

STFU26N60M2

N-channel 600 V, 0.14 Ω typ., 20 A MDmesh™ M2 Power MOSFET in TO-220FP ultra narrow leads package

Datasheet - production data

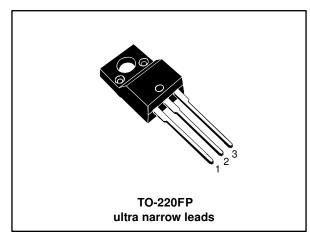
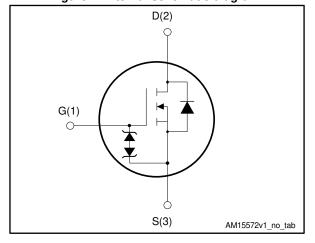



Figure 1: Internal schematic diagram

Features

Order code	V _{DS} @ T _{Jmax}	R _{DS(on)} max.	I _D	P _{TOT}
STFU26N60M2	650 V	0.165 Ω	20 A	30 W

- Extremely low gate charge
- Excellent output capacitance (Coss) profile
- 100% avalanche tested
- Zener-protected

Applications

- Switching applications
- LCC converters, resonant converters

Description

This device is an N-channel Power MOSFET developed using MDmesh™ M2 technology. Thanks to its strip layout and an improved vertical structure, the device exhibits low on-resistance and optimized switching characteristics, rendering it suitable for the most demanding high efficiency converters.

Table 1: Device summary

Order code	Marking	Package	Packing
STFU26N60M2	26N60M2	TO-220FP ultra narrow leads	Tube

Contents STFU26N60M2

Contents

1	Electric	al ratings	3
2	Electric	al characteristics	4
	2.1	Electrical characteristics (curves)	6
3	Test cir	cuits	8
4	Packag	e information	9
	4.1	TO-220FP ultra narrow leads package information	9
5	Revisio	n history	11

STFU26N60M2 Electrical ratings

1 Electrical ratings

Table 2: Absolute maximum ratings

Symbol	Parameter	Value	Unit
V _{GS}	Gate-source voltage	±25	V
I _D ⁽¹⁾	Drain current (continuous) at T _{case} = 25 °C	20	
ID(1)	Drain current (continuous) at T _{case} = 100 °C	13	Α
I _{DM} ⁽²⁾	Drain current (pulsed)	80	Α
P _{TOT}	Total dissipation at T _{case} = 25 °C	30	W
dv/dt ⁽³⁾	Peak diode recovery voltage slope	15	V/ns
dv/dt ⁽⁴⁾	MOSFET dv/dt ruggedness	50	V/IIS
V _{ISO}	Insulation withstand voltage (RMS) from all three leads to external heat sink (t = 1 s; T_C = 25 °C)	2.5	kV
T _{stg}	Storage temperature range	-55 to 150	°C
Tj	Operating junction temperature range	-55 (0 150	C

Notes:

Table 3: Thermal data

Symbol	Parameter	Value	Unit
R _{thj-case}	Thermal resistance junction-case	4.2	°C/W
R _{thj-amb}	Thermal resistance junction-ambient	62.5	-C/VV

Table 4: Avalanche characteristics

Symbol	Parameter	Value	Unit
I _{AR} ⁽¹⁾	Avalanche current, repetitive or not repetitive	3.8	Α
E _{AR} ⁽²⁾	Single pulse avalanche energy	250	mJ

Notes:

⁽¹⁾ Limited by maximum junction temperature.

⁽²⁾ Pulse width is limited by safe operating area.

 $^{^{(3)}}$ I_{SD} ≤ 20 A, di/dt=400 A/µs; V_{DS(peak)} < V(BR)DSS, V_{DD} = 80% V(BR)DSS.

 $^{^{(4)}} V_{DS} \le 480 V.$

 $^{^{\}left(1\right)}$ Pulse width limited by $T_{jmax}.$

 $^{^{(2)}}$ starting T_j = 25 °C, I_D = $I_{AR},\,V_{DD}$ = 50 V.

Electrical characteristics STFU26N60M2

2 Electrical characteristics

(T_{case} = 25 °C unless otherwise specified)

Table 5: Static

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
$V_{(BR)DSS}$	Drain-source breakdown voltage	V _{GS} = 0 V, I _D = 1 mA	600			٧
	Zoro goto voltago droin	$V_{GS} = 0 \text{ V}, V_{DS} = 600 \text{ V}$			1	
IDSS	Zero gate voltage drain current	$V_{GS} = 0 \text{ V}, V_{DS} = 600 \text{ V},$ $T_{case} = 125 \text{ °C}^{(1)}$			100	μΑ
lgss	Gate-body leakage current	V _{DS} = 0 V, V _{GS} = ±25 V			±10	μΑ
V _{GS(th)}	Gate threshold voltage	$V_{DS} = V_{GS}$, $I_D = 250 \mu A$	2	3	4	V
R _{DS(on)}	Static drain-source on- resistance	V _{GS} = 10 V, I _D = 10 A		0.14	0.165	Ω

Notes:

Table 6: Dynamic

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Ciss	Input capacitance		-	1360	1	
Coss	Output capacitance	$V_{DS} = 100 \text{ V}, f = 1 \text{ MHz},$	-	88	1	pF
C _{rss}	Reverse transfer capacitance	$V_{GS} = 0 V$	-	2	-	P.
Coss eq. (1)	Equivalent output capacitance	V _{DS} = 0 to 480 V, V _{GS} = 0 V	-	124	1	рF
Rg	Intrinsic gate resistance	f = 1 MHz, I _D = 0 A	-	4	1	Ω
Qg	Total gate charge	$V_{DD} = 480 \text{ V}, I_D = 20 \text{ A},$	-	34	-	
Qgs	Gate-source charge	V _{GS} = 0 to 10 V (see Figure 15: "Test circuit for gate charge	-	5.6	-	nC
Q_{gd}	Gate-drain charge	behavior")	-	16.3	-	

Notes:

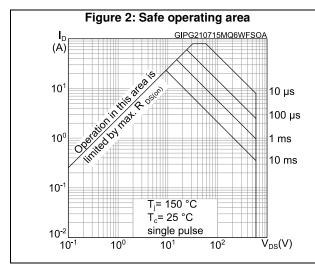
Table 7: Switching times

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{d(on)}	Turn-on delay time	$V_{DD} = 300 \text{ V}, I_{D} = 10 \text{ A}$	ı	20.2	1	
t _r	Rise time	$R_G = 4.7 \Omega, V_{GS} = 10 V$ (see	1	8	-	no
t _{d(off)}	Turn-off delay time	Figure 14: "Test circuit for	-	66	-	ns
t f	Fall time	resistive load switching times")	1	10	1	

 $^{^{(1)}\}mbox{Defined}$ by design, not subject to production test.

 $^{^{(1)}}$ $C_{oss\ eq.}$ is defined as a constant equivalent capacitance giving the same charging time as C_{oss} when V_{DS} increases from 0 to 80% V_{DSS} .

Table 8: Source-drain diode


Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
I _{SD}	Source-drain current		-		20	Α
I _{SDM} ⁽¹⁾	Source-drain current (pulsed)		-		80	Α
V _{SD} ⁽²⁾	Forward on voltage	V _{GS} = 0 V, I _{SD} = 20 A	-		1.6	V
t _{rr}	Reverse recovery time	I _{SD} = 20 A, di/dt = 100 A/μs,	-	360		ns
Qrr	Reverse recovery charge	V _{DD} = 60 V (see Figure 16: "Test circuit for inductive load switching and diode recovery times")		5		μC
I _{RRM}	Reverse recovery current			27		Α
t _{rr}	Reverse recovery time	I _{SD} = 20 A, di/dt = 100 A/μs,	-	556		ns
Qrr	Reverse recovery charge	$V_{DD} = 60 \text{ V}, T_j = 150 \text{ °C} \text{ (see}$ Figure 16: "Test circuit for	-	8		μC
I _{RRM}	Reverse recovery current	inductive load switching and diode recovery times")	-	29		Α

Notes:

⁽¹⁾ Pulse width is limited by safe operating area.

 $^{^{(2)}}$ Pulse test: pulse duration = 300 $\mu s,$ duty cycle 1.5%.

2.1 Electrical characteristics (curves)

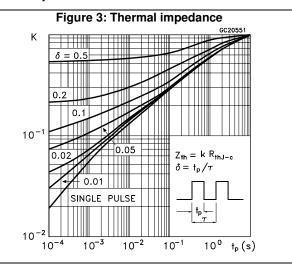
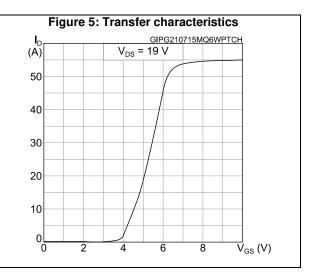
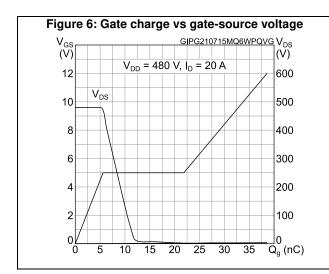
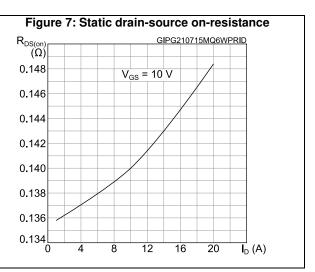





Figure 4: Output characteristics GIPG210715MQ6WPOCH **I**_D (Α) $V_{GS} = 7,8,9,10 \text{ V}$ 50 $V_{GS} = 6 V$ 40 30 $V_{GS} = 5 V$ 20 10 $V_{GS} = 4 V$ 0 8 12 16 $\overline{\mathsf{V}}_{\mathsf{DS}}\left(\mathsf{V}\right)$

STFU26N60M2 Electrical characteristics

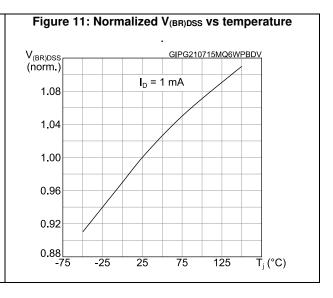
Figure 9: Normalized gate threshold voltage vs temperature V_{GS(th)} (norm.) GIPG210715MQ6WPVTH $I_D = 250 \, \mu A$ 1.1 1.0 0.9 0.8 0.7 0.6 -75 -25 25 75 125 T_i (°C)

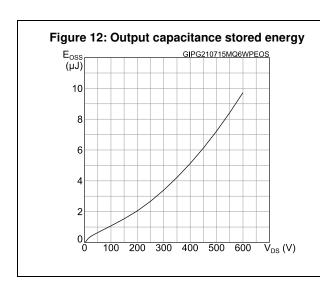
Figure 10: Normalized on-resistance vs temperature

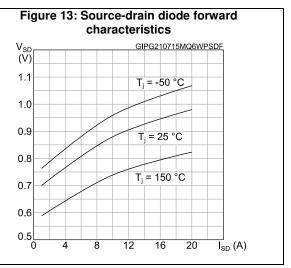
R_{DS(on)} GIPG210715MQ6WPRON
(norm.)

2.4

2.0


1.6


1.2


0.8

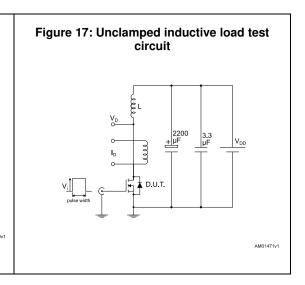
0.4

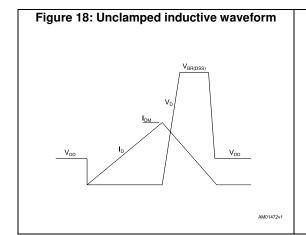
-75 -25 25 75 125 T_j (°C)

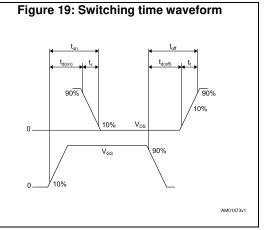
Test circuits STFU26N60M2

3 Test circuits

Figure 14: Test circuit for resistive load switching times


Figure 15: Test circuit for gate charge behavior


12 V 47 kΩ 100 nF D.U.T.


Vos 1 1 kΩ 100 nF D.U.T.

AM01489v1

Figure 16: Test circuit for inductive load switching and diode recovery times

STFU26N60M2 Package information

4 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: **www.st.com**. ECOPACK® is an ST trademark.

4.1 TO-220FP ultra narrow leads package information

В ω F1(x3) D G1 Ε 8576148_1

Figure 20: TO-220FP ultra narrow leads package outline

Table 9: TO-220FP ultra narrow leads mechanical data

Dim		mm	
Dim.	Min.	Тур.	Max.
Α	4.40		4.60
В	2.50		2.70
D	2.50		2.75
Е	0.45		0.60
F	0.65		0.75
F1	-		0.90
G	4.95		5.20
G1	2.40	2.54	2.70
Н	10.00		10.40
L2	15.10		15.90
L3	28.50		30.50
L4	10.20		11.00
L5	2.50		3.10
L6	15.60		16.40
L7	9.00		9.30
L8	3.20		3.60
L9	-		1.30
Dia.	3.00		3.20

STFU26N60M2 Revision history

5 Revision history

Table 10: Document revision history

Date	Revision	Changes
27-Jul-2017	1	First release.

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2017 STMicroelectronics - All rights reserved