI		
MIN.	NOM. MAX.	τ _ε °L MIN.	NOM.	MAX.	E C	MIN.	NOM.	MAX.	No _T	°L MI		/. MAX) Х. [№] т _е
E N Nd		T _E °L MIN. ■ 3 N 3 Nd	<u>0.65 BSC</u> 20 5 5	MAX.	T _E °L ⊡ 3 N 3 Nd 3 Ne	MIN.	NOM. 0.50 BSC 28 7 7 7		3	N N Ne	N. NOM 0.50 B 32 8 8	/. MAX	X. ¹⁰ 1
e N	NOM. MAX. 0.80 BSC 16 4	T _E °L MIN. ■ 3 N 3 Nd	0.65 BSC 20 5	0.75 0.35	3 N 3 Nd	MIN. 0.35 0.18	0.50 BSC 28 7		3	E N Nd Ne L 0	0.50 B 32 8 8	M. MAX ISC 0 0.50	3 3 3 0
E N Nd Ne L 0.35	NOM. MAX. 0.80 BSC 16 4 4 0.55 0.75	T _E L MIN. Image: Second state Image: Second state Image: Second state 3 Nd Image: Second state Image: Second state 3 Nd Image: Second state Image: Second state Image: Second state 3 Ne Image: Second state Image: Second state	0.65 BSC 20 5 5 0.55	0.75	3 N 3 Nd 3 Ne L	0.35	0.50 BSC 28 7 7 0.55	0.75	3 3 3	E N Nd Ne L 0	0.50 B 32 8 8 30 0.40	M. MAX ISC 0 0.50	3 3 3 0
E N Nd Ne L 0.35	NOM. MAX. 0.80 BSC 16 4 4 0.55 0.75	T _E L MIN. Image: Second state Image: Second state Image: Second state 3 Nd Image: Second state Image: Second state 3 Nd Image: Second state Image: Second state Image: Second state 3 Ne Image: Second state Image: Second state	0.65 BSC 20 5 5 0.55	0.75	3 N 3 Nd 3 Ne L	0.35	0.50 BSC 28 7 7 0.55	0.75	3 3 3 4	Image: Normal System Nd Nd Ne L 0.1 b 0.1	0.50 B 32 8 30 0.40 18 0.23	M. MAX SSC 0 0.50 5 0.30	3 3 3 0 0 2 4
E N Nd Ne L 0.35	NOM. MAX. 0.80 BSC 16 4 4 0.55 0.75	T _E L MIN. Image: Second state Image: Second state Image: Second state 3 Nd Image: Second state Image: Second state 3 Nd Image: Second state Image: Second state Image: Second state 3 Ne Image: Second state Image: Second state	0.65 BSC 20 5 5 0.55	0.75	3 N 3 Nd 3 Ne L	0.35	0.50 BSC 28 7 7 0.55	0.75		Image: Normal System Nd Nd Ne L 0.1 b 0.1	0.50 B 32 8 8 8 30 0.40 18 0.23	M. MAX SSC 0 0.50 5 0.30	3 3 3 0 0 2 4
E N Nd Ne L 0.35	NOM. MAX. 0.80 BSC 16 4 4 0.55 0.75	T _E L MIN. Image: Second state Image: Second state Image: Second state 3 Nd Image: Second state Image: Second state 3 Nd Image: Second state Image: Second state Image: Second state 3 Ne Image: Second state Image: Second state	0.65 BSC 20 5 5 0.55	0.75	3 N 3 Nd 3 Ne L	0.35	0.50 BSC 28 7 7 0.55	0.75	3 3 3 4 4 PRDPRIE TITLE	Image: Constraint of the second se	0.50 B 32 8 8 8 30 0.40 18 0.23	A. MAX ISC 0 0.5(5 0 0.3(1) 0 0.5(1) 0 0.5(1)000000000000000000000000000000000000	3 3 3 0 0 4

MAX9420-MAX9423

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 ____

© 2002 Maxim Integrated Products Printed USA

MAXIM is a registered trademark of Maxim Integrated Products.

_ 13

:/>