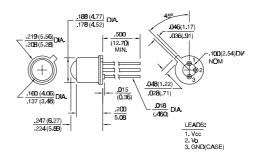

Optoschmitt Detector

FEATURES

- TO-46 metal can package
- 6° (nominal) acceptance angle
- TTL/LSTTL/CMOS compatible
- · High noise immunity output
- Buffer (SD5620) or inverting (SD5630) logic available
- Two sensitivity ranges
- Mechanically and spectrally matched to SE3450/5450, SE3455/5455 and SE3470/5470 infrared emitting diodes

DESCRIPTION

The SD5620/5630 series is family of single chip Optoschmitt IC detectors mounted in a TO-46 metal can package. The photodetector consists of a photodiode, amplifier, voltage regulator, Schmitt trigger and an NPN output transistor with a 10 $\mbox{k}\Omega$ (nominal) pull-up resistor. Output rise and fall times are independent of rate of change of incident light. Detector sensitivity has been internally temperature compensated. The TO-46 package is ideally suited for operation in hostile environments


Device Polarity:

Output is HI when incident light intensity is above the turn- on threshold level.

Inverter - Output is LO when incident light intensity is above the turn- on threshold level.

OUTLINE DIMENSIONS in inches (mm)

3 plc decimals ±0.005(0.12) 2 plc decimals ±0.020(0.51)

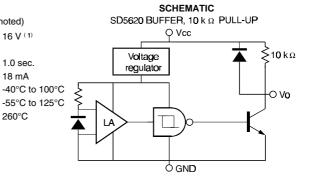
DIM_025.cdr

Optoschmitt Detector

ELECTRICAL CHARACTERISTICS (-40°C to +100°C unless otherwise noted)

PARAMETER	SYMBOL	MIN	TYP	MAX	UNITS	TEST CONDITIONS
Operating Supply Voltage	Vcc	4.5		16.0	V	T _A =25°C
Turn-on Threshold Irradiance (2)	Еет(+)				mW/cm²	Vcc=5 V
SD5620-001, SD5630-001				0.25		T _A =25°C
SD5620-002, SD5630-002				0.13		
Hysteresis (3)	HYST	5		30	%	
Supply Current	Icc				mA	Ee=0 Or 3.0 mW/cm ²
				12.0		Vcc=5 V
				15.0		Vcc=16 V
High Level Output Voltage	Voн				V	Vcc=5 V, Iон=0
SD5620		2.4				E _e =3.0 mW/cm ²
SD5630		2.4				Ee=0
Low Level Output Voltage	Vol				V	Vcc=5 V, loL=12.8 mA
SD5620				0.4		Ee=0
SD5630				0.4		E _e =3.0 mW/cm ²
Internal Pull-Up Resistor	RINT	5.0	10.0	20.0	kΩ	
Operate Point Temperature Coefficient	Ортс		-0.76		%/°C	Emitter @ Constant
						Temperature
Output Rise Time	t _r		60		ns	R _L =390 Ω , C _L =50 pF
Output Fall Time	t _f		15		ns	R _L =390 Ω, C _L =50 pF
Propagation Delay, Low-High, High-Low	t _{PLH} , t _{PHL}		5.0		μs	R _L =390 Ω, C _L =50 pF
Clock Frequency				100	kHz	R _L =390 Ω , C _L =50 pF

Notes


260°C

ABSOLUTE MAXIMUM RATINGS (25°C Free-Air Temperature unless otherwise noted)

Supply Voltage 16 V (1) Duration of Output Short to V_{CC} or Ground 1.0 sec. 18 mA

Output Current Operating Temperature Range Storage Temperature Range Soldering Temperature (10 sec)

1. Derate linearly from 25°C to 7 V at 100°C.

Honeywell reserves the right to make changes in order to improve design and supply the best products possible. Honeywell

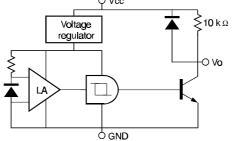
Notes

1. It is recommended that a bypass capacitor, 0.1 µF typical, be added between V_{CC} and GND near the device in order to stabilize power supply line.

2. The radiation source is an IRED with a peak wavelength of 935 nm.

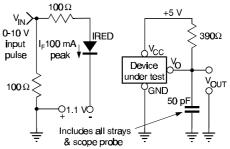
3. Hysteresis is defined as the difference between the operating and release threshold intensities, expressed as a percentage of the

operate threshold intensity.

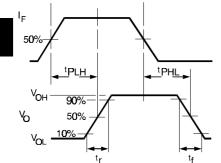

Optoschmitt Detector

SCHEMATIC

SD5630 INVERTER, 10 k Ω PULL-UP **≶10** kΩ


SCH_015.cdr

cir 013.cdr



SWITCHING TIME TEST CIRCUIT

cir_007.cdr

SWITCHING WAVEFORM FOR BUFFERS

SWITCHING WAVEFORM FOR **INVERTERS**

cir 011.cdr

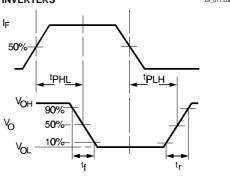
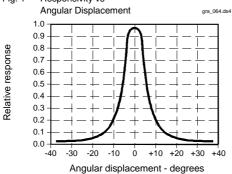
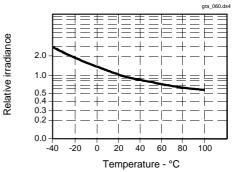
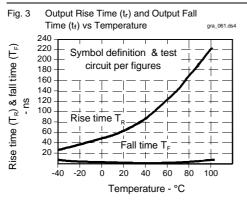
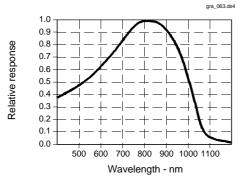


Fig. 1 Responsivity vs


Fig. 2 Threshold Irradiance vs Temperature

Honeywell


Honeywell reserves the right to make changes in order to improve design and supply the best products possible.

Optoschmitt Detector

Delay Time vs Temperature gra_062.ds4 3.8 Propagation delay - µs 3.4 3.0 2.6 2.2 1.8 1.4 0.0 -40 40 60 80 Ambient temperature - °C

Fig. 5 Spectral Responsivity

All Performance Curves Show Typical Values